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ABSTRACT 
This paper proposes a new method for designing 
nonuniform filter banks (NUFBs) with perfect-
reconstruction (PR) and linear-phase (LP) properties. It is 
based on the recombination structure, where the outputs of 
the analysis filters in a uniform original filter bank (FB) are 
combined by the synthesis bank of recombination FBs. New 
matching conditions on the original and recombination FBs 
for the PR NUFBs to possess good frequency characteristics 
are derived. This simplifies the design of the PR LP 
RNUFBs to those of a set of appropriate PR LP uniform FBs, 
which greatly reduce the design complexity. The 
effectiveness of the proposed method is illustrated by the 
design of several PR LP RNUFBs with sampling factors (2/3, 
1/3) and (1/3, 2/31).   

1. INTRODUCTION 

The theory and design of nonuniform filter banks (NUFBs) 
have received considerable attention due to their flexibility in 
subband partitioning and processing. In applications where 
phase distortion is an important concern, filter banks with 
linear-phase (LP) analysis and synthesis are highly desirable. 
For example, in image processing, LP filter banks (FBs) are 
frequently employed to avoid possible phase distortion.  
 Among the various methods for designing NUFBs, only 
a few are applicable to the design of NUFBs satisfying the 
LP property [1-3], [6]. The tree-structure FB is a simple 
method for realizing PR LP NUFBs, but the choice of the 
decimation factors is usually limited and the system delay is 
rather long due to the cascade nature of the tree structure. 
Another class of design method is based on the direct 
structure in [1-3], where the analysis filters are designed 
directly [1] or by mean of iterative optimization algorithm. In 
[3], Wada suggested to employ FIR filters with complex 
coefficients to reduce the aliasing distortion in LP NUFBs.  
The disadvantage of these direct methods is that the FBs so 
obtained are only nearly PR. Another class of method for 
designing NUFBs is based on the recombination structure [4-
6, 17]. In the recombination NUFBs (RNUFBs), certain 
channels of an M-channel uniform FB are combined by the 
synthesis filters of set of recombination FBs with smaller 
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channel number in order to generate subbands with different 
decimation factors. The advantage of the RNUFB is that the 
PR property is structurally imposed as long as the original 
uniform FB and the recombination FBs are PR. In [5,17] the 
theory and design of PR cosine-modulated RNUFBs are 
studied in detail. Due to large number of design variables and 
hence complexity associated with a general NUFB, even LP 
FBs are difficult to design in practice. The use of cosine 
modulatd FBs (CMFBs) greatly reduces the number of 
design variables and complexity. Consequently, high quality 
PR RNUFBs can be obtained.  In [6], the design of linear 
phase RNUFBs is considered where a matching condition for 
orthogonal PR FBs was derived.  However, due to the 
difficulties in designing LP original and recombination FBs 
with large number of channels, the RNUFBs so obtained are 
nearly PR.  

 We note that the key difficulty in obtaining LP RNUFBs 
hinges on a design of the original and recombination PR LP 
FBs in the recombination structure. Among the existing 
methods for designing M-channel PR LP uniform FBs [7-15], 
the modulation-based approach is probably the simplest to  
apply [7-9]. However, the frequency support of these FBs is 
considerably different from that of uniform FBs. Therefore, it 
may not be suitable in RNUFBs.  The lattice structure is 
another popular method for designing PR LP FBs, since the 
PR and linear phase property can be structural imposed [10-
14]. Unfortunately, the frequency response becomes a very 
nonlinear function of a large number of lattice parameter, 
making the design very complicated and somewhat difficult 
to obtain good results as the filter length increases. In [15], a 
direct method for designing M-channel PR LP uniform FBs 
was proposed. By choosing properly the synthesis and 
analysis filters, the aliasing is first cancelled and the number 
of design variables can be reduced. 
 In this paper, the LP RNUFBs proposed in [6] further 
extended.  By analyzing the frequency characteristics of the 
RNUFBs, new matching conditions for biorthogonal and 
orthogonal FBs, which are necessary for constructing the 
proposed LP RNUFB with good frequency responses, are 
derived. With these conditions being satisfied, the design of 
LP PR NUFBs can be decomposed into the individual design 
of a set of PR LP uniform FBs, which greatly reduce the 
design complexity.  The original and recombination FBs are 
then designed by the method in [15]. We also present several 
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PR linear-phase recombination nonuniform filter banks so 
obtained, which to our best knowledge are reported at the 
first time in the literature.   
 

