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ABSTRACT iteratively executing the following two steps: (i) approt-
Modern DSL networks suffer from crosstalk among differ- ing the nonconvex problem by a convex optimization prob-
ent lines in the same cable bundle. By carefully choosindgem, and (i) solving the convex approximation using a stan-
the modems’ transmit power spectra, the impact of crosstaldard (sub)gradient-based dual decomposition approach. We
can be minimized leading to spectacular data rate perfowill focus on the second step, which requires the major part
mance gains. This is also referred to as dynamic spectruef the computational complexity. The standard subgradient
management (DSM). DSM algorithms based on an iterativ®ased updates used in this step can lead to very slow conver-
convex approximation approach are recognized as being vegence. This is mainly because of two reasons: (i) subgradien
effective in tackling the corresponding non-convex optiami  methods are generally known to exhibit a slow convergence,
tion problems. One crucial ingredient of this type of algo-i.e. a worst case convergence oforwrglz) with € referring
rithms, is a subgradient-based dual decomposition approago the required accuracy of the approximation of the opti-
to solve the corresponding convex approximations. Althoug mum [5], and (i) the stepsizes used by subgradient methods
a dual decomposition approach decouples the problem intgre very difficult to tune so as to guarantee fast convergence
manageable subproblems, the subgradient-based updates ar |n this paper we propose a novel improved dual decom-
known to exhibit a slow convergence, with a difficult but cru- position approach for iterative convex approximation lase
cial stepsize selection. This paper presents an improvald dupSm algorithms inspired by recent advances in mathemati-
decomposition approach that improves on the convergence e programming [6]. More specifically the novel approach
existing subgradient-based approaches by one order of magnproves on the convergence of existing subgradient-based
nitude. It uses a smoothing technique for the Lagrangia@pproaches by one order of magnitude with the same compu-
combined with an optimal gradient-based scheme for updatational compiexity. The proposed method uses (i) a smooth-
ing the Lagrange multipliers. Furthermore, the optimapste ing technique for the Lagrangian that preserves the separa-
size parameters are selected automatically. The prop@sed &jlity of the problem, (i) an optimal gradient-based scteem
proach makes an important step towards obtaining numergnd (jii) optimal stepsizes, which leads to straightforvar

cally fast and effective DSM algorithms. tuning.
This paper is organized as follows. In Section 2 the sys-
1. INTRODUCTION tem model for the crosstalk environmentis described. In Sec

tion 3 the spectrum management problem is reviewed. In
ection 4 the iterative convex approximation approach for
SL DSM is briefly reviewed. In Section 5 the improved

Digital subscriber line (DSL) technology remains by far the
most popular broadband access technology. The increa

ing demand for higher data rates forces DSL systems to u b . .
ual decomposition approach is proposed with correspond-

higher frequencies. At these high frequencies, electreamal . X .
netic coupling becomes particularly harmful and causes inind Proofs on the convergence speed-up. Finally in Section 6

terference, also called crosstalk, among lines operating iSimulation results are given.

the same cable bundle. This crosstalk is a major obstacle

for modern DSL systems towards reaching higher data rates. 2. SYSTEM MODEL
Dynamic spectrum management (DSM) [1] refers to a sef1ost current DSL systems use discrete multi-tone (DMT)

of solutions to the crosstalk problem. These solutionsisbns modulation. For the standardly assumed case of perfect tone

of signal level and/or spectrum level coordination amongssynchronisation, the transmission for a bindeNahodems,

the different modems. In this paper the focus is on specgsing a frequency range f tones, can be modeled on each
trum level coordination, which is also referred to as spectonek by

trum balancing. Here the modems’ transmit power spectra

are designed so as to mitigate the impact of crosstalk in- vk = Hyxy + z, ke #x ={1,...,K}.

terference, leading to spectacular performance gains. The

problem of optimally choosing the transmit power spectra tof he vector = [xi,XZ, ..., %] contains the transmitted sig-
maximize the data rates of the network can be formulated asals on toné for all N modems [Hy]nm = hﬂ’m isanN x N

an optimization problem [2], and is referred to as the specmatrix containing the channel transfer functions from ¢an
trum management problem. Unfortunately this optimizatiommitter m to receivern on tonek. The diagonal elements
problem is a very difficult, NP-hard, nonconvex optimizatio are the direct channels, the off-diagonal elements are the
problem. State-of-the-art DSM algorithms (CA-DSB [3], crosstalk channelgy is the vector of additive noise on tone
SCALE [4]) use an iterative convex approximation approactk, containing thermal noise, alien crosstalk, RFI, .... The
to tackle this nonconvex problem. This approach consists ofectoryy contains the received symbols.
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The transmit power is denoted Isff = A;E{|x]|?}, the  proposed schemes for CA-DSB. This can similarly be done
noise power byol £ AtE{|Z|?}. The vector contain- for SCALE but requires more complicated notations because

ing the transmit power of modem on all tones iss" £ of the inherent exponential transformation of variables.

