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ABSTRACT

In this paper, we derive closed-form expressions for the
maximum squared correlation (MSC), total asymptotic effi-
ciency (TAE), and sum capacity (Csum) of minimum total
squared correlation (TSC) quaternary signature sets. While
TSC, MSC, TAE, andCsum are equivalent optimization met-
rics over the real/complex field, our developments show that
such equivalence does not hold, in general, over the quaternary
field. We establish conditions on the number of signatures and
signature length under which simultaneous optimization can or
cannot be possible.

1. INTRODUCTION

In code-division multiplexing (CDM) systems, individual
users/signals use distinct signatures (spreading codes) to ac-
cess a common, in time and frequency, communication chan-
nel. In conjunction with channel and receiver design specifics,
the overall system performance is determined by the selection
of the user signature set. Signature set metrics of interest
include the total squared correlation (TSC) [1]-[16], maximum
squared correlation (MSC) [1] [2], total asymptotic efficiency
(TAE) [21], and sum capacityCsum [22]. We recall the
definitions of these metrics below.

If S , [s1, s2, . . . , sK ], sk ∈ C
L, ‖sk‖ = 1, k =

1, 2, . . . , K, is an L × K matrix that represents a set of
K normalized (complex, in general) signatures of length
(processing gain)L, then

(i) TSC of S is the sum of the squared magnitudes of all
inner products between signatures

TSC(S) ,

K
∑

m=1

K
∑

n=1

∣

∣s
H
msn

∣

∣

2
; (1)

(ii) MSC ofS is the maximum squared magnitude among all
inner products between distinct signatures

MSC(S) = max
m 6=n

∣

∣s
H
msn

∣

∣

2
; (2)

(iii) TAE of S is equal to the determinant of the signature
cross correlation matrixSHS

TAE(S) ,
∣

∣SHS
∣

∣ ; (3)
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(iv) the sum capacity ofS is defined as the maximum possible
sum of user transmission rates with reliable reception and
for a common additive white Gaussian noise (AWGN)
channel is given by

Csum , log2

∣

∣IL + γSSH
∣

∣ = log2

∣

∣IK + γSHS
∣

∣ (4)

where γ is the received signal-to-noise-ratio (SNR) of
each user signal andIL, IK are the size-L and size-K
identity matrices.

For real/complex-valued signature sets (S ∈ CL×Kor S ∈
RL×K), TSC is bounded from below by [1]-[3]

TSC(S) ≥ KM

L
(5)

where M = max{K, L}. The bound in (5) is called the
“Welch bound” and the signature sets that satisfy (5) with
equality are called Welch-bound-equality (WBE) sets. While
for real/complex-valued signature sets the Welch bound is
always achievable [4]-[12], this is not the case in general for
finite-alphabet signatures. Tight bounds for the TSC of binary
(alphabet{±1}) signature sets for all lengthsL and set sizes
K together with optimal set designs for (almost) allK and
L values were derived in [13]-[15]. The sum capacity, total
asymptotic efficiency, and maximum squared correlation of the
minimum-TSC optimal binary sets were found in [16]-[17].
Minimum-TSC and other digital sequence sets were studied
in [18]-[20].

Recently, to gain insight into the problem of selecting
an appropriate alphabet size for code-division multiplexing
sequences, we considered the quaternary (or quadriphase or
4-phase) alphabet{±1,±j}, j =

√
−1. In [23], we derived

new bounds on the TSC of any quaternary signature matrix
SQ = [s1, s2, . . . , sK ] ∈ 1√

L
{±1,±j}L×K , for all possible

K and L values, (the subscript “Q” in SQ identifies a
quaternary signature set). In [23] we also designed minimum-
TSC optimal quaternary sets that meet the new bounds for
all K and L values. The new bounds for overloaded and
underloaded systems are summarized in Table I and Table II,
respectively.

