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ABSTRACT (iv) the sum capacity af is defined as the maximum possible

In this paper, we derive closed-form expressions for the Sum of usertransmi_s_sion rates with rgliable _reception and
maximum squared correlation (MSC), total asymptotic effi- for @ common additive white Gaussian noise (AWGN)
ciency (TAE), and sum capacityC{,,) of minimum total channel is given by
squared correlation (TSC) quatemary signgtu_re §ets. anhil Cioum 2 log, ’IL _i_,ySSH‘ = log, ‘IK _i_,ySHS’ (4)
TSC, MSC, TAE, and’y,,, are equivalent optimization met-
rics over the real/complex field, our developments show that where y is the received signal-to-noise-ratio (SNR) of
such equivalence does not hold, in general, over the quaiern ~ €ach user signal anlj,, Ix are the sizet and sizek
field. We establish conditions on the number of signaturels an  identity matrices.
signature length under which simultaneous optimizationara  For real/complex-valued signature se& ¢ CX*¥or S ¢
cannot be possible. RLXE) TSC is bounded from below by [1]-[3]

KM
1. INTRODUCTION TSC(S) > (5)

In code-division multiplexing (CDM) systems, individual
users/signals use distinct signatures (spreading codesy-t where M = max{K,L}. The bound in (5) is called the
cess a common, in time and frequency, communication chakVelch bound” and the signature sets that satisfy (5) with
nel. In conjunction with channel and receiver design spes;ifi equality are called Welch-bound-equality (WBE) sets. \Whil
the overall system performance is determined by the selectfor real/complex-valued signature sets the Welch bound is
of the user signature set. Signature set metrics of inter@svays achievable [4]-[12], this is not the case in geneval f
include the total squared correlation (TSC) [1]-[16], mmamuim finite-alphabet signatures. Tight bounds for the TSC of tyina
squared correlation (MSC) [1] [2], total asymptotic effiey  (alphabet{+1}) signature sets for all lengths and set sizes

(TAE) [21], and sum capacityCsum [22]. We recall the K together with optimal set designs for (almost) &ll and
definitions of these metrics below. L values were derived in [13]-[15]. The sum capacity, total

If S 2 [si,s9,...,8x], st € CL, |lsz]| = 1, & = asymptotic efficiency, and maximum squared correlatiomef t
1,2,...,K, is an L x K matrix that represents a set ofminimum-TSC optimal binary sets were found in [16]-[17].
K normalized (complex, in general) signatures of lengtinimum-TSC and other digital sequence sets were studied

(processing gain), then in [18]-[20].
(i) TSC of S is the sum of the squared magnitudes of all Recently, to gain insight into the problem of selecting
inner products between signatures an appropriate alphabet size for code-division multipigxi
K K Zeq#enc)es,l vt;/ebté)nsidere}zd the ?/uiuerlna[r%/sgor qugdr.iphgse or
A o2 -phase) alphabet+1, +5}, j = v/—1. In , we derive
TSas) = Z Z ’SWS"‘ ; (1) new bounds on the TSC of any quaternary signature matrix
B _ el _ So = [s1,82, ..., K] € o= {+1,+5}"7%, for all possible
(i) MSC of S is the maxmum_square_d magnitude among aj\- 5ng 1, values, (the Subscript@” in S, identifies a
inner products between distinct signatures quaternary signature set). In [23] we also designed minimum
MSC(S) = aX|SgSn‘2; @) TSC optimal quaternary sets that meet the new bounds for
m#n all K and L values. The new bounds for overloaded and
(iii) TAE of S is equal to the determinant of the signaturgnderloaded systems are summarized in Table | and Table II,
cross correlation matri$? S respectively.
TAE(S) = ‘SHS|§ ®3) In this present work, we focus exclusively on minimum-
— . . TSC quaternary sets, i.e. quaternary signature sets thet me
o vork v supported i part by the A Fore Research by oL 5 L0 in' Table | and Table Il For di and
tCorresponding author. L with K < L (underloaded systems), we derive analytic
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TABLE | showed that TSC and MSC minimization are equivalent for