[s],s],...,s¢]T. The DMT symbol rate is denoted bfg, . — ——
the tone spacing by\;. The set of users is denoted by Algorithm 1 DSM based on iterative convex approximations

N ={1,...,N} 1: ApproximateF by a convex approximatioB cyy

In our model, no signal coordination is assumed among 2: repeat ) )
transmitting and receiving modems. Each modem views the3: ~ SolveFcyx using a subgradient-based dual decompo-
signals from the other modems as noise. When the number  Sition approach, to obtai cyx,k € 2
of interfering modems is large, the interference is well ap- 4 T|ghten convex approximatioFcyx in sk cvx, K € £
proximated by a Gaussian distribution. Under this standard5: until convergence
assumption the achievable bit loading for modeam tonek,

given the transmit spectea = [st, <Z,..., Y| T of all modems Note that line 3 of Algorithm 1 requires the major
in the system, is part of the computational cost. It involves solving a high-
dimensional convex optimization problem, i.e. with dimen-
N A 1 |hE’n|2$ sionNK, where the number of useh$ typically ranges be-
b =log, | 1+ 2 R (1)  tween 2-100 and the number of toriéxan go up to 4000.
%ﬂ' KIS 0K For CA-DSB, this convex problem is as follows:
max b cux(sk) Sit. < pMet F
wherel” denotes the SNR-gap to capacity, which is a functiorske.sike# kez_}g kew(Sk) kezlq: - e (Fon)
of the desired BER, the coding gain and noise margin. The 3)
total bit rate for modem and the total power used by modem where.% = {sx € 2" : 0 < § < i’max, ne .4} is acompact
nareR" = sy » by andP" = 3, s/ respectively. convex set withg™ ;= min { %r('l,mask’ Pt andPot < oo,

3 SPECTRUM MANAGEMENT PROBLEM and wheredy cyx(sk) is concave and given as:

=n.m
The problem of optimally balancing the transmit power spec-  Pkevk(Sk) = 3 Wafslogo( 3[Ry [’ +Top)
tras),k € #,n€ ./, to maximize the data rates of the DSL neA ;,"EJV mn n (4)
network is referred to as the rate adaptive spectrum manage- N Z Wh fs( ; 3 S+ o),
ment problem. The objective is to find the optimal transmit nes .
spectra for a bundle of interfering DSL modems, maximiz-and wherea{}m, cg,Vn,m,k are constant approximation pa-
ing a weighted bit rate, subject to per-modem total powerameters, obtained by a closed-form formula during the ap-
constraints and spectral mask constraints. This can besformproximation step (line 1 and 4 of Algorithm 1), and

lated as the following nonconvex optimization problem [7]:
|F]n,m|2 = |_|hn’m|2, n 7é m (5)
max 5 wR" k =M% n=m
shnet hey
st. Z F<PML i ne s, (F) (2 The standard way of solvinBcyx (3) is via its dual prob-
kex lem formulationF cyy qua, @s shown in (6), which leads to the
0<g< g(”*maSk, net ke x, same solution because the duality gap is zero. The advantage

of the dual formulation is that the dual objective function
whereP"t denotes the total power budget for modemnd ~ Jevx(A) can be decomposed into independent subproblems

s denotes the spectral mask for modemn tonek. The Gkevx(A) for each tonek, which are much more simple to

weightsw, are used to put more emphasis on some modemﬁplve- The dual problecyx duar dual functiongeyx(A) and

Let us also defin®@tot — [pl,tot’ ..P ,tot]T_ agrangianZi cvx(sk,A ), for tonek, are given as follows:

min gcvx(/\) (chx,dual) (6)
4. DSM BASED ON ITERATIVE CONVEX A>0
APPROXIMATIONS With  gew(A) = Z Gkon(A) = Z max Zicou(sk, A )
DSM algorithms based on iterative convex approximations, kex’ ke SkETk n ot
such as CA-DSB and SCALE, are known to be very effec-  Zkew(k:A) =breux(si) = 5 Anset+ H AnP™/K
tive in tackling the nonconvex optimization probldm(2). neAt ne.V