In this present work, we focus exclusively on minimum-
TSC quaternary sets, i.e. quaternary signature sets that meet
the lower bounds in Table I and Table II. For allK and
L with K ≤ L (underloaded systems), we derive analytic
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TABLE I
UNDERLOADED QUATERNARY SEQUENCE SETS (K ≤ L)

Length Number of Sequences Lower Bound on TSC

L ≡ 0(mod2) Any K K

L ≡ 1(mod2) Any K K + K(K−1)
L2

TABLE II
OVERLOADED QUATERNARY SEQUENCE SETS (K ≥ L)

Number of Sequences Length Lower Bound on TSC

K ≡ 0(mod2) Any L K
2

L

K ≡ 1(mod2) Any L K
2

L
+ L−1

L

expressions for the MSC,Csum, and TAE of minimum-TSC
quaternary sets. For allK and L with K ≥ L (overloaded
systems), we derive analytic expressions for theCsum of
minimum-TSC quaternary sets. In particular, we show that
minimum-TSC quaternary sets exhibit the following prop-
erties: (i) if K ≤ L, MSC(S) is also minimum; (ii) if
K ≤ L, TAE(S) is single-valued whenL ≡ 0(mod 2) and
multi-valued whenL ≡ 1(mod 2); (iii) Csum(S) is single-
valued whenmax{L, K} ≡ 0(mod 2) and multi-valued
whenmax{L, K} ≡ 1(mod 2). We derive the exact value of
MSC, TAE, andCsum when these metrics are single-valued.
When TAE and/orCsum are multi-valued, we establish lower
and upper bounds and prove their tightness; the exact value
of Csum and/or TAE depends on the particular design of the
minimum-TSC signature set. A direct conclusion from this
study is that minimum-TSC optimal quaternary sets are not
necessarilyCsum and/or TAE-optimal, which is also the case
for binary antipodal signature sets [16] (we recall that allthree
metrics are equivalent for real/complex-valued sets [2], [7],
[21]).

2. MAXIMUM SQUARED CORRELATION (MSC) OF

M INIMUM -TSC QUATERNARY SIGNATURE SETS

It can be easily verified that the maximum squared cor-
relation of a quaternary signature matrixSQ, denoted by
MSC(SQ), is lower-bounded as follows:

MSC(SQ) ≥
{

0, L ≡ 0(mod 2)
1

L2 , L ≡ 1(mod 2).
(6)

The following two Propositions summarize our findings
about the MSC of underloaded minimum-TSC quaternary
signature sets. The proofs are omitted due to space limitation.

Proposition 1: Let SQ ∈ 1√
L
{±1,±j}L×K , 1 < K ≤ L,

be a quaternary signature matrix that achieves the correspond-
ing TSC lower bound in Table I. Then,

(i) MSC(SQ) = 0, if L ≡ 0(mod 2);
(ii) MSC(SQ) = 1

L2 , if L ≡ 1(mod 2). �

Proposition 2: An underloaded quaternary signature set
achieves the lower bound on TSC in Table I if only if it also
achieves the lower bound on MSC in (6). �

We conclude that for allK, L with K ≤ L, the minimum-
TSC signature sets are doubly optimal for underloaded sys-
tems: they exhibit both minimum TSC and minimum MSC
at the same time. It is also interesting to note that while we

showed that TSC and MSC minimization are equivalent for
quaternary sets for anyK, L with K ≤ L (subject to the
existence of a quaternary Hadamard matrix of size2dL/2e
[23]), this is not true, in general, for binary sets1 [16].

3. TOTAL ASYMPTOTIC EFFICIENCY (TAE) OF

M INIMUM -TSC QUATERNARY SIGNATURE SETS

The TAE of a complex-valued signature matrixS =
[s1, . . . , sK ], sk ∈ CL, ‖sk‖ = 1, k = 1, 2, . . . , K, is real-
valued and bounded as0 ≤ TAE(S) ≤ 1. SinceSHS is rank-
deficient andTAE(S) = 0 whenK > L (overloaded system),
we only consider the underloaded case.TAE(S) achieves the
unit upper bound ifS has orthogonal columns. However, it has
been an open question whether tightness is maintained whenS
is quaternary, that issk ∈ 1√

L
{±1,±j}L, k = 1, 2, . . . , K. In

this section, we obtain closed form expressions for the TAE
of minimum-TSC quaternary signature sets for allK ≤ L.
Our developments are based on the proposition that we state
below. The proof is given in Appendix A.