UNDERLOADED QUATERNARY SEQUENCE SETSH < L) quaternary sets for an), L with K < L (subject to the
[ Length [ Number of Sequence$ Lower Bound on TSC] existence of a quaternary Hadamard matrix of sizé /2]
L = 0(mod2) Any K K [23]), this isnot true, in general, for binary setd16].
— K(K—1)
L = 1(mod2) Any K Kt s 3. TOTAL ASYMPTOTIC EFFICIENCY (TAE) OF
TABLE II MINIMUM -TSC QUATERNARY SIGNATURE SETS
OVERLOADED QUATERNARY SEQUENCE SETSH > L) The TAE of a complex-valued signature matrix =
[ Number of Sequence} Length | Lower Bound on TSC]| [s1,...,8K], sk € CE, |Iskll = 1, k = 1,2,..., K, is real-
K = 0(mod2) Any L fd valued and bounded &s< TAE(S) < 1. SinceS* S is rank-
K = 1(mod2) Any L K2 L-1 deficient andl'AE(S) = 0 whenK > L (overloaded system),
— L L

we only consider the underloaded ca$a.E(S) achieves the
expressions for the MSQ ., and TAE of minimum-TSC unit upper bound ifS has orthogonal columns. However, it has
quaternary sets. For alk and L with K > L (overloaded been an open question whether tightness is maintained &hen
systems), we derive analytic expressions for thg,, of is quaternary, thatis, € %{il,ij}L, k=1,2,...,K.1In
minimum-TSC quaternary sets. In particular, we show th#tis section, we obtain closed form expressions for the TAE
minimum-TSC quaternary sets exhibit the following propef minimum-TSC quaternary signature sets for All < L.
erties: {) if K < L, MSC(S) is also minimum; if) if Our developments are based on the proposition that we state
K < L, TAE(S) is single-valued wherl. = 0(mod 2) and below. The proof is given in Appendix A.

multi-valued whenZ = 1(mod 2); (iii) Caum(S) is single-  Proposition 3: Let Sg € —={+1,+5}"*" | K < I, be
valued whenmax{L, K} = O(mod 2) and multi-valued a quaternary signature matrix that achieves the correspond
whenmax{L, K} = 1(mod 2). We derive the exact value ofing TSC lower bound in Table | an@L’SgSQ]mn denotes
MSC, TAE, andCs,,, when these metrics are single-valuedhe (m,n)th element ofsgSQ, m = 1,2,....K, n =
When TAE and/oiCy,,, are multi-valued, we establish lower1,2, ..., K. Then,SgSQ has the following properties:

and upper bounds and prove their t|ghtn_ess; the gxact vaIL(g If L =0(mod 2),55362 = Ig:

of_ C_’Sum and/or TAE depends on the particular _deS|gn of thﬁi) if L =1(mod 2), thedsgSQ]mm -1 and[SgSQ]mn c
minimum-TSC signature set. A.dlrect conclusion from this Lisl it m#n m=1,2,... . K,n=12...,K,

study is that minimum-TSC optimal quaternary sets are rmli) if I

: : At = 1(mod 2) and there exists a quaternary Hadamard
necessarilyCy,,, and/or TAE-optimal, which is also the case

matrix Hy of size L 4 1, we can obtain a minimum-

for b@nary antipo<_jal signature sets [16] (we recall thattaee TSC signature set which hésgs Tome = _%’ m#n,
metrics are equivalent for real/complex-valued sets [Z], [ m=1.9 . K n=1.2 e
[21]). (iv) if L =1(mod 2) and there exists a quaternary Hadamard
2. MAXIMUM SQUARED CORRELATION (MSC) oF matrixHq of size L —1 andK < L—1, we can obtalln a
MINIMUM -TSC QUATERNARY SIGNATURE SETS minimum-TSC signature set which hg&}) Sglmn = 7,
m#n,m=12 ..., K,n=1,2,.... K. |

It can be easily verified that the maximum squared cor-
relation of a quaternary signature matrs,, denoted by
MSC(Sg), is lower-bounded as follows:

Based on the above proposition, the TAE of an underloaded
minimum-TSC quaternary signature set can be derived and the
findings are presented in the form of a proposition givendelo

0, L=0(mod2) The proof is given in Appendix B.
MSC(Sqg) > 6
(Sq) —{ 2, L =1(mod 2). © Proposition 4: Let S; € %{il,ij}LXK , K <L, be

The following two Propositions summarize our finding& quaternary signature matrix that achieves the correspgnd
about the MSC of underloaded minimum-TSC quaterna?'ii_SC lower bound n Table I. Then,
signature sets. The proofs are omitted due to space liomtati (i) TAE(So) = 1, if L = 0(mod 2); o