Their basic approach is summarized in Algorithm 1. It starts ~ The dual problen¥ vy qual is solved using the standard
with an initial convex approximatioR .y« of the nonconvex subgradient-based dual decomposition approach, as shown i
problemF in line 1. In line 3 the obtained convex approxi- Algorithm 2, so as to find the solution of the convex problem
mation is solved using a subgradient-based dual decompogline 3 of Algorithm 1). Note thafx]* denotes the projection
tion approach, which will be discussed in more detail later i of x € %N ontoﬁﬁ, and that the stepsiz& can be chosen
this section. In line 4 the approximation is improved basedising different procedures [2] [7], e.9.= g/t whereq s the

on the solutiorsy ¢y, k € 277, obtained in line 3. This iter- initial stepsize and is the iteration counter. Note that line 4
ative scheme converges to a locally optimal solution of (2)of Algorithm 2 corresponds to solvirtg independent convex
under certain conditions [8] on the chosen convex approxsubproblems of dimensioN. This can be done by using
imations, which are indeed satisfied for both CA-DSB andstate-of-the-art iterative methods (e.g. Newton’s-mejtay
SCALE. In the remaining of this text we will elaborate the by using iterative fixed point updates [3] [4].
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Algorithm 2 Subgradient-based dual decomposition apwherec is a positive smoothness parameter that will be de-

proach to solvé ., for CA-DSB fined later in this section. By using a sufficiently small valu
1t:=1 for ¢, the smoothed dual function can be arbitrarily close to
2: repeat the original dual function. Note that the particular choide

. t+1 _ [yt & _pntoty]t the prox-functions does not destroy the tone-separalufity

s An " Aot (i & Pprlﬂ ey the objective function in (8).
4 VKif= argr;awkaVX(Skv’\ ) Denote bysycyx(A),k € ., the optimal solution of the
5 ti—t4l SKETk maximization problem in (8). The following theorem de-
6: untii_(:onvergence (accuraey scribes the properties of the smoothed dual funatigp(A):
7: Skevx = Sk, K€ Theorem 5.1([6]). The functiorgeyx(A ) is convex and con-

tinuous differentiable at any € #". Moreover, its gradi-
ent Ogevx(A) = Tker Skewx(A) — Pt is Lipschitz continu-

5. IMPROVED DUAL DECOMPOSITION FOR DSL ous with Lipschitz constantl= } xc » ﬁ The following

DSM inequalities also hold:

The subgradient update approach (Algorithm 2) to solve - = n
Fcvx, Often exhibits a very slow convergence. Therefore we cux(A) < Gew(A) < Gowe(A) + Ck; D VAEZ.

propose an improved approach that is inspired by recent ad- )
vances in mathematical programming, in particular the prox
mal center method of [6]. Our improved scheme uses an opti- The addition of the prox-functions thus leads to a con-
mal gradient-based scheme and automatically selects aptimvex differentiable dual functiogeyx(A ) with Lipschitz con-
stepsizes. Furthermore we prove that the proposed schertiBuous gradient. Now instead of solving the original dual
improves on the convergence of subgradient based schemgroblem (6), we will focus on the following problem:

i : 1 Ta s
by one order of ma_gnltude, ie. f_romﬁ(?) to ﬁ_(g), with minGo(A ). (10)
the same computational complexity, resulting in much faste A>0
DSM algorithms. ) o ) .

The basic steps in this approach are as follows. First affote that, by making sufficiently small in (8), the solution
approximated (smoothed) dual functiga(A) is defined of (10) can be brought arblftrarlly close to the solution df (6
that can be chosen to be arbitrarily close to the original dual his means that the solution of (6) can be found by solv-
functiongeyx(A). Then it is proven that this smoothed dual ing (10), up to a certain accuracy determined by the choice
functiongeyy is differentiable and has a Lipschitz continuous©f ¢.  Taking the particular structure of (10) into account,
gradient, contrary taewx(A) that is non-differentiable and 1-€- & differentiable objective function with Lipschitzrein-
has no Lipschitz continuous gradient. Finally an optimaluous gradient, we propose Algorithm 3, which is an optimal
gradient scheme [5] is applied to the smoothed dual functioradient-based scheme derived from [6] to solve (10).
Ocvx(A ) leading to an efficiency estimate of the ord@(r%), : _
i.e. one order of magnitude better than the subgradientbasé\lgorithm 3 Improved dual decomposition scheme for (10)
dual decomposition approach (Algorithm 2). 1:1:=0,tmp=0