Proposition 3: Let SQ ∈ 1√
L
{±1,±j}L×K , K ≤ L, be

a quaternary signature matrix that achieves the correspond-
ing TSC lower bound in Table I and[SH

Q SQ]mn denotes
the (m, n)th element ofSH

Q SQ, m = 1, 2, . . . , K, n =

1, 2, . . . , K. Then,SH
Q SQ has the following properties:

(i) If L ≡ 0(mod 2),SH
Q SQ = IK ;

(ii) if L ≡ 1(mod 2), then[SH
Q SQ]mm = 1 and[SH

Q SQ]mn ∈
1
L
{±1,±j}, m 6= n, m = 1, 2, . . . , K, n = 1, 2, . . . , K;

(iii) if L ≡ 1(mod 2) and there exists a quaternary Hadamard
matrix HQ of size L + 1, we can obtain a minimum-
TSC signature set which has[SH

Q SQ]mn = − 1
L

, m 6= n,
m = 1, 2, . . . , K, n = 1, 2, . . . , K;

(iv) if L ≡ 1(mod 2) and there exists a quaternary Hadamard
matrixHQ of sizeL−1 andK ≤ L−1, we can obtain a
minimum-TSC signature set which has[SH

Q SQ]mn = 1
L

,
m 6= n, m = 1, 2, . . . , K, n = 1, 2, . . . , K. �

Based on the above proposition, the TAE of an underloaded
minimum-TSC quaternary signature set can be derived and the
findings are presented in the form of a proposition given below.
The proof is given in Appendix B.

Proposition 4: Let SQ ∈ 1√
L
{±1,±j}L×K , K ≤ L, be

a quaternary signature matrix that achieves the corresponding
TSC lower bound in Table I. Then,
(i) TAE(SQ) = 1, if L ≡ 0(mod 2);

(ii) (L+1)K−1(L−K+1)
LK ≤ TAE(SQ) ≤ (L−1)K−1(L+K−1)

LK , if
L ≡ 1(mod 2). The lower bound is tight if there exists
a quaternary Hadamard matrix of sizeL + 1 while the
upper bound is tight ifK ≤ L − 1 and there exists a
quaternary Hadamard matrix of sizeL − 1. �

We recall that for real/complex-valued sets TAE maximiza-
tion and TSC minimization are equivalent problems for allK,
L with K ≤ L. As shown by Proposition 4, however, this
property no longer holds true for quaternary signature sets. If

1TSC and MSC minimization are equivalent for binary sets for any K, L

with K ≤ L (subject to the existence of a binary Hadamard matrix of size
4bL+2

4
c ) except forL = K ≡ 1(mod 4) or for L ≡ 2(mod 4).
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L ≡ 1(mod 2) andK < L, then there exist minimum-TSC
sets that do not have maximum TAE.

4. SUM CAPACITY OF M INIMUM -TSC QUATERNARY

SIGNATURE SETS

The sum capacityCsum of a multiple-access communication
channel is the maximum sum of user transmission rates at
which reliable decoding at the receiver end is possible [2],
[21], [22]. In a synchronous code-division multiplexing system
that employs anL×K complex-valued signature matrixS =
[s1, s2, . . . , sK ], sk ∈ CL, ‖sk‖ = 1, k = 1, 2, . . . , K, for
transmissions over a common additive white Gaussian noise
(AWGN) channel, the received data vector is of the formr =
∑K

k=1 dksk + n wheredk ∈ C, k = 1, 2, . . . , K, is thek-th
user transmitted symbol (complex in general) andn is a zero-
mean complex Gaussian vector with auto-covariance matrix
N0IL. If E{|dk|2} = E, k = 1, 2, . . . , K, it is known [2],
[21] that

Csum , log2

∣

∣IL + γSSH
∣

∣ = log2

∣

∣IK + γSHS
∣

∣ (7)

where γ , E
N0

is the received signal-to-noise ratio (SNR)
of each user signal andIL, IK are the size-L and size-K
identity matrices. It is also well known that the sum capacity
is bounded as follows [2], [7]

0 ≤ Csum(S) ≤
{

Klog2(1 + γ), K ≤ L
Llog2(1 + K

L
γ), K ≥ L.

