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ABSTRACT
Modern DSL networks suffer from crosstalk among differ-
ent lines in the same cable bundle. By carefully choosing
the modems’ transmit power spectra, the impact of crosstalk
can be minimized leading to spectacular data rate perfor-
mance gains. This is also referred to as dynamic spectrum
management (DSM). DSM algorithms based on an iterative
convex approximation approach are recognized as being very
effective in tackling the corresponding non-convex optimiza-
tion problems. One crucial ingredient of this type of algo-
rithms, is a subgradient-based dual decomposition approach
to solve the corresponding convex approximations. Although
a dual decomposition approach decouples the problem into
manageable subproblems, the subgradient-based updates are
known to exhibit a slow convergence, with a difficult but cru-
cial stepsize selection. This paper presents an improved dual
decomposition approach that improves on the convergence of
existing subgradient-based approaches by one order of mag-
nitude. It uses a smoothing technique for the Lagrangian
combined with an optimal gradient-based scheme for updat-
ing the Lagrange multipliers. Furthermore, the optimal step-
size parameters are selected automatically. The proposed ap-
proach makes an important step towards obtaining numeri-
cally fast and effective DSM algorithms.

1. INTRODUCTION

Digital subscriber line (DSL) technology remains by far the
most popular broadband access technology. The increas-
ing demand for higher data rates forces DSL systems to use
higher frequencies. At these high frequencies, electromag-
netic coupling becomes particularly harmful and causes in-
terference, also called crosstalk, among lines operating in
the same cable bundle. This crosstalk is a major obstacle
for modern DSL systems towards reaching higher data rates.

Dynamic spectrum management (DSM) [1] refers to a set
of solutions to the crosstalk problem. These solutions consist
of signal level and/or spectrum level coordination amongst
the different modems. In this paper the focus is on spec-
trum level coordination, which is also referred to as spec-
trum balancing. Here the modems’ transmit power spectra
are designed so as to mitigate the impact of crosstalk in-
terference, leading to spectacular performance gains. The
problem of optimally choosing the transmit power spectra to
maximize the data rates of the network can be formulated as
an optimization problem [2], and is referred to as the spec-
trum management problem. Unfortunately this optimization
problem is a very difficult, NP-hard, nonconvex optimization
problem. State-of-the-art DSM algorithms (CA-DSB [3],
SCALE [4]) use an iterative convex approximation approach
to tackle this nonconvex problem. This approach consists of

iteratively executing the following two steps: (i) approximat-
ing the nonconvex problem by a convex optimization prob-
lem, and (ii) solving the convex approximation using a stan-
dard (sub)gradient-based dual decomposition approach. We
will focus on the second step, which requires the major part
of the computational complexity. The standard subgradient-
based updates used in this step can lead to very slow conver-
gence. This is mainly because of two reasons: (i) subgradient
methods are generally known to exhibit a slow convergence,
i.e. a worst case convergence of orderO( 1

ε2 ) with ε referring
to the required accuracy of the approximation of the opti-
mum [5], and (ii) the stepsizes used by subgradient methods
are very difficult to tune so as to guarantee fast convergence.

In this paper we propose a novel improved dual decom-
position approach for iterative convex approximation based
DSM algorithms inspired by recent advances in mathemati-
cal programming [6]. More specifically the novel approach
improves on the convergence of existing subgradient-based
approaches by one order of magnitude with the same compu-
tational complexity. The proposed method uses (i) a smooth-
ing technique for the Lagrangian that preserves the separa-
bility of the problem, (ii) an optimal gradient-based scheme,
and (iii) optimal stepsizes, which leads to straightforward
tuning.

This paper is organized as follows. In Section 2 the sys-
tem model for the crosstalk environment is described. In Sec-
tion 3 the spectrum management problem is reviewed. In
Section 4 the iterative convex approximation approach for
DSL DSM is briefly reviewed. In Section 5 the improved
dual decomposition approach is proposed with correspond-
ing proofs on the convergence speed-up. Finally in Section 6
simulation results are given.

2. SYSTEM MODEL

Most current DSL systems use discrete multi-tone (DMT)
modulation. For the standardly assumed case of perfect tone
synchronisation, the transmission for a binder ofN modems,
using a frequency range ofK tones, can be modeled on each
tonek by

yk = Hkxk +zk, k∈ K = {1, . . . ,K}.