2. THE PROPOSED PR LP RNUFBS 

2.1 Principle of Recombination NUFBs 

Figure-1(a) shows the general structure of an L -channel 
RNUFB, where certain subchannels of a M  channel 
uniform FB are recombined by the synthesis filters of 
transmultipliers with small channel number.  For simplicity, 
only the l-th channel, l=0,…,L-1, is shown where an  
channel transmultiplexer is employed.  For simplicity, we 
only consider the case where  and 

lm

lm M  are coprime in the 
paper. The constants  and c c  are used to 
control the magnitude response of the equivalent filter.  

0 1~ Mc c −
1 1

10 ~ M
−

−
−

Analysis Filters Synthesis Filters

lm↓lm↑M↓ M↑

M↓ M↑

M↓ M↑lm↑ lm↓

TMUXchannelml  −

M↓ M↑lm↑ lm↓

M↑M↓

0c

rl
c

r ilc +

1r ml l
c + −

1Mc −

1
0c−

1

rl
c
−

1

r il
c
−

+

1
1M

c−
−

1
1r ml l

c−
+ −

0 ( )H z

( )
lr

H z

( )
lr iH z+

1 ( )
l lr mH z+ −

1( )MH z−

0 ( )F z

( )
lr

F z

( )
lr iF z+

1( )MF z−

1( )
l lr mF z+ −

,0 ( )lG z

, ( )l iG z

, 1( )
ll mG z−

,0 ( )lG z′

, ( )l iG z′

, 1 ( )
ll mG z−
′

(a) 

 
(b) 

Figure-1. Structure of (a) recombination NUFB, (b) the equivalent 
of the recombination NUFB. 

According to the noble identity, we know that the 
downsampler and upsampler can be interchanged if  and lm
M  are coprime.  Hence, ( )

lr iH z+  and  can be moved 
across the upsampler and downsampler respectively, where 

 and  is the starting channel number of the 
M-channel original FB to be merged.  Thus, the merged 
channels has an equivalent LTI filter representation as shown 
in Figure-1(b) [5].  Its z-transform can be written as  

, ( )l iG z

0,  , 1li m= − lr

1
,0

ˆ ( ) ( ) ( )l l

l l

m m M
l r i r i l ii

H z c H z G−

+ +=
= ∑ z . (1)

For notational convenience, we use ( )H ω  to denote its 
frequency response ( )jH e ω . Hence 

1
,0

ˆ ( ) ( ) ( )l

l l

m
l r i r i l l ii

H c H m G Mω ω ω−

+ +=
= ∑ . (2)

A detailed theory and analysis of the PR RNUFBs can be 
found in [5].  An important advantage of RNUFBs is that if 
the original and recombination FBs are PR, then the entire 
system will be PR, after compensating for the different 
delays introduced by the transmultiplexers in each branch.   

 
2.2 Design of Uniform PR LP Uniform Filter Banks 

As the uniform PR LP original and recombination FBs will 
be designed using the method in [15], we now shall briefly 
review this method below.   
 

 
Figure-2. Structure of M-channel uniform filter banks. 

The structure of an M-channel maximally decimated 
uniform filter bank is shown in Figure-2, where ( )iH z  and 

( )iF z , 0,1, , 1i M= − , are the analysis and synthesis 
filters, respectively.  The relationship between the z-
transforms of the output signal  and the input signal x(n) 
is 
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where  and  MjeW /2π−=

∑ −
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0
1 zFzHzT kk

M
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is the distortion transfer function. To cancel the aliasing, all 
terms involving ( )lX zW , 0l ≠ , on the right in equation (3) 
should be equal to zero. To this end, we can express the 
synthesis filters in terms of the analysis filers as follows: 
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and jlH−  is the Alias Component (AC) matrix with the 

 row and the column deleted, and the AC 
matrix  is  
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H
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Thus,  can be rewritten as ( )T z

∑ −
−
= −= kk

kM
kM HzHzT ,0

1
0

1 det)()1()( . (4)

Objective function: To get good filter quality, the square of 
the difference between the ideal and actual frequency 
responses over appropriate frequency bands for all analysis 
filters should be minimized. 