(8)

While the upper bound in (8) is tight for real/complex-
valued signature sets for anyK, L, it has been shown in [16]
that tightness isnot always maintained ifS is binary. In this
section, we consider minimum-TSC quaternary signature sets
SQ and obtain closed-form expressions forCsum for anyK, L.
Our developments are presented in the form of a proposition
given below. The proof is given in Appendix C.

Proposition 5: Let SQ ∈ 1√
L
{±1,±j}L×K be a quater-

nary signature matrix that achieves the corresponding TSC
lower bound in Table I or Table II. Then,
A) if K ≤ L (underloaded system)
(i) Csum(SQ) = Klog2(1 + γ), if L ≡ 0(mod 2);
(ii) (K − 1)log2(1 + L+1

L
γ) + log2(1 + L−K+1

L
γ) ≤

Csum(SQ) ≤ (K − 1)log2(1 + L−1
L

γ) + log2(1 +
L+K−1

L
γ), if L ≡ 1(mod 2). The lower bound is tight if

there exists a quaternary Hadamard matrix of sizeL+1,
while the upper bound is tight ifK ≤ L − 1 and there
exists a quaternary Hadamard matrix of sizeL − 1.

B) If K ≥ L (overloaded system)
(i) Csum(SQ) = Llog2(1 + K

L
γ), if K ≡ 0(mod 2);

(ii) (L − 1)log2(1 + K+1
L

γ) + log2(1 + K−L+1
L

γ) ≤
Csum(SQ) ≤ (L − 1)log2(1 + K−1

L
γ) + log2(1 +

K+L−1
L

γ), if K ≡ 1(mod 2). The lower bound in (ii)
is tight if there exists a quaternary Hadamard matrix of
sizeK + 1 while the upper bound is tight ifL ≤ K − 1
and there exists a quaternary Hadamard matrix of size
K − 1. �

Comparing Proposition 5 with expression (8) for
real/complex-valued sets, we see that minimum-TSC

quaternary signature sets meet the upper bound in (8) only
if L ≡ 0(mod 2) for underloaded systems orK ≡ 0(mod 2)
for overloaded systems. In addition, by Proposition 5, when
L ≡ 1(mod 2) for underloaded systems orK ≡ 1(mod 2)
for overloaded systems andK 6= L, there exist quaternary
minimum-TSC sets that do not exhibit maximum sum
capacity. Thus, minimum-TSC and maximum-Csum criteria
are not equivalent, in general, for quaternary sets for allK,
L.

To visualize the theoretical developments of Proposition 5
on the sum capacity of quaternary signature sets, we consider
the relative sum-capacity-loss expression

∆(S) , 1 − Csum(S)

C∗
sum

(9)

where C∗
sum is the sum capacity of a real/complex-valued

Welch-bound-equality (WBE) signature set of the same size as
S. In Fig. 1, we plot the sum-capacity loss∆(S) of minimum-
TSC quaternary sets as a function ofK for a common received
SNR per userγ = 12 dB and four different signature length
valuesL = 31, 32, 33, and34. For comparison purposes, we
also include the sum-capacity loss of minimum-TSC binary
signature sets which was analyzed in [16]. We observe that
minimum-TSC quaternary sets exhibit rather negligible sum-
capacity-loss for almost allK, L (Fig. 1) in comparison with
WBE real/complex-valued sets. In addition, the sum-capacity
loss of quaternary minimum-TSC sets is quite less than the
sum-capacity loss of binary minimum-TSC sets for almost all
values ofK. In Fig. 2, we repeat the same study as in Fig. 1
for L = 63, 64, 65, and66. Similar conclusions can be drawn.
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(b) L=32
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(c) L=33
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Fig. 1. Sum-capacity loss∆(S)(%) of minimum-TSC binary and quaternary
signature sets versus number of signaturesK of length (a) L = 31, (b)
L = 32, (c) L = 33, and (d)L = 34 (γ = 12 dB).