Proposition 1: Let Sg %{il,ij}LXK, 1< K<L, (i) SR E2RED < TAR(S,) < L=l (KD g
be a quaternary signature matrix that achieves the comelspo L = 1(mod 2). The lower bound is tight if there exists

ing TSC lower bound in Table I. Then, a quaternary Hadamard matrix of siZze+ 1 while the
(i) MSC(Sg) =0, if L =0(mod 2); upper bound is tight if < L — 1 and there exists a
(i) MSC(Sg) = % if L =1(mod 2). (] guaternary Hadamard matrix of siZe— 1. |

Proposition 2 An underloaded quaternary signature set We recall that for real/complex-valued sets TAE maximiza-
achieves the lower bound on TSC in Table I if only if it alsdion and TSC minimization are equivalent problems forZll
achieves the lower bound on MSC in (6). m L with K < L. As shown by Proposition 4, however, this

We conclude that for all, L with K < L, the minimum- Property no longer holds true for quaternary signature. $ets
TSC signature sets are doubly optimal for underloaded sys; L . .

. . . . TSC and MSC minimization are equivalent for binary sets foy &, L
tems: they exhibit both minimum TSC and minimum MSQ\/ith K < L (subject to the existence of a binary Hadamard matrix of size

at the same time. It is also interesting to note that while weZ+2 | ) except forL = K = 1(mod 4) or for L = 2(mod 4).
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L = 1(mod 2) andK < L, then there exist minimum-TSC quaternary signature sets meet the upper bound in (8) only
sets that do not have maximum TAE. if L = 0(mod 2) for underloaded systems fr = 0(mod 2)

for overloaded systems. In addition, by Proposition 5, when
L = 1(mod 2) for underloaded systems & = 1(mod 2)

for overloaded systems anll # L, there exist quaternary

The sum capacitf’s,. of a multiple-access communicationyinimum-TSC sets that do not exhibit maximum sum
channel is the maximum sum of user transmission ratesc%ltpacity. Thus, minimum-TSC and maximufhg,, criteria

which reliable decoding at the receiver end is possible [Z];e ot equivalent, in general, for quaternary sets forll
[21], [22]. In a synchronous code-division multiplexingsggm 1
that employs arl. x K complex-valued signature matré = To visualize the theoretical developments of Proposition 5

[51,82, T skl sk € CF, lsill = L, _k = 1; 2, K*_ for on the sum capacity of quaternary signature sets, we canside
transmissions over a common additive white Gaussian noi{gg relative sum-capacity-loss expression
(AWGN) channel, the received data vector is of the farm
ZkK:ldkskJrnwheredk e€eC, k=1,2,...,K, is thek-th A(g)él_CSL(S) (9)
user transmitted symbol (complex in general) anid a zero- Coum
mean complex Gaussian vector with auto-covariance matiphere C*,  is the sum capacity of a real/complex-valued
NoIp. If E{|dy|*} = E, k = 1,2,..., K, it is known [2], Welch-bound-equality (WBE) signature set of the same size a
[21] that S. In Fig. 1, we plot the sum-capacity l04§S) of minimum-
a H| _ H TSC quaternary sets as a functionfoffor a common received
Coum = logy [T1 +7887| = log [Lic +9578] - (7) SNR per usery = 12 dB and four different signature length
wherey £ N% is the received signal-to-noise ratio (SNRyaluesZ = 31, 32, 33, and34. For comparison purposes, we
of each user signal anll,, Ix are the sizek and sizeX also include the sum-capacity loss of minimum-TSC binary
identity matrices. It is also well known that the sum capacitsignature sets which was analyzed in [16]. We observe that
is bounded as follows [2], [7] minimum-TSC quaternary sets exhibit rather negligible sum
capacity-loss for almost alk, L (Fig. 1) in comparison with
0 < Coum(S) < { 5552((1?%), KL (8) WBE real/complex-valued sets. In addition, the sum-capaci
2 LV)a K Z L. .. . .
loss of quaternary minimum-TSC sets is quite less than the

While the upper bound in (8) is tight for real/complexy,m_capacity loss of binary minimum-TSC sets for almost all

valued signature sets for aiy, L, it has been shown in [16] \ 4 ye5 off. In Fig. 2, we repeat the same study as in Fig. 1

that tightness isiot always maintained if§ is binary. In this  ¢j. 7 _ 63. 64. 65. and66. Similar conclusions can be drawn.
section, we consider minimum-TSC quaternary signatur® set T

S and obtain closed-form expressions €ay,, for any K, L.