Constraints: For PR system, the transfer function  

should be constrained to a multiple of certain delays 

( )T z
0nzα − . 

To simplify notation, the following auxiliary function is 
introduced 
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where , and  is the length of the 

filter . Substituting Eq. (5) into Eq. (4),  in time 

domain, i.e.  can be written as: 
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For a PR system,  should be symmetric and of odd 
length. This permits the optimization program to focus only 
on the first ( 1  terms of , and only the center 
coefficient of  is nonzero. According to Eq. (6), the 
requirements would apply as well to , which will 
further reduce the number of the 

( )T z

) /N + 2

+

( )T z
( )T z

( )Q z
variables constrained. More 

detailed can be found in [15].   
 

2.3 The Matching conditions  

We note that the original and recombination FBs are to be 
designed by the method described in Section 2.2. To ensure 
that the equivalent filters of the merged channels in the 
RNUFB have good frequency characteristics, we found that 
they have to satisfy certain matching conditions. These 
conditions are suitable for the case that the uniform FBs have 
analysis/synthesis filters with equal length. As we know [1], 
this kind of LP FBs with equal length have alternate 
symmetry property (i.e., successive analysis filters are 
symmetric and anti-symmetric). We first summary in this 
section these matching condition and the delay the analysis 
later to Section 3. 

Matching conditions for the biorthogonal FBs:  

If the original/recombination FBs are biorthogonal, and if the 
starting channel number  is even, then in order to get an 
equivalent filter with good filter quality, the biorthogonal 
original and recombination FBs should satisfy the following 
conditions: 

lr

Condition 1: 1l lr i r ic c+ += − , 

Condition 2: The transition band of  should 

be similar to that of 
, ( )M

l iG z

( )l

l

m
r iF z+ .  

L  and  are respectively the filter lengths of the original 
and recombination FBs. 

L′
M  and  are the channel number 

of the original and recombination FBs, respectively.   
lm

If the starting channel number  is odd, then the matching 
conditions read: 

lr

Condition 1: 1l lr i r ic c+ += + . 

Condition 2: The transition band of  should 

be similar to that of 
, ( )M

l iG z

( )l

l

m
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Matching conditions for the orthogonal FBs:  

In [6], the matching conditions when the starting channel 
number  is even were derived as follows: lr

Condition 1: 1l lr i r ic c+ + += − . 

Condition 2: The transition band of  should 

be similar to that of 
, ( )M

l iG z

( )l

l

m
r iH z+ . 

For odd , similar matching conditions can be deduced as 
follows: 

lr

Condition 1: 1l lr i r ic c+ + += . 

Condition 2: The transition band of  should 

be similar to that of 
, ( )M

l iG z

( )l

l

m
r iH z+ . 

For simplicity, we shall choose  either as 1 or -1 in the 
sequel.   

ic

3. ANALYSIS OF THE MATCHING CONDITIONS 

We now elaborate further on the matching conditions 
introduced in Section 2.3.  It is well known that LP filters 
with symmetric and antisymmetic impulse responses can be 
written respectively as: 

( 1) / 2( ) ( )j L
RH e Hωω ω− −= ,  (7) 

and  
( 1) / 2( ) ( )j L

RH je Hωω ω− −= , (8) 

where  denotes the length of the filter L ( )H ω  and ( )RH ω  
is its amplitude response. 
 It is known from the property of LP FIR filters that the 
impulse response of lowpass LP filters must be symmetric. 
Moreover, for uniform LP FBs having analysis/synthesis 
filters with equal length, the FBs should have alternate 
symmetry property. Therefore, if the starting channel number 

 is even, the filter lr ( )
lr

H ω  should be symmetric. That is, 
the equivalent filter expressed in Eq. (2) can be rewritten as 
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where  and Lo Lr  denote the length of the analysis filters in 
the original FBs and the length of the synthesis filters in the 

recombination FB respectively. The term 
( 1) ( 1)

