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ABSTRACT 

Two classes of fixed polarity linearly independent arithmetic trans-

forms (FPQLIA) for quaternary functions are introduced in this 

paper. These transforms are Kronecker-based and therefore can be 

calculated efficiently by fast transforms. Their basic definitions and 

fast flow graphs are shown. Relations between the different 

FPQLIA transforms are also presented and an algorithm for the 

optimization of FPQLIA is described which utilizes the given rela-

tion to reduce the computational cost. Experimental results for the 

transforms in terms of the number of nonzero spectral coefficients 

in the optimal FPQLIA transforms have also been given for several 

quaternary test functions and compared to the corresponding num-

bers for the optimal fixed polarity quaternary arithmetic (FPQA) 

transforms. The results show that for the set of quaternary test 

functions the numbers for FPQLIA transforms are on average 32% 

smaller than the ones for the FPQA transforms.       

1. INTRODUCTION 

Spectral expansions are alternative representations of logic func-

tions/signals in which the information are redistributed and pre-

sented differently in terms of spectral coefficients [1]−[3]. The use 

of spectral representations often allows certain operations or analy-

sis to be performed more efficiently on the data. In general each 

spectral expansion has an associated pair of forward and inverse 

transforms which can be used to transform the truth vector repre-

sentation of a particular function to the equivalent spectral expan-

sion and vice versa. Among the existing spectral expansions, sev-

eral pairs of spectral transforms can be found where they have the 

same forward transforms but different inverse transforms due to the 

different operators used to define the transforms. One example of 

such pair is the well-known binary Reed-Muller (RM) transform 

which uses GF(2) operators and Arithmetic transform [1]−[3] 

which uses standard arithmetic operators. The reason for this is 

because the use of different operators may lead to advantages for 

different applications. In particular, transforms employing stan-

dard/decimal arithmetic operations have been found to be advanta-

geous for analysis of circuits, verification, testability, as well as 

reliability analysis. Such arithmetic transforms are also useful for 

efficient representation and parallel calculation of multi-output 

functions [1]. Linearly independent (LI) and linearly independent 

arithmetic (LIA) transforms [4], which can be thought of as the 

broadest generalization of RM and Arithmetic transforms, respec-

tively, are another example of transform pair whose definitions are 

identical except for the employed arithmetic operators, and there-

fore the operational domains. LI and LIA transforms can be 

thought of as the RM and Arithmetic transforms in which the basis 

functions are not restricted to be conjunctive of input literals but 

are allowed to be replaced by any set of linearly independent binary 

functions. Since RM and Arithmetic transforms are merely special 

cases of LI and LIA transforms, the performance of LI and LIA 

transforms are never worse than the RM and Arithmetic trans-

forms, respectively. It has been shown in [4] that for detection of 

stuck-at and bridging faults some fast LIA transforms outperform 

the Arithmetic transform in terms of the number of spectral coeffi-

cients that need to be tested.    

The concept of LI and LIA transforms have been extended for 

the case of quaternary functions, called quaternary linearly inde-

pendent (QLI) and quaternary linearly independent arithmetic 

(QLIA) transforms. Some classes of fast QLI and QLIA transforms 

have been defined in [5] and [6], where the transforms in [5] are 

derived from the recursive definitions of four fast binary LI trans-

forms. Similar to the binary case, the broad definition of the QLI 

and QLIA transforms also cover the various quaternary extensions 

of the RM and Arithmetic expansions, respectively, such as the 

fixed polarity RM over GF(4) [7] and quaternary fixed polarity 

Arithmetic (QFPA) transforms [1], [8]. In this paper, two new 

classes of fast FPQLIA transforms are introduced where the basic 

forward transforms for the first 1-variable FPQLIA transform in the 

two classes are the same as the forward transforms of the first trans-

forms of  Class 3 and 2 QLI transforms in [5]. Basic definitions, fast 

flow graph, and several relations for the FPQLIA transforms are 

given. An algorithm to find the optimal FPQLIA expansion for a 

quaternary function is also presented. Finally, experimental results 

of the FPQLIA transforms are given for several quaternary test 

functions and compared with the FPQA transforms [8]. The results 

show that the introduced FPQLIA transforms are more advanta-

geous as they can give more compact representation in terms of 

smaller number of nonzero spectral coefficients.              