Our developments are presented in the form of a propositir @L=a ®L=2

given below. The proof is given in Appendix C. . 12
Proposition 5: Let Sg € \%L {£1,+j}"** be a quater-

nary signature matrix that achieves the corresponding T<

lower bound in Table | or Table Il. Then,

A) if K < L (underloaded system)

(I) Csum (SQ) = K10g2(1 + ’7)1 If L = O(mOd 2)’ o Nug'?ber;f;;g’na(ulrggK 190 0 Nuir?berofs.;g;a’tu{g'g,l; 10

4. SUM CAPACITY OF MINIMUM -TSC QUATERNARY
SIGNATURE SETS

A(S)(%)

(ll) (K — 1)10g2(1 + %’7) + 1Og2(1 + %7) S s (c) L=33 s (d) L=34
Coum(Sq) < (K — Dlogy(1 + E1y) + logy(1 + 2 2 i
LtE-1y), if L =1(mod 2). The lower bound is tight if . .

there exists a quaternary Hadamard matrix of dize1,
while the upper bound is tight i’ < L. — 1 and there
exists a quaternary Hadamard matrix of size- 1.
B) If K > L (overloaded system) s
(i) Coum(Sg) = Llogy(1+ £+), if K = 0(mod 2);
(i) (L — Dlogy(1 + %7) + logy(1 + %7) < Fig. 1. Sum-capacity l0sA(S)(%) of minimum-TSC binary and quaternary
Csum(SQ) < (L B 1)10g2(1 + Kglﬂ + 1og2(1 + signature sets versus number of signatufésof length (a) L = 31, (b)
. ... L=32(c)L =233 and (d)L = 34 (y = 12 dB).
KL=l if K = 1(mod 2). The lower bound iniij © and (@) G )
is tight if there exists a quaternary Hadamard matrix of

150 0 150

50 100
Number of signatures K

50 100
Number of signatures K

size K + 1 while the upper bound is tight it. < K —1 5. CONCLUSIONS
and there exists a quaternary Hadamard matrix of sizeln this paper, we derived closed-form expressions for the
K -1 B MSC, TAE, and sum capacity that minimum-TSC quaternary

Comparing Proposition 5 with expression (8) fosignature sets achieve for all, L with K < L and the sum
real/complex-valued sets, we see that minimum-TS&pacity that minimum-TSC quaternary sets achieve for all
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Fig. 2. Sum-capacity 10sA(S)(%) of minimum-TSC binary and quaternary
signature sets versus number of signatufésof length (a) L = 63, (b)
L =64, (c) L =65, and (d)L = 66 (y = 12 dB).

K, L with K > L. We recall that minimum-TSC, minimum-
MSC, maximum-TAE, and maximum-sum-capacity are equiv-
alent optimization criteria for real/complex-valued sigure
sets, i.e. real/complex-valued minimum-TSC signatures set
are minimum-MSC and maximum-TAE when the number of
signaturesK is less than or equal to the signature lendth
and have maximum sum-capacity for aily L. Interestingly,

for quaternary (and binary [16]) sighature sets, theretexis
K, L values for which different metrics are optimized by
different quaternary sets. Our studies showed that the sum-
capacity loss of the minimum-TSC quaternary signature sets
is negligible in comparison with minimum-TSC real/complex
alphabet (Welch-bound-equality) sets and quite smallan th
that exhibited by minimum-TSC binary signature sets.

APPENDIXA
PROOF OFPROPOSITION3

The proof of partsif and {i) is trivial and is omitted

signature set is

L-1 1
SHSq = TIK + E1K1}Q. (11)

APPENDIXB
PROOF OFPROPOSITION4

When L = 0(mod 2) andSg achieves the TSC lower
bound in Table I, by Proposition 3, paiif),(we obtain
TAE(Sg) = |555Q| =1 =1

By Proposition 3,[S5Sq]mm = 1 and \ [SHSQlmn| =
Zm;«énm—12 ,K,n=1,2,...,K. Then, by
Lemma 2 of [16], we obtain that

DS (K - 1)) < |85

1

< (1—%)K*1(1+(K—1)Z). (12)