2
lm Lo M Lr

j
e

ω
− + −

−
 

is the phase response of the filter ( )lH ω , and the remainder 
in the right side of Eq. (9) is the amplitude response. From 
Eq. (9), we know, 1l lr i r ic c+ + += −  is necessary for the 
equivalent filter to possess good frequency characteristic.  
 Similarly, if the starting channel number  is odd, the 
filter 

lr
( )

lr
H ω  is antisymmetric. In this case, the equivalent 

filter expressed in Eq. (2) can be rewritten as  
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Clearly,  is necessary for the equivalent filter to 
possess good frequency characteristics.  On the hand, for PR 
uniform FBs, we should have 
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The corresponding amplitude response is: 
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As long as the stopband attenuation of the original FB is high, 
we can ensure that the passband of 
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 is flat. Thus, by adjusting the design 

parameters of  to make the shape of the filter , ( )u
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lr i lF m )ω+ , (in order to get 
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= ∑ z  will possess good 
frequency characteristics.  
 Since the orthogonal FBs are special cases of 
biorthogonal FBs, in which the amplitude shape of the 
synthesis filters are the same as the corresponding analysis 
filters. Similar results can readily be obtained.   

4. DESIGN EXAMPLES  

Example 1: LP RNUFBs with sampling factors (2/3, 1/3): 
The 3-channel original FB and 2-channel recombination FB, 
shown in Figure-3(a), are obtained by the method mentioned 
in Section 2.2. The lengths of the analysis filters ( )iH z  and 

 are 39 and 26, respectively. The passband and  
stopband cutoff frequencies of the resulting filters are as 
follows: for

0, ( )iG z

0 ( )H z : 0.240pω π= , 0.476sω π= ; for 
: 0,0 ( )G z 0.400pω π= , 0.600sω π= ; for 1( )H z : 

1 =0.233sω π , 1=0.433pω π , 2 =0.567pω π , 2 =0.767sω π ; 

and for : 0,1( )G z 0.255sω π= , 0.639pω π= . Figure-3(b) 
shows the equivalent structure of this LP RNUFBS. Figures-
4(a) and (b) depict the magnitude responses of the original 
and recombination FBs. 

 

 
 

The analysis/synthesis filters in the equivalent structure are 
shown in Figure-5(a) and (b), respectively. For the equivalent 
FB, the amplitude distortion and the aliasing error are 

152.554 10−×  and 167.729 10−× , respectively. 
 

Example 2 LP RNUFBs with sampling factors (1/3, 2/3): 
It is known that this kind of recombination NUFBs with odd 
starting channel number  cannot be realized even for ideal 
filters due to the shuffling of frequencies [16]. (“Shuffling” 
denotes the process in which a part of the signal’s spectrum 
has been translated to another part in the spectrum.) 
Fortunately, the shuffling of frequencies can be corrected by 
multiplying the sequence {(  to the input of the 
recombination FB. This is because multiplying with the 
sequence {(  is equivalent to shifting the signal by 

lr

1) }n−

1) }n− π  in 
frequency domain [4, 5]. Here, we consider a NUFB with 
samplers (1/3, 2/3) as an example. Figure-6 shows the 
corresponding structure of this FB.    

 
(a) 

 
(b) 

Figure-3. LP recombination NUFB with sampling factors (2/3, 1/3). 
(a) the indirect structure, and (b) the equivalent structure. 

 
(a) (b) 

Figure-4. Magnitude responses of the analysis filters of (a) the 3-
channel original FB, and (b) the 2-channel recombination FB. 

 
 

(a) (b) 
Figure-5. NUFB with samplers (2/3, 1/3). Magnitude responses of 
the equivalent (a) analysis filters, and (b) synthesis filters.  
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Figure-7 shows the magnitude responses of the 
analysis/synthesis filters of the equivalent FB. The amplitude 
distortion and the aliasing error are 141.599 10−×  and 

, respectively, which can be considered a PR 
system in practice. 

141.308 10−×

 

5. CONCLUSION 

In this paper, we propose a method for designing PR LP 
RNUFBs with fractional samplers. It is based on the 
recombination structure and hence the design of the RNUFB 
is simplified to the design of appropriate uniform FBs.  
Using the proposed matching conditions and the design 
method in 17], it can be found that PR LP RNUFBs with 
good filter characteristics can be obtained by the proposed 
method. 
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(a) 

 
(b) 

Figure-6 Recombination NUFB with sampling factors (1/3, 2/3). (a) 
the indirect structure, and (b) the equivalent structure. 

  
(a) (b) 

Figure-7 NUFB with samplers (1/3, 2/3). Magnitude responses of the 
equivalent (a) analysis filters, and (b) synthesis filters. 
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