2. BASIC DEFINITIONS FOR THE NEW FPQLIA 

TRANSFORMS 

The new transforms that are introduced in this paper belong to the 

broad class of QLIA transforms. In the following, Definitions 1−3 

give the general basic definitions for any QLIA transform whereas 

Definitions 4−6 describe the notations used in this paper. 

Definition 1. Let nT  be a n4  × n4  matrix with rows correspond-

ing to minterms and columns corresponding to some n-variable 

quaternary switching functions. If the set of columns is linearly 

independent with respect to standard arithmetic algebra, then nT  has 

only one arithmetic inverse and is said to be a QLIA matrix. 

Definition 2. Let nT  be a QLIA matrix as given in Definition 1. 

Also, let F
r

 = [ ]TnFFF
1410 ,,,

−
K  be the truth vector of an n-

variable quaternary switching function ( )nXf  = 

( )11 ,,, XXXf nn K−  where T denotes transpose operator. Then, the 

spectrum of nT  for ( )nXf , denoted by A
r

 = [ ] ,,,,
1410

T
nAAA

−
K  

can be obtained by 
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      FTA n

rr
1−=  (1) 

where 1−
nT is the arithmetic inverse of nT .  

Conversely,  

 ATF n

rr
= . (2) 

Definition 3. Given a particular QLIA transform nT , any n-

variable quaternary switching function ( )nXf  can be represented 

by QLIA polynomial expansion as follows:  

 ( ) ∑
−

=

=
14

0

n

j

jjn gAXf ,   

where jg  )140( −≤≤ n
j  denotes the n-variable quaternary 

switching function whose truth vector is equal to the j-th column 

of nT  and jA  denotes the j-th QLIA spectral coefficient for 

( )nXf  based on nT . All the additions and multiplications inside 

the QLIA expansion are performed in standard arithmetic algebra.  

Definition 4. Let a matrix nT  be recursively partitioned into six-

teen submatrices 1−nT  of size 14 −n  × 14 −n  each as follows: 
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Then, the operation EHµ  on nT  is defined as recursively grouping 

the submatrices vertically and interchanging them horizontally: 
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Similarly, the operation EVµ  on nT  is defined as recursively group-

ing the submatrices horizontally and interchanging them vertically: 
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Definition 5. A quaternary variable iX  may assume the value of 0, 

1, 2, or 3. In polynomial expansions, the literals of iX  are denoted 

by iS

iX where iS  ⊆  {0, 1, 2, 3} is said to be the true set of the 

variable iX  and 
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Definition 6. In binary function representation, applying the com-

plement operator to a variable changes the value of the variable 

from 0 to 1 and vice versa. In multiple-valued logic, similar map-

ping can be performed through the application of cycle and nega-

tion/complement unary operators [1]. Let iX  be a quaternary vari-

able, then the cycle and complement operations on iX  are denoted 

by 
k

iX ( }3,2,1,0{∈k ) and iX , respectively, where 
k

iX  =

)( kX i + mod 4 and iX  = 3 − iX . 

Two classes of FPQLIA transforms are introduced in this pa-

per. They are classified into Class 1 and Class 2 and their forward 

transforms are denoted by 
ω
nT ,1  and 

ω
nT ,2 , respectively where 

ω
α nT ,  

})2,1{( ∈α  is a n4  × n4  matrix which is obtained from Kronecker 

product on n basic matrices 
ω

α 1,T  as follows: 

 11

1,1,1,

1

1,,
ω

α
ω

α
ω

α
ω

α
ω

α TTTTT nni

ni

n ⊗⊗⊗=⊗= −∏
=

L . (3) 