The vectorxk = [x1
k,x

2
k, . . . ,x

N
k ]T contains the transmitted sig-

nals on tonek for all N modems.[Hk]n,m = hn,m
k is anN×N

matrix containing the channel transfer functions from trans-
mitter m to receivern on tonek. The diagonal elements
are the direct channels, the off-diagonal elements are the
crosstalk channels.zk is the vector of additive noise on tone
k, containing thermal noise, alien crosstalk, RFI, . . . . The
vectoryk contains the received symbols.
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The transmit power is denoted bysn
k , ∆ f E{|xn

k|
2}, the

noise power byσn
k , ∆ f E{|zn

k|
2}. The vector contain-

ing the transmit power of modemn on all tones issn ,

[sn
1,s

n
2, . . . ,s

n
K ]T . The DMT symbol rate is denoted byfs,

the tone spacing by∆ f . The set of users is denoted by
N = {1, . . . ,N}

In our model, no signal coordination is assumed among
transmitting and receiving modems. Each modem views the
signals from the other modems as noise. When the number
of interfering modems is large, the interference is well ap-
proximated by a Gaussian distribution. Under this standard
assumption the achievable bit loading for modemn on tonek,
given the transmit spectrask , [s1

k,s
2
k, . . . ,s

N
k ]T of all modems

in the system, is

bn
k , log2

(

1+
1
Γ

|hn,n
k |2sn

k

∑
m6=n

|hn,m
k |2sm

k + σn
k

)

, (1)

whereΓ denotes the SNR-gap to capacity, which is a function
of the desired BER, the coding gain and noise margin. The
total bit rate for modemn and the total power used by modem
n areRn = fs∑k∈K bn

k andPn = ∑k∈K sn
k respectively.

3. SPECTRUM MANAGEMENT PROBLEM

The problem of optimally balancing the transmit power spec-
trasn

k,k∈ K ,n∈ N , to maximize the data rates of the DSL
network is referred to as the rate adaptive spectrum manage-
ment problem. The objective is to find the optimal transmit
spectra for a bundle of interfering DSL modems, maximiz-
ing a weighted bit rate, subject to per-modem total power
constraints and spectral mask constraints. This can be formu-
lated as the following nonconvex optimization problem [7]:

max
s

n,n∈N
∑

n∈N

wnRn

s.t. ∑
k∈K

sn
k ≤ Pn,tot , n∈ N , (F)

0≤ sn
k ≤ sn,mask

k , n∈ N ,k∈ K ,

(2)

wherePn,tot denotes the total power budget for modemn and
sn,mask
k denotes the spectral mask for modemn on tonek. The

weightswn are used to put more emphasis on some modems.
Let us also definePtot = [P1,tot, . . . ,PN,tot]T .

4. DSM BASED ON ITERATIVE CONVEX
APPROXIMATIONS

DSM algorithms based on iterative convex approximations,
such as CA-DSB and SCALE, are known to be very effec-
tive in tackling the nonconvex optimization problemF (2).
Their basic approach is summarized in Algorithm 1. It starts
with an initial convex approximationFcvx of the nonconvex
problemF in line 1. In line 3 the obtained convex approxi-
mation is solved using a subgradient-based dual decomposi-
tion approach, which will be discussed in more detail later in
this section. In line 4 the approximation is improved based
on the solutionsk,cvx,k ∈ K , obtained in line 3. This iter-
ative scheme converges to a locally optimal solution of (2)
under certain conditions [8] on the chosen convex approx-
imations, which are indeed satisfied for both CA-DSB and
SCALE. In the remaining of this text we will elaborate the

proposed schemes for CA-DSB. This can similarly be done
for SCALE but requires more complicated notations because
of the inherent exponential transformation of variables.

Algorithm 1 DSM based on iterative convex approximations
1: ApproximateF by a convex approximationFcvx
2: repeat
3: SolveFcvx using a subgradient-based dual decompo-

sition approach, to obtainsk,cvx,k∈ K

4: Tighten convex approximationFcvx in sk,cvx,k∈ K

5: until convergence

Note that line 3 of Algorithm 1 requires the major
part of the computational cost. It involves solving a high-
dimensional convex optimization problem, i.e. with dimen-
sion NK, where the number of usersN typically ranges be-
tween 2-100 and the number of tonesK can go up to 4000.
For CA-DSB, this convex problem is as follows:

max
sk∈Sk,k∈K

∑
k∈K

bk,cvx(sk) s.t. ∑
k∈K

sn
k ≤ Pn,tot, n∈ N (Fcvx)