2: |n|t|al|ze imax, )\I

We introduce the following functiondy(sx) which are 3: fori=0...imaxdo _

called prox-functions in [6] and are defined as follows: 4:  Vk: s]jl = argmyaxbk’cvx(sk) - z AnSt — cd(sk)
SkETk netV
dg[:+1 _ ZKGJ( S|k+l _ ptot

) 1 .
u+l — [dQL'c: FAF
tmp = tznp—i— Hldgtt

i m
vitl = [L_CP]+

Definition 5.1. A prox-function g(sx) has the following
properties:

e dy(sk) is a non-negative continuous and strongly convex
function with convexity parameter,

e dy(sk) is defined for the compact convex sét

© ® N 2 a

D Yk o i+_1ui+1+ 2_yitl
. . . 1 2 : 143 143

An example of a valid prox-function id(sx) = 5 ||sk/|“. 10: end for _ _

Since.%;, Vk, are compact andy(si) are continuous, we can 11: Build A = A'maxt1 gnds = jmex %s{(ﬂ

choose finite and positive constants such that max T ma

D > maxd(sk),Vk. ) In Algorithm 3, the specific value fdr; depends on the

skESk chosen prox-functiody(sk), as given in Theorem 5.1. The

. specific value foc will be defined later in Theorem 5.2. The
_ The prox-functions are used to smoothen the dual funcingex refers to the iteration counter. Note that lines 5-9
tion gevx(A ) to obtain a smoothed dual functi@aw(A) as  of Algorithm 3 correspond to the improved Lagrange multi-

follows: plier updates. By comparing this with the standard subgradi
Govx(A) = ent Lagrange multiplier update (line 3 of Algorithm 2), one
Gowd ) = ph.tot can observe that the standard and improved updates require
max b si) — An(S)— ——) —cdq(sk) b, @ similar complexity.
skEFhoke A kezf{ eon(Sk) HEZ,V (S K ) ( k)} The remaining issue is to prove thatK € 7, in Algo-

(8) rithm 3, afterimay iterations has converged to aroptimal
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solution wheré@may is of the orderﬁ(%). For this we define
the following lemmas that will be used in the sequel.

Lemma 5.1. For anyy € #Z" andz > 0, the following in-
equality holds:

y'z <|lly]"Illz]- (11)

Proof. Let us define the following index setd:™ = {i €
{1...n}:yi<0}andl™ ={ie{1...n}:y; > 0}. Then,

yiz= Y ya+ Yy wza< y viz=(y")"z< Iyl Il

iel— iel+ iel+

The last inequality follows from the Cauchy-Schwartz in-

equality. O

The following lemma gives a lower bound for the primal

gap, féx — ke brevx(8k), of (3), wheref,, is the optimal
objective value of (3),

Lemma5.2. LetA* be any optimal Lagrange multiplier, then

for anysg € %4, VK, the following lower bound on the primal
gap holds:

fo— Y Do) = —=IIA"JIILY 8P
cvx kez.)k kez.)k

(12)

Proof. From the assumptions of the lemma we have

o = max bk Sk) — A «T Sk — ].:”[Ot
> Y brew(B) AT (Y s—PY).

(13)

Formula (12) is then obtained by applying Lemma 5.1
A consequence of Lemma 5.2 is that|fifykc » Sk —
Pt | < g, then the primal gap is bounded: for alle %"

b CVX S S CV)(A - b CVX S .
kezf kevx(Sk) < Govx(A ) kezj{/ k,cvx (Sk)
(14)

Therefore, if we are able to derive an upper boarfdr
the dual gapgeyx(A ) — 5 ke bicvx(Sk), and an upper bound
& for the coupling constraints for some givan(> 0) and

Sk € ., Vk, then we conclude thakis an €, &)-solution for
Fcux (since in this case-&c||A || < f&x — Sker Prevx(Sk) <

—&[|I AT < feux —

Proof. Using a similar reasoning as in the proof of Theorem
3.4in [6] we can show that for argthe following inequality
holds:

~ H 2l 2
Gewx(A) < )\mZ"g{ (mact 1) Al

imax . . _ f :
<fzﬁg%%%;3@mmw+aww«N»WA—Am}
1=

By replacinggevx(A') and Ogevx(A') with their expressions
given in (8) and Theorem 5.1, respectively and taking into
account the functionby ¢,x are concave, we obtain the fol-
lowing inequality:

gox(A) = S brow(8K)
VX kezjg CVX

<c D minf —2e 12— (1. & — Pt
=~ (kg/ yk)+}\20{(|r2ax+l>2” || < 7Zsk >}
imax+1 A~
:C( Z D.,Vk)— (i th ) H[ZSk_Ptot]JerSC( Z D,yk),
ket 2

Therefore takingc as in the theorem we obtain (15). For
the constraints using Lemma 5.2 and the previous inequal-
ity we get that|| [Ty Sk — P T| satisfies the second order

inequality iny: %yz — |A*|ly — & < 0. Therefore,
I[Sk8k — P©YT| must be less than the largest root of the

corresponding second-order equation, i.e.