Their inverse transforms are denoted by ( ) 1

,

−ω
α nT  and are similarly 

defined as  

 ( ) ( ) ( ) ( ) ( ) 1

1,

1

1,

1

1,

1
1

1,

1

,
11

−−−

=

−−
⊗⊗⊗=⊗= −∏ ω

α
ω

α
ω

α
ω

α
ω

α TTTTT nni

ni

n L . (4) 

In both (3) and (4), the symbol ω  denotes the polarity number 

of 
ω

α nT ,  where ω  is the decimal equivalent of the n-digit quaternary 

number 11 ,,, ωωω K−nn , i.e., 41110 ,,,  ><=>< − ωωωω Knn . In 

addition, 
ω

α 1,T  and ( ) 1

1,

−ω
αT  are the basic forward and inverse trans-

forms for the FPQLIA of the respective class where they are of size 

44× .  

All the 
ω

α 1,T  and ( ) 1

1,

−ω
αT  matrices are listed in Table 1 together 

with the fast flow graphs for ( ) 1

1,

−ω
αT . Since there are four basic 

transforms in each class, for an n-variable quaternary function there 

are n4  possible FPQLIA expansions of each class where each ex-

pansion is uniquely identified by its polarity number ω  (0 ≤ ω  ≤ 

14 −n ). Different FPQLIA expansions may have different number 

of nonzero elements in their spectral coefficient vectors. The one 

with the minimum number of nonzero elements is called the optimal 

FPQLIA expansion and its polarity number is said to be the optimal 

polarity number, denoted by optω . 

Among the transforms given in Table 1, it should be mentioned 

that the transforms 
0
1,1T  and 

0
1,2T  correspond to the forward matrix 

of the first transforms in Class 3 and 2 fast QLI transforms given in 

[5], respectively. In addition, they also coincide with the forward 

transforms of the 2-variable binary fixed polarity arithmetic (FPA) 

transforms [1]−[3] in polarity zero and three. Due to this, the trans-

form matrices for an n-variable Class 1 (2) FPQLIA transforms in 

polarity zero are identical to the transform matrices of a 2n-variable 

binary FPA transforms in polarity zero ( 122 −n ).        

The FPQLIA expansion representations for a quaternary func-

tion ( )nXf  can be generated using the general equation for QLIA 

expansion given in Definition 3. Due to the fact that the FPQLIA 

transforms are built from Kronecker product, their basis functions 

jg  )140( −≤≤ n
j  have regular structure and can be obtained by: 

     i
n ggggg

ni
n

ω
α

ω
α 1,

1

1410, ][
=−
⊗== K   

where ig
ω
α 1,  is the row matrix whose columns are the basis functions 

of the FPQLIA transform iT
ω

α 1,  for a single quaternary variable iX  

(recall that 41110 ,,,    ><=>< − ωωωω Knn ). Let ig
ω
α 1,  = 

][ 3210 gggg . Then from Table 1 it can be seen that for 1=α  

and 0=iω ig
ω
α 1, = ]1[

}3{}3,2{}3,1{
iii XXX  whereas for 1=α  and 

iω  = 1, 2, and 3 the ig
ω
α 1,  are the same as 

0
1,αg  except  that cycle 

operations should be applied on iX  so that iX  is replaced by 
1

iX , 

2
iX , and 

3
iX , respectively. Similarly, for 2=α  their correspond-

ing basis function row matrices ig
ω
α 1,  can also be obtained from the 

basis function row matrix
0
1,1g  by replacing iX  with iX , ( )1iX , 
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( )2

iX , and ( )3

iX for iω  = 0, 1, 2, and 3, respectively. As a result, 

all FPQLIA expansions have the same product terms except that 

appropriate cycle and complement operations need to be applied to 

the variables based on the polarity number of the expansion. 

Owing to the fact that all the forward transforms given in Table 

1 contain only 0 and 1 elements, the basis functions for the FPQLIA 

transforms can also be represented as two-variable binary functions. 