(3)
whereSk = {sk ∈Rn : 0≤ sn

k ≤ sn,max
k ,n∈N } is a compact

convex set withsn,max
k := min

{
sn,mask
k ,Pn,tot

}
andPn,tot < ∞,

and wherebk,cvx(sk) is concave and given as:

bk,cvx(sk) = ∑
n∈N

wn fs log2( ∑
m∈N

|h̃n,m
k |2sm

k + Γσn
k )

− ∑
n∈N

wn fs( ∑
m6=n

am,n
k sm

k +cn
k),

(4)

and wherean,m
k ,cn

k,∀n,m,k are constant approximation pa-
rameters, obtained by a closed-form formula during the ap-
proximation step (line 1 and 4 of Algorithm 1), and

|h̃n,m
k |2

{

= Γ|hn,m
k |2, n 6= m

= |hn,m
k |2, n = m.

(5)

The standard way of solvingFcvx (3) is via its dual prob-
lem formulationFcvx,dual, as shown in (6), which leads to the
same solution because the duality gap is zero. The advantage
of the dual formulation is that the dual objective function
gcvx(λ ) can be decomposed into independent subproblems
gk,cvx(λ ) for each tonek, which are much more simple to
solve. The dual problemFcvx,dual, dual functiongcvx(λ ) and
LagrangianLk,cvx(sk,λ ), for tonek, are given as follows:

min
λ≥0

gcvx(λ ) (Fcvx,dual) (6)

with gcvx(λ ) = ∑
k∈K

gk,cvx(λ ) = ∑
k∈K

max
sk∈Sk

Lk,cvx(sk,λ )

Lk,cvx(sk,λ ) = bk,cvx(sk)− ∑
n∈N

λnsn
k + ∑

n∈N

λnPn,tot/K

The dual problemFcvx,dual is solved using the standard
subgradient-based dual decomposition approach, as shown in
Algorithm 2, so as to find the solution of the convex problem
(line 3 of Algorithm 1). Note that[x]+ denotes the projection
of x ∈ RN ontoRN

+, and that the stepsizeδ can be chosen
using different procedures [2] [7], e.g.δ = q/t whereq is the
initial stepsize andt is the iteration counter. Note that line 4
of Algorithm 2 corresponds to solvingK independent convex
subproblems of dimensionN. This can be done by using
state-of-the-art iterative methods (e.g. Newton’s-method) or
by using iterative fixed point updates [3] [4].
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Algorithm 2 Subgradient-based dual decomposition ap-
proach to solveFcvx for CA-DSB

1: t := 1
2: repeat
3: λ t+1

n =
[
λ t

n + δ (∑k∈K sn
k −Pn,tot)

]+
,∀n∈ N

4: ∀k : s̃k = argmax
sk∈Sk

Lk,cvx(sk,λ t+1)

5: t := t +1
6: until convergence (accuracyε)
7: sk,cvx = s̃k, k∈ K

5. IMPROVED DUAL DECOMPOSITION FOR DSL
DSM

The subgradient update approach (Algorithm 2) to solve
Fcvx, often exhibits a very slow convergence. Therefore we
propose an improved approach that is inspired by recent ad-
vances in mathematical programming, in particular the proxi-
mal center method of [6]. Our improved scheme uses an opti-
mal gradient-based scheme and automatically selects optimal
stepsizes. Furthermore we prove that the proposed scheme
improves on the convergence of subgradient based schemes
by one order of magnitude, i.e. fromO( 1

ε2 ) to O( 1
ε ), with

the same computational complexity, resulting in much faster
DSM algorithms.

The basic steps in this approach are as follows. First an
approximated (smoothed) dual function ¯gcvx(λ ) is defined
that can be chosen to be arbitrarily close to the original dual
functiongcvx(λ ). Then it is proven that this smoothed dual
functionḡcvx is differentiable and has a Lipschitz continuous
gradient, contrary togcvx(λ ) that is non-differentiable and
has no Lipschitz continuous gradient. Finally an optimal
gradient scheme [5] is applied to the smoothed dual function
ḡcvx(λ ) leading to an efficiency estimate of the orderO( 1

ε ),
i.e. one order of magnitude better than the subgradient based
dual decomposition approach (Algorithm 2).