5. CONCLUSIONS

In this paper, we derived closed-form expressions for the
MSC, TAE, and sum capacity that minimum-TSC quaternary
signature sets achieve for allK, L with K ≤ L and the sum
capacity that minimum-TSC quaternary sets achieve for all
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(b) L=64
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(c) L=65
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Fig. 2. Sum-capacity loss∆(S)(%) of minimum-TSC binary and quaternary
signature sets versus number of signaturesK of length (a) L = 63, (b)
L = 64, (c) L = 65, and (d)L = 66 (γ = 12 dB).

K, L with K > L. We recall that minimum-TSC, minimum-
MSC, maximum-TAE, and maximum-sum-capacity are equiv-
alent optimization criteria for real/complex-valued signature
sets, i.e. real/complex-valued minimum-TSC signature sets
are minimum-MSC and maximum-TAE when the number of
signaturesK is less than or equal to the signature lengthL
and have maximum sum-capacity for anyK, L. Interestingly,
for quaternary (and binary [16]) signature sets, there exist
K, L values for which different metrics are optimized by
different quaternary sets. Our studies showed that the sum-
capacity loss of the minimum-TSC quaternary signature sets
is negligible in comparison with minimum-TSC real/complex-
alphabet (Welch-bound-equality) sets and quite smaller than
that exhibited by minimum-TSC binary signature sets.

APPENDIX A
PROOF OFPROPOSITION3

The proof of parts (i) and (ii) is trivial and is omitted
herein. With respect to part (iii), we recall that if the rows
and columns of a quaternary Hadamard matrix are permuted
or any row or column is multiplied by−1 or±j, the Hadamard
orthogonality property is retained. Hence, we can always
arrange one row or one column of a quaternary Hadamard
matrix to have only+1 entries. If there exists a quaternary
Hadamard matrixHQ of size L + 1 and L ≡ 1(mod 2),
a minimum-TSC signature set can be obtained by takingK
columns fromHQ and removing one row which contains only
+1 entries. After normalization, the cross-correlation matrix
of the created minimum-TSC signature set is

SH
Q SQ =

L + 1

L
IK − 1

L
1K1

T
K . (10)

With respect to part (iv), if there exists a quaternary Hadamard
matrix HQ of size L − 1 and K ≤ L − 1, a minimum-TSC
signature set can be obtained by appending an all-one row
1

T
L−1 to HQ and takingK columns. After normalization,

the cross-correlation matrix of the created minimum-TSC

signature set is

SH
Q SQ =

L − 1

L
IK +

1

L
1K1

T
K . (11)

�

APPENDIX B
PROOF OFPROPOSITION4

(i) When L ≡ 0(mod 2) andSQ achieves the TSC lower
bound in Table I, by Proposition 3, part (i), we obtain
TAE(SQ) =

∣

∣SH
Q SQ

∣

∣ = |I| = 1.
(ii) By Proposition 3,[SH

Q SQ]mm = 1 and
∣

∣[SH
Q SQ]mn

∣

∣ =
1
L

, m 6= n, m = 1, 2, . . . , K, n = 1, 2, . . . , K. Then, by
Lemma 2 of [16], we obtain that

(1 +
1

L
)K−1(1 − (K − 1)

1

L
) ≤

∣

∣SH
Q SQ

∣

∣

≤ (1 − 1

L
)K−1(1 + (K − 1)

1

L
). (12)

Expression (12) leads to the bounds on TAE as they
appear in Proposition 4. If there exists a quaternary
Hadamard matrixHQ of size L + 1, by (10) we can
obtain a minimum-TSC quaternary set which has

∣

∣SH
Q SQ

∣

∣ =

∣

∣

∣

∣

L + 1

L
IK − 1

L
1K1

T
K

∣

∣

∣

∣

=

(

L + 1

L

)K (

L − K + 1

L + 1

)

(13)

and this reaches the lower bound in Proposition 4. If there
exists a quaternary Hadamard matrixHQ of sizeL − 1,
by (11) we can obtain a minimum-TSC quaternary set
with TAE

∣

∣SH
Q SQ

∣

∣ =

(

L − 1

L

)K (

L + K − 1

L − 1

)

(14)

and this is the upper bound value in Proposition 4.�

APPENDIX C
PROOF OFPROPOSITION5

Part A
(i) If L ≡ 0(mod 2) andSQ achieves the TSC lower bound

in Table I, it has orthogonal columns, i.eSH
Q SQ = IK .