Thus, the given FPQLIA transforms can also be used to generate 

binary polynomial expansions for a binary function. This can be 

done by pairing up every two binary input variables in the binary 

function and encoding them to form quaternary input variables, 

obtaining the FPQLIA expansion for the resulting quaternary func-

tion, and finally replacing the quaternary basis functions in the 

FPQLIA expansion with the corresponding binary functions to get 

the binary expansion in terms of the binary input variables. For ex-

ample, if the encoding 00→0, 01→1, 10→2, and 11→3 is used to 

map the binary input variables 122 −iixx  values  to the quaternary 

variable iX  values, then the basis function row matrices ig
ω
1,1  can 

be alternatively represented as ]1[ 12222 −− iiiii xxxx , 

]1[ 12212212 −−− ⊕ iiiii xxxxx , ]1[ 122212 −− iiii xxxx , and 

]1[ 12212212 −−− ⊕ iiiii xxxxx  for iω  = 0, 1, 2, and 3, respectively.  

Furthermore, by replacing the binary variables in ig
ω
1,1  with their 

complements we can get the corresponding binary basis function 

row matrices ig
ω

1,2 .             

3. RELATIONS, ALGORITHM, AND 

COMPUTATIONAL COSTS  

Property 1. All the FPQLIA transform matrices in the same class 

are related by row permutations to each other. Let 0ρ , 1ρ , 2ρ , and 

3ρ  be four permutation matrices of size 44×  given by 
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1ρ , 
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0001
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0010
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1000

3ρ . 

Then, for 1=α  and any two polarities aω  and bω  

,,,,( 41110 >=<>< − aanana ωωωω K ),,, 41110 >=<>< − bbnbnb ωωωω K  

 ( )( ) b

biai

a

n
ni

n TT
ω

αωω
ω

α ρρ ,
1

1
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⋅⊗=

−

=
. (5) 

For 2=α  
aiωρ  and 

biωρ  in (5) need to be replaced by 
)4mod( aiωρ −
 

and )4mod( biωρ − , respectively.  

Property 2. For the same polarity number ω , the Class 1 and Class 

2 FPQLIA transforms are related as follows: 

 ( )ωω µ nEVn TT ,2,1 =     and   ( ) ( ) 




=

−− 1

,2

1

,1
ωω µ nEHn TT . 

Property 3. Let aA
ω
r

and bA
ω
r

be the spectral coefficient vectors of 

two FPQLIA transforms of the same class but different polarity 

numbers aω  and bω . Then, the following relation can be derived 

from (1)−(4): 

 bbiaia AZA
ni

ωωωω
rr
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⊗= −

=

4mod)(
1

 (6) 

where 

















=

1000
0100
0010
0001

0Z ,  

















−−
−−−=

1200
1100
1110

1111
1

Z , 

















−
−=

1000
0100
1010
0101

2
Z , and 

 

















−−

−=

1200
1100
0110
0011

3Z . 

In spectral techniques, one important problem associated with 

each class of spectral transforms is on how to obtain the optimal 

expansion based on all the transforms in the class. For fixed polarity 

transforms, this optimization problem is translated into the problem 

of finding the optimal polarity optω . The exhaustive way to do it is 

to generate the spectral coefficient vectors of all possible polarities 

and identify the optω . Although it is possible to calculate each spec-

tral coefficient vector directly by fast transform [1]−[3], [7] of (1), it 

has been shown that it is more computationally efficient to calculate 

them using algorithms that utilize the existing relations between the 

transforms of different polarities [7]. One example of such algo-

rithm for FPQLIA transforms is described below.  

In the algorithm all the n4 polarity numbers are arranged in a 

list such that any two consecutive polarity numbers in the list have 

only one different digit in their n-digit quaternary number represen-

tations. Such a list is called extended dual polarity route where the 

first polarity number in the list is called the initial polarity number. 