We introduce the following functionsdk(sk) which are
called prox-functions in [6] and are defined as follows:

Definition 5.1. A prox-function dk(sk) has the following
properties:
• dk(sk) is a non-negative continuous and strongly convex

function with convexity parameterσSk

• dk(sk) is defined for the compact convex setSk

An example of a valid prox-function isdk(sk) = 1
2‖sk‖

2.
SinceSk,∀k, are compact anddk(sk) are continuous, we can
choose finite and positive constants such that

DSk ≥ max
sk∈Sk

dk(sk),∀k. (7)

The prox-functions are used to smoothen the dual func-
tion gcvx(λ ) to obtain a smoothed dual function ¯gcvx(λ ) as
follows:

ḡcvx(λ ) =

max
sk∈Sk,k∈K

∑
k∈K

{

bk,cvx(sk)− ∑
n∈N

λn(s
n
k −

Pn,tot

K
)−cdk(sk)

}

,

(8)

wherec is a positive smoothness parameter that will be de-
fined later in this section. By using a sufficiently small value
for c, the smoothed dual function can be arbitrarily close to
the original dual function. Note that the particular choiceof
the prox-functions does not destroy the tone-separabilityof
the objective function in (8).

Denote by ¯sk,cvx(λ ),k ∈ K , the optimal solution of the
maximization problem in (8). The following theorem de-
scribes the properties of the smoothed dual function ¯gcvx(λ ):

Theorem 5.1([6]). The functionḡcvx(λ ) is convex and con-
tinuous differentiable at anyλ ∈ Rn. Moreover, its gradi-
ent ∇ḡcvx(λ ) = ∑k∈K s̄k,cvx(λ )−Ptot is Lipschitz continu-
ous with Lipschitz constant Lc = ∑k∈K

1
cσSk

. The following

inequalities also hold:

ḡcvx(λ ) ≤ gcvx(λ ) ≤ ḡcvx(λ )+c ∑
k∈K

DSk ∀λ ∈ R
n.

(9)

The addition of the prox-functions thus leads to a con-
vex differentiable dual function ¯gcvx(λ ) with Lipschitz con-
tinuous gradient. Now instead of solving the original dual
problem (6), we will focus on the following problem:

min
λ≥0

ḡcvx(λ ). (10)

Note that, by makingc sufficiently small in (8), the solution
of (10) can be brought arbitrarily close to the solution of (6).
This means that the solution of (6) can be found by solv-
ing (10), up to a certain accuracy determined by the choice
of c. Taking the particular structure of (10) into account,
i.e. a differentiable objective function with Lipschitz contin-
uous gradient, we propose Algorithm 3, which is an optimal
gradient-based scheme derived from [6] to solve (10).

Algorithm 3 Improved dual decomposition scheme for (10)
1: i := 0, tmp := 0
2: initialize imax, λ i

3: for i = 0. . . imax do
4: ∀k : si+1

k = argmax
sk∈Sk

bk,cvx(sk)− ∑
n∈N

λ i
nsn

k −cdk(sk)

5: dḡi+1
c = ∑k∈K si+1

k −Ptot

6: ui+1 = [
dḡi+1

c
Lc

+ λ i]+

7: tmp := tmp+ i+1
2 dḡi+1

c

8: vi+1 = [ tmp
Lc

]+

9: λ i+1 = i+1
i+3u

i+1 + 2
i+3v

i+1

10: end for
11: Build λ̂ = λ imax+1 andŝk = ∑imax

i=0
2(i+1)

(imax+1)(imax+2)s
i+1
k

In Algorithm 3, the specific value forLc depends on the
chosen prox-functiondk(sk), as given in Theorem 5.1. The
specific value forc will be defined later in Theorem 5.2. The
index i refers to the iteration counter. Note that lines 5-9
of Algorithm 3 correspond to the improved Lagrange multi-
plier updates. By comparing this with the standard subgradi-
ent Lagrange multiplier update (line 3 of Algorithm 2), one
can observe that the standard and improved updates require
a similar complexity.

The remaining issue is to prove that ˆsk,k ∈ K , in Algo-
rithm 3, afterimax iterations has converged to anε-optimal
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solution whereimax is of the orderO( 1
ε ). For this we define

the following lemmas that will be used in the sequel.

Lemma 5.1. For anyy ∈ Rn andz ≥ 0, the following in-
equality holds1:

yTz ≤ ‖[y]+‖‖z‖. (11)

Proof. Let us define the following index sets:I− = {i ∈
{1. . .n} : yi < 0} andI+ = {i ∈ {1. . .n} : yi ≥ 0}. Then,

yTz = ∑
i∈I−

yizi + ∑
i∈I+

yizi ≤ ∑
i∈I+

yizi = ([y]+)Tz≤ ‖[y]+‖‖z‖.