~ * % ima 1)2 c
m;w—meusmAH+¢w|P+“a§)>wimr

Takingimax as defined in the theorem, we also get (16)]

From Theorem 5.2 we can conclude that by taking
m, Algorithm 3 converges to a solution &fx with
S P k

duality gap less tharE and the constraints violation sat-
isfy [|[Tx8k— P || < (||A*] +/[[A*][2+2) afterimax=

2\/(Zk o%—//k)(Zk D, )1 iterations, i.e. the efficiency estimate

of our scheme is of the ordﬁ(%), one order of magnitude
better than the standard subgradient based method that has

an efficiency estimate of the ordéf(e—lz).
Note that this approach is fully automatic, i.e. it does not
require any stepsize tuning as in the subgradient approach,

€). The next theorem derives these upper bounds for Algoghich is known to be a very difficult and crucial process.

rithm 3 and provides a specific value far

Theorem 5.2. Let A* be an optimal Lagrange multiplier,
i i 1 1

taking c= ZKG;D% and imax+1= 2\/(szyk)(szf’k)E’

then after jhayx iterations, Algorithm 3 obtains an approxi-

mate solutiorgy, Vk € ¢, to the convex approximation (3)
with a duality gap less thas, i.e.

gcvx(;\) — Z bk,cvx(ék) <g, (15)

ke

and the constraints satisfy:
H[Z Sc— PO <e(IA*[|+4/A%]2+2).  (16)

1For the sake of an easy exposition we consider only the Hanlidgorm
|| -]]. Other norms can also be used (see [6] for a detailed expoiti

For our proposed scheme, one decides on the required accu-
racy e and then simply executes the algorithm. The extension
of CA-DSB with the improved dual decomposition approach
will be referred to as I-CA-DSB, i.e. improved CA-DSB.

A final remark on Algorithm 3 is that the independent
convex ‘per-tone’ problems (line 4) are slightly modified
with respect to the standard ‘per-tone’ problegagyx. This
is a consequence of the addition of the extra prox-function
term. One can use state-of-the-art iterative methods (e.g.
Newton’s-method) to solve these convex subproblems with
guaranteed convergence. Another popular method consists
in using an iterative fixed point update approach, as this is
shown to work well with very small complexity and can eas-
ily be extended to a distributed implementation [4] [3]. The
fixed point update formula for the transmit powefsused
by CA-DSB can be adapted to take the extra prox-term into
account. Following the same procedure as explained in [3],
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we obtain the following transmit power update formula, that

. . . 650
only differs in the presence of the term PROX: —— improved scheme
subgradient, g=1000
600 o subgradient, g=10000
_ ( wn fs/log(2) — subgradient, g=30000
! wmfsl|h,""'|4/l0g(2) - = subgradient, g=50000
M2+ Y wmfea™- § sk 9D . ‘
. ; Zlhﬂlp\z%raﬁ‘ o 5501 optimal dual value
PROX D (17) _5 \‘
©
c
2
©
>
o

; rhE’mi"*rUk”l +
n

——
‘hk' ‘2

By iteratively updating the transmit powessusing (17)
over all users and tones, a fast convergence to the solution ¢
the convex subproblem is achieved (line 4 of Algorithm 3).
Providing convergence conditions for these types of itezat 350 : ‘ ‘ ‘ ‘

i ; ; . ! 0 100 200 300 400 500
fixed point updates is outside the scope of this paper. In [3, number of updates of Lagrange multipliers
9, 10], limited convergence results are given for thesedype

of iterative updates. Although convergence is only proverl:_ ] . .
under certain conditions, one always observes convergen&dduré 1: Comparison of convergence behaviour between
subgradient schemes, with different initial stepsigesnd

for realistic DSL scenarios as shown in [3,9, 10]. :
Finally note that the improved dual decomposition ap-th€ improved scheme.
proach can straightforwardly be extended to more gen-
eral DSM prOblem formulations that incorporate energy'G.OSOZ.O?; Research communities (ICCoS, ANMMM, MLDM); AWI
awareness, such as those presented n [11] (green DSL)' BIL/05/43; Belgian Federal Science Policy Office: IUAP DYSC
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