Given an extended dual polarity route, the algorithm first calculates 

the spectral coefficient vector for the initial polarity number from 

truth vector by fast transform of (1) and then continues to calculate 

the spectrum for the other polarity numbers serially in the order 

specified by the route. For each non-initial polarity number, the 

algorithm calculates its spectrum from the spectrum of the previous 

polarity number in the list using (6). Note that as a result of the re-

quirement that any two consecutive polarity numbers in the route 

cannot have more than one different digit, the values of  

4 mod)( biai ωω − in (6) are reduced to 0 for all except one particular 

i. Since 0
Z  is simply an identity matrix, 0

Z  does not contribute any 

additional computational cost to calculation of (6) which leads to the 

smaller computational cost for the algorithm.     

From the description of the algorithm above, it is clear that the 

computational cost of the algorithm is mostly due to the cost of 

performing (6), which in turn is determined by the value of the non-

zero digit of 4 mod)( biai ωω − . Hence, the computational cost of 

the algorithm is largely dependent on the used extended dual polar-

ity route. Because of that, the chosen route for the algorithm should 

be the one that leads to the minimum computational cost. Fig. 1 

shows the pseudocode of the algorithm to calculate all the FPQLIA 

spectral coefficients in a particular class where the route that results 

in the minimum computational cost is employed. 

In order to show that the given algorithm indeed reduces the 

computational cost of obtaining the optimal FPQLIA expansion 

compared to directly calculating all individual spectral coefficient 

vectors by fast transform of (1), in the following their computational 

costs are derived.  

Let us first derive the computational cost for calculating all 

spectral coefficient vector by fast transform of (1). In fast transform 

method A
r

 is calculated by 

  ( ) FITIA
ni

iin
i

rr
⋅





 ⊗⊗= ∏

=

−

−

−

1

1

1

1,
ω

α  

where jI  denotes the identity matrix of size jj 44 ×  and each value 

of i corresponds to one stage in the fast flow graph of the inverse 

transform. From the fast inverse flow graphs given in Table 1, it can 

be seen that the computational cost of (1) for calculating any 

( ) 1

1,

−ω
αT  is four subtractions. Hence, for n variables the computa-

tional cost contributed by each fast flow graph stage is nn 444 1 =⋅ −  

subtractions. As there are n stages in the fast flow graph, it follows 
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that the total computational cost of (1) by fast transform method is 
n

n 4⋅  subtractions for one polarity number and 
n

n
2

4⋅  subtractions 

for all n4  polarity numbers. 

Next, let us derive the computational cost for the algorithm in 

Fig. 1. The cost of calculating the FPQLIA spectra for all n4 polar-

ity numbers in a particular class using the algorithm can be divided 

into the cost of calculating the spectrum of the initial polarity num-

ber by (1) and the cost of calculating the rest of the spectra by (6). 

The former has been derived above to be 
n

n 4⋅ subtractions whereas 

the latter is dependant upon how many times the 4mod)( biai ωω −

in (6) evaluates to 1, 2, or 3 throughout the algorithm.  

It can be observed that inside the algorithm 4mod)( biai ωω −  

never evaluates to 1. Instead, its value is always 0, 2, or 3 where 

exactly one nonzero value of 4mod)( biai ωω − occurs for each pair 

of consecutive transforms. In each recursion level the calculation of 

every cycle of one Dir[loop_var] (e.g., 0→2→1→3 for 

Dir[loop_var] =’a’) involves two 2
Z  and one 3

Z where throughout 

the algorithm there are a total of i4  cycles of Dir[loop_var] for 

loop_var = i (0 ≤ i ≤ n – 1). Since it can be easily derived from 2
Z  

and 3
Z  matrices that for an n-variable the computational cost of 

performing (6) is 142 −⋅ n additions if the nonzero value of 

4mod)( biai ωω −  = 2 and nn 444 1 =⋅ −  additions/subtractions and 

14 −n  multiplications if the nonzero value of 4mod)( biai ωω −  = 3, 

the total cost for calculating the spectra of the nonzero polarity 

numbers (the non-initial polarity numbers) is given by 

( )

( ) .
tionsmultiplica 4 

 nssubtractioadditions/ 48
14

3

1

tionsmultiplica 4

nssubtractioadditions/ 44422
4

1

1

1

111

0
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+
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=
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n
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n

nnn
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i
nzalgCost

Adding the cost of calculating the polarity zero spectrum, the total 

calculation cost for the algorithm is 

 
( )










−+
⋅−+⋅=

+

tionsmultiplica )416( 

 nssubtractioadditions/ 4)23(168

12

1 1

nn

nn

alg
n

Cost  

which is much smaller than the cost of calculating all n4 spectra by 

(1). Note that the number of multiplications in algCost arises due to 

the multiplication by −2 inside 3
Z . However, if the multiplications 

are performed by simple shifting and sign bit change operations, the 

multiplication number is reduced to zero. 