Therefore,

Csum(SQ) = log2

∣

∣IK + γSH
Q SQ

∣

∣

= log2 |(1 + γ)IK |
= Klog2(1 + γ). (15)

(ii) By Proposition 3, the minimum-TSC quaternary setSQ

has following properties: 1)[IK + γSH
Q SQ]mm = 1 + γ,

m = 1, 2, . . . , K; 2)
∣

∣[IK + γSH
Q SQ]mn

∣

∣ = γ
L

, m 6=
n, m = 1, 2, . . . , K, n = 1, 2, . . . , K. Then, Lemma 2
of [16] implies that the determinant ofIK + γSH

Q SQ is
bounded as follows:

(1 + γ + γ
L

)(K−1)(1 + γ − (K − 1) γ
L

)

≤
∣

∣IK + γSH
Q SQ

∣

∣

≤ (1 + γ − γ
L

)(K−1)(1 + γ + (K − 1) γ
L

). (16)

1630



Therefore,Csum(SQ) = log2

∣

∣IK + γSH
Q SQ

∣

∣ is bounded
as

(K − 1)log2(1 + L+1
L

γ) + log2(1 + L−K+1
L

γ)

≤ Csum(SQ)

≤ (K − 1)log2(1 + L−1
L

γ) + log2(1 + L+K−1
L

γ). (17)

If there exists a quaternary Hadamard matrixHQ of
size L + 1, by Proposition 3, part (ii), we can obtain
a minimum-TSC quaternary set that satisfies (11). There-
fore,

Csum(SQ) = log2

∣

∣IK + γSH
Q SQ

∣

∣

= log2

∣

∣

∣

∣

(

1 +
L + 1

L

)

IK − γ

L
1K1

T
K

∣

∣

∣

∣

= (K − 1)log2

(

1 +
L + 1

L
γ

)

+log2

(

1 +
L − K + 1

L
γ

)

(18)

which is equal to the lower bound in Proposition 5,Part
A(ii).
If there exists a quaternary Hadamard matrixHQ of size
L − 1 andK ≤ L − 1, we can obtain a minimum-TSC
quaternary set that satisfies (11) and by similar to (18)
derivation we can evaluateCsum as follows:

Csum(SQ) = log2

∣

∣IK + γSH
Q SQ

∣

∣

= (K − 1)log2

(

1 +
L − 1

L
γ

)

+log2

(

1 +
L + K − 1

L
γ

)

(19)

which is the upper bound in Proposition 5,Part A(ii).

Part B
SetD ,

√

L
K
SH

Q Then

Csum(SQ) = log2

∣

∣IL + γSQSH
Q

∣

∣

= log2

∣

∣

∣

∣

IL + γ
K

L
D

H
D

∣

∣

∣

∣

= log2

∣

∣

∣

∣

IK + γ
K

L
DD

H

∣

∣

∣

∣

. (20)

D ∈ 1√
K
{±1,±j}K×L can be viewed as a signature matrix

with L unit-norm quaternary signatures of lengthK ≥ L.
Therefore,Csum(SQ) at SNR γ equalsCsum(D) at SNR
γ K

L
whereSQ is the overloaded andD is the corresponding

underloaded set. We can show that if TSC(SQ) achieves the
TSC lower bound for overloaded sets in Table II, then TSC(D)
achieves the TSC lower bound for underloaded sets in Table
I. Hence, we can apply our results inPart A of Proposition
5 to D and obtain theCsum(SQ) expressions in all cases of
Proposition 5,Part B, directly. �
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