The last inequality follows from the Cauchy-Schwartz in-
equality.

The following lemma gives a lower bound for the primal
gap, f ∗cvx−∑k∈K bk,cvx(ŝk), of (3), wheref ∗cvx is the optimal
objective value of (3),

Lemma 5.2. Letλ ∗ be any optimal Lagrange multiplier, then
for anyŝk ∈Sk,∀k, the following lower bound on the primal
gap holds:

f ∗cvx− ∑
k∈K

bk,cvx(ŝk) ≥−‖λ ∗‖‖[ ∑
k∈K

ŝk−Ptot]+‖. (12)

Proof. From the assumptions of the lemma we have

f ∗cvx = max
sk∈Sk,k∈K

∑
k∈K

bk,cvx(sk)−λ ∗T( ∑
k∈K

sk−Ptot)

≥ ∑
k∈K

bk,cvx(ŝk)−λ ∗T( ∑
k∈K

ŝk−Ptot).

(13)
Formula (12) is then obtained by applying Lemma 5.1.

A consequence of Lemma 5.2 is that if‖[∑k∈K ŝk −

Ptot]+‖ ≤ εc, then the primal gap is bounded: for allλ̂ ∈RN
+

−εc‖λ ∗‖ ≤ f ∗cvx− ∑
k∈K

bk,cvx(ŝk)≤ gcvx(λ̂ )− ∑
k∈K

bk,cvx(ŝk).

(14)
Therefore, if we are able to derive an upper boundε for

the dual gap,gcvx(λ̂ )−∑k∈K bk,cvx(ŝk), and an upper bound
εc for the coupling constraints for some givenλ̂ (≥ 0) and
ŝk ∈Sk,∀k, then we conclude that ˆsk is an (ε,εc)-solution for
Fcvx (since in this case−εc‖λ ∗‖ ≤ f ∗cvx−∑k∈K bk,cvx(ŝk)≤
ε). The next theorem derives these upper bounds for Algo-
rithm 3 and provides a specific value forc.

Theorem 5.2. Let λ ∗ be an optimal Lagrange multiplier,
taking c= ε

∑k∈K DSk
and imax+1 = 2

√

(∑k
1

σSk
)(∑k DSk)

1
ε ,

then after imax iterations, Algorithm 3 obtains an approxi-
mate solution̂sk,∀k ∈ K , to the convex approximation (3)
with a duality gap less thanε, i.e.

gcvx(λ̂ )− ∑
k∈K

bk,cvx(ŝk) ≤ ε, (15)

and the constraints satisfy:

‖[∑
k

ŝk−Ptot]+‖ ≤ ε(‖λ ∗‖+
√

‖λ ∗‖2 +2). (16)

1For the sake of an easy exposition we consider only the Euclidian norm
‖ ·‖. Other norms can also be used (see [6] for a detailed exposition).

Proof. Using a similar reasoning as in the proof of Theorem
3.4 in [6] we can show that for anyc the following inequality
holds:

ḡcvx(λ̂ ) ≤ min
λ≥0

{ 2Lc
(imax+1)2‖λ‖2

+
imax

∑
i=0

2(i+1)
(imax+1)(imax+2) [ḡcvx(λ i)+ (∇ḡcvx(λ i))T(λ −λ i)]

}

By replacing ¯gcvx(λ i) and∇ḡcvx(λ i) with their expressions
given in (8) and Theorem 5.1, respectively and taking into
account the functionsbk,cvx are concave, we obtain the fol-
lowing inequality:

gcvx(λ̂ )− ∑
k∈K

bk,cvx(ŝk)

≤ c( ∑
k∈K

DSk)+min
λ≥0

{ 2Lc
(imax+1)2‖λ‖2−〈λ ,∑

k

ŝk−Ptot〉
}

= c( ∑
k∈K

DSk)−
(imax+1)2

8Lc
‖[∑

k

ŝk−Ptot]+‖2 ≤ c( ∑
k∈K

DSk).

Therefore takingc as in the theorem we obtain (15). For
the constraints using Lemma 5.2 and the previous inequal-
ity we get that‖[∑k ŝk −Ptot]+‖ satisfies the second order

inequality in y: (imax+1)2

8Lc
y2 − ‖λ ∗‖y− ε ≤ 0. Therefore,

‖[∑k ŝk −Ptot]+‖ must be less than the largest root of the
corresponding second-order equation, i.e.

‖[∑
k

ŝk−Ptot]+‖ ≤
(
‖λ ∗‖+

√

‖λ ∗‖2 + ε(imax+1)2

2Lc

) 4Lc
(imax+1)2 .