4. EXPERIMENTAL RESULTS 

The computation of the spectral coefficient vectors of all possible 

Class 1 and 2 FPQLIA transforms has been implemented in 

MATLAB and run for a set of quaternary test functions as shown 

in Table 2. The quaternary test functions xor5, squar5, con1, ex5, 

inc, misex1, rd84, z5xp1, 9sym, apex4, clip, ex1010, and z9sym 

were obtained by modifying the MCNC IWLS 93 binary bench-

mark files of the same names to represent quaternary functions. 

The translation from binary to quaternary functions has been done 

by encoding every two input (output) bits in binary files to an input 

(output) symbol in the quaternary files. If the number of input 

and/or output variables is odd, then a zero bit is added behind the 

binary cubes to make it even. For both inputs and outputs the bi-

nary values pairs −−, 00, 01, 10, and 11 are encoded to −, 0, 1, 2, 

and 3, respectively. With these conversions, the binary benchmark 

files have become an array of quaternary cubes. The other test 

functions prodn, sumn, sqsumn, mprodn, msumn, maxn, minn and 

avgn were written to represent some simple single output n-

variable quaternary functions. The output of prodn, sumn, and 

sqsumn is the GF(4) product, sum, and sum of squares of the in-

puts, respectively. The output of mprodn and msumn is the modulo 

4 product and sum of the inputs, whereas the output of maxn, minn 

and avgn is the maximum, minimum, and integer part of the arith-

metic average of the inputs, respectively. In addition to them, test 

functions countni have also been written where the values of i var-

ies from 0 to 3. They represent n-variable quaternary functions 

where the outputs are the quaternary number representations of the 

number of occurrence of i in the inputs. Since for n = 3, 4, and 5 

the optimal numbers of nonzero spectral coefficients for countni 

are the same regardless of i, in Table 2 these functions are simply 

represented as count3i, count4i, and count5i. 

For comparison purpose, the numbers of nonzero spectral coef-

ficients for optimal QFPA transform have also been given in the 

rightmost column of Table 2. It can be seen that for all functions in 

the table either opt

nT
ω
,1 , opt

nT
ω
,2 , or in most cases both, give better num-

ber of nonzero spectral coefficients compared to the optimal QFPA. 

Also, the number of nonzero spectral coefficients of opt

nT
ω
,1 and opt

nT
ω
,2  

are similar for most of the functions but may be quite different for 

some cases, such as min4 and max4. 

Table 2 − Minimum number of nonzero spectral coefficients 

Input  
filename 

Number of nonzero spectral coefficients 

opt

nT
ω
,1  opt

nT
ω
,2  Optimal QFPA 

xor5 7 7 18 
squar5 21 24 27 
con1 14 14 38 
ex5 123 116 187 
inc 55 49 71 
misex1 23 20 40 
rd84 55 65 202 
z5xp1 42 49 60 
9sym 78 78 370 
apex4 473 456 481 
clip 260 296 383 
ex1010 1010 1011 1016 
z9sym 78 78 370 
prod3 24 24 27 
prod4 73 69 73 
prod5 218 218 243 
sum3 14 15 23 
sum4 30 30 76 
sum5 62 63 237 
sqsum3 39 39 56 
sqsum4 111 111 206 
sqsum5 351 351 764 
mprod3 8 8 10 
mprod4 16 16 20 
mprod5 32 34 37 
msum3 38 39 48 
msum4 185 186 219 
msum5 704 704 937 
avg3 27 20 49 
avg4 177 179 215 
avg5 704 704 937 
min3 21 27 26 
max3 28 22 28 
min4 47 73 81 
max4 73 48 82 
count3i 3 3 6 
count4i 5 5 24 
count5i 11 11 122 

Total 5240 5262 7809 
Average 137.89 138.47 205.5 
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Figure 1 – Algorithm to calculate FPQLIA spectral coefficients. 