Expression (12) leads to the bounds on TAE as they
appear in Proposition 4. If there exists a quaternary
Hadamard matrixH of size L + 1, by (10) we can
obtain a minimum-TSC quaternary set which has

‘L+1

85 Sq| = |1k — 1K1T

- () () e

and this reaches the lower bound in Proposition 4. If there
exists a quaternary Hadamard matkl, of size L — 1,

by (11) we can obtain a minimum-TSC quaternary set
with TAE

K
sisel = (F77) (F55) a9

and this is the upper bound value in Proposition 48

APPENDIXC
PROOF OFPROPOSITIONS

herein. With respect to partii), we recall that if the rows Part A

and columns of a quaternary Hadamard matrix are permutgg
or any row or column is multiplied by-1 or 45, the Hadamard
orthogonality property is retained. Hence, we can always
arrange one row or one column of a quaternary Hadamard
matrix to have only+1 entries. If there exists a quaternary
Hadamard matrixHq of size L + 1 and L = 1(mod 2),

a minimum-TSC signature set can be obtained by taking
columns fromH and removing one row which contains only .
+1 entries. After normalization, the cross-correlation rixatr )
of the created minimum-TSC signature set is

LZ L = %1K1T (10)

With respect to partiy), if there exists a quaternary Hadamard
matrix Hg of sizeL —1 and K < L — 1, a minimum-TSC
signature set can be obtained by appending an all-one row
17 | to Hg and taking K columns. After normalization,
the cross-correlation matrix of the created minimum-TSC

SHS, =

1630

If L =0(mod 2) andS, achieves the TSC lower bound
in Table I, it has orthogonal columns, L%’SQ =1k .
Therefore,

Coum(Sg) = logy |Ix + 7S5 Sq|
= logy [(1+7)Ik|
= Klogy(1+7). (15)
By Proposition 3, the minimum-TSC quaternary gt
has following properties: 1)l x +'ySQ SQlmm =1+,
m = 1,2,..., K, 2)’IK—|—’}/SQSan‘ L,m;«é
n,m:1,2.. K,n=1,2,...,K. Then,Lemma 2
of [16] implies that the determinant dfx + vsgSQ is
bounded as follows:
(IT+y+PE DA+ - (K -1)3F)
< ‘IK + ’YSgSQ’
SA+y=-HEDA+y+(K-1)%). (16)



Therefore Csum (Sq) = log, |Ix + 'yS(gSQ\ is bounded
as

(K — 1)logy(1 + Lly) +log,y (1 + L=E+Ly)
S Csum(SQ)
< (K = 1D)logy(1 + E17) 4 logy (1 + £E=1y). (17)

If there exists a quaternary Hadamard matki, of
size L + 1, by Proposition 3, partii), we can obtain

(1]
(2]

(3]

(4]

a minimum-TSC quaternary set that satisfies (11). Thergs]

fore,
Cam(Sq) = log, [Tk +7S85Sq]
= log, <1 + #) I — %1}{1?{
= (K —1)log, (1 + %7)
+log, (1 + #7) (18)

which is equal to the lower bound in PropositionPayt
A(ii).

If there exists a quaternary Hadamard maldy of size
L —-1andK < L — 1, we can obtain a minimum-TSC

(6]

(7]

(8]

El

[20]

[11]

quaternary set that satisfies (11) and by similar to (18);

derivation we can evaluaté,,,, as follows:

Coum(Sq) = logy [Ix +785Sq|
L—1
= (K —1)log, <1 + T'y)
L+K—1
Hog, (1 + %7) (19)

which is the upper bound in Proposition Fart A(ii).
Part B
SetD £ |/ £S4 Then

Csum (SQ)

log, ‘IL + ’78Q85|

log,

K
I, +7ZDHD‘

log, (20)

K
Ix +7ZDDH’.

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

D € —{+1,45}*** can be viewed as a signature matrix

with L unit-norm quaternary signatures of lengkh > L.
Therefore, Coum (Sg) at SNR v equals Csum (D) at SNR
7% where Sy is the overloaded ani is the corresponding
underloaded set. We can show that if TSG) achieves the
TSC lower bound for overloaded sets in Table II, then TBL(

[21]

[22]

achieves the TSC lower bound for underloaded sets in Taﬁg

I. Hence, we can apply our results Rart A of Proposition
5 to D and obtain theCy,m(Sg) expressions in all cases of
Proposition 5,Part B, directly. |
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