Takingimax as defined in the theorem, we also get (16).

From Theorem 5.2 we can conclude that by takingc =
ε

∑k∈K DSk
, Algorithm 3 converges to a solution ofFcvx with

duality gap less thanε and the constraints violation sat-
isfy ‖[∑k ŝk−Ptot]+‖ ≤ ε(‖λ ∗‖+

√

‖λ ∗‖2 +2) afterimax =

2
√

(∑k
1

σSk
)(∑k DSk)

1
ε iterations, i.e. the efficiency estimate

of our scheme is of the orderO( 1
ε ), one order of magnitude

better than the standard subgradient based method that has
an efficiency estimate of the orderO( 1

ε2 ).
Note that this approach is fully automatic, i.e. it does not

require any stepsize tuning as in the subgradient approach,
which is known to be a very difficult and crucial process.
For our proposed scheme, one decides on the required accu-
racyε and then simply executes the algorithm. The extension
of CA-DSB with the improved dual decomposition approach
will be referred to as I-CA-DSB, i.e. improved CA-DSB.

A final remark on Algorithm 3 is that the independent
convex ‘per-tone’ problems (line 4) are slightly modified
with respect to the standard ‘per-tone’ problemsgk,cvx. This
is a consequence of the addition of the extra prox-function
term. One can use state-of-the-art iterative methods (e.g.
Newton’s-method) to solve these convex subproblems with
guaranteed convergence. Another popular method consists
in using an iterative fixed point update approach, as this is
shown to work well with very small complexity and can eas-
ily be extended to a distributed implementation [4] [3]. The
fixed point update formula for the transmit powerssn

k used
by CA-DSB can be adapted to take the extra prox-term into
account. Following the same procedure as explained in [3],
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we obtain the following transmit power update formula, that
only differs in the presence of the term PROX:

sn
k =

[(

wn fs/ log(2)

λn+2csn
k

︸︷︷︸
PROX

+ ∑
m6=n

ωm fsa
n,m
k − ∑

m6=n

wmfsΓ|hm,n
k |2/ log(2)

∑
p

|h̃
m,p
k |2s

p
k +Γσm

k

)

−

∑
m6=n

Γ|hn,m
k |2sm

k +Γσn
k

|hn,n
k |2

]+

.

(17)

By iteratively updating the transmit powerssn
k using (17)

over all users and tones, a fast convergence to the solution of
the convex subproblem is achieved (line 4 of Algorithm 3).
Providing convergence conditions for these types of iterative
fixed point updates is outside the scope of this paper. In [3,
9, 10], limited convergence results are given for these types
of iterative updates. Although convergence is only proven
under certain conditions, one always observes convergence
for realistic DSL scenarios as shown in [3,9,10].

Finally note that the improved dual decomposition ap-
proach can straightforwardly be extended to more gen-
eral DSM problem formulations that incorporate energy-
awareness, such as those presented in [11] (green DSL).

6. SIMULATION RESULTS

Simulations are performed for a near-far CO-RT (central of-
fice - remote terminal) scenario, consisting of a CO-line with
length 5000m, a RT-line with length 3000m, and a CO-RT
distance of 4000m. In Figure 1 the convergence behaviour
is compared for the improved scheme (Algorithm 3) and the
subgradient scheme (Algorithm 2), where convergence is de-
fined as achieving the optimal dual value within accuracy
0.05%. For the subgradient scheme we used the stepsize up-
date ruleδ = q/t, whereq is the initial stepsize andt is the
iteration counter. Different initial stepsizesq lead to a dif-
ferent convergence behaviour and this is generally difficult
to tune. Note that for all initial stepsizes, the subgradient
scheme is still far from convergence after 500 iterations. The
improved scheme, on the other hand, automatically tunes its
stepsize and converges very rapidly in only 40 iterations.

7. CONCLUSION

Dynamic spectrum management has the potential to dra-
matically increase the data rates in current DSL broadband
access networks. State-of-the-art DSM algorithms use
an iterative convex approximation approach to tackle the
corresponding nonconvex optimization problems, but rely
on a subgradient-based dual decomposition approach that is
known to exhibit slow convergence. This paper leverages
on recent advances in mathematical programming to obtain
a novel dual decomposition approach that improves on
the convergence of the standard subgradient approach by
one order of magnitude. The proposed approach makes
an important step towards obtaining numerically fast and
effective DSM algorithms.
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