5. CONCLUSIONS 

Two new classes of FPLIA transforms have been presented. Their 

forward and inverse matrices as well as the relations between the 

different matrices have been given. An algorithm for generating all 

FPQLIA spectra and obtaining the optimal expansion has also been 

described based on the existing relations between the FPQLIA 

spectra. Its computational cost has been derived and shown to be 

more efficient than calculating each FPQLIA spectrum separately. 

Experimental results for the FPQLIA transforms have also been 

presented in the paper where the result shows that they are able to 

provide the quaternary test functions with more compact represen-

tations compared to FPQA transforms.  

For n > 2 the introduced FPQLIA transforms are built from 

the Kronecker product of its basic transform matrices. As a result 

their basis functions have regular structure and can be directly gen-

erated from the basis functions of their basic transform matrices.  It 

has been shown that the FPQLIA expansion can be directly trans-

formed into binary arithmetic expansion by replacing each n-

variable quaternary basis function with the equivalent 2n-variable 

binary basis functions. The resulting expansion is a binary LIA 

expansion which corresponds to two- or three-level binary circuits. 

Thus, other than for optimization of quaternary function representa-

tion, the new transforms may also be useful for representation and 

analysis of binary functions. Similar to other arithmetic transforms, 

the FPQLIA transforms are also useful for efficient representation 

and parallel calculation of multi-output functions [1].         
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Table 1 − Forward transforms, inverse transforms, and fast inverse flow graphs for 1-variable FPQLIA 

Polarity 

number 
ω  

Class 1 Class 2 

ω
1,1T  ( ) 1
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T  Fast flow graph for ( ) 1
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−ω
T  

ω
1,2T  ( ) 1
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−ω
T  Fast flow graph for ( ) 1
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−ω
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Void fpqlia(int truth vector[ ]) 
{ int W[n] = <0, 0, …., 0>, p[ ]; 
 char Dir[n] = ’aa…a’; 

 Calculate 
0

A
r

 from truth vector by (1) and store the result in p[ ]; 
 For(j = 0 to 4n – 2) 
 { cont = true; 
    loop_var = n; 
    while (cont==true) 
    { loop_var = loop_var −−; 
      cont = false; 
      if(Dir[loop_var]==’a’) 
        { switch (W[loop_var]) 
        { case 0: W[loop_var] = 2; break; 
           case 1: W[loop_var] = 3; break; 
           case 2: W[loop_var] = 1; break; 
           case 3: { cont = true; Dir[loop_var] = ‘b’;}} } 
   else if(Dir[loop_var]==’b’) 
        {  switch (W[loop_var]) 
        { case 0: W[loop_var] = 2; break; 
           case 1: W[loop_var] = 0; break; 
           case 2: { cont = true; Dir[loop_var] = ‘c’;} 
           case 3: W[loop_var] = 1; break;} } 
   else if(Dir[loop_var]==’c’) 
        {  switch (W[loop_var]) 
        { case 0: W[loop_var] = 3; break; 
           case 1: { cont = true; Dir[loop_var] = ‘d’;} 
           case 2: W[loop_var] = 0; break; 
           case 3: W[loop_var] = 1; break;} } 
       else 
      {  switch (W[loop_var]) 
        { case 0: { cont=true; Dir[loop_var] = ‘a’;} 
           case 1: W[loop_var] = 3; break; 
           case 2: W[loop_var] = 0; break; 
             case 3: W[loop_var] = 2; break;} }} 

    Calculate 
W

A
r

from p[ ] by (6); p[ ] = 
W

A
r

;}} 
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