17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

FUZZY-AIDED TRACTOGRAPHY PERFORMANCE ESTIMATION APPLIED TO
BRAIN MAGNETIC RESONANCE IMAGING

L. M. San Jos Revuelta

Dep. of Signal Theory and Communications, University ofi&dlid
Campus Miguel Delibes, 47011, Valladolid, Spain
phone: + (34) 983 423660, fax: + (34) 983 423667, email: ssetel.uva.es
web: www.Ipi.tel.uva.estluismi

ABSTRACT seed-point and can be considered as probability measures of

In this paper, a recursive fuzzy inference system that caf tract. A similar approach is presented by O’Donnell et al.
be applied to estimate the error probability of tracking al-[8], where the steady state of the diffusion equation toterea
gorithms used in medical image processing systems is pr@.ﬂUX vector field is found. The authors show how the inverse
posed. Specifically, we are interested in the fiber bundlediffusion tensor can define a Riemannian metric that is used
estimation procesdiber tracking in diffusion tensor (DT) to find geodesic paths that can be interpreted as fiber tracts.
fields acquired via magnetic resonance imaging (MRI). As However, and due to both some deficiencies in these
tracking algorithm we consider a previously developed probtracking algorithms and the corrupted data that is present i
abilistic tracking algorithm (PTA). This paper studies the€xisting DT acquisitions (mainly due to noise, inhomogene-
analogies between this tracking approach and a typical Multy or partial volume effect), tracking algorithms may detpi
tiple Hypotheses Tracing (MHT) system, which is closelyfiber tracts which do not exist in reality or miss to visualize
related to fuzzy systems. This comparison leads to the devemportant branching structures. In order to avoid misinter
opment of a SAM (Standard Additive Model) fuzzy system pretations, the viewer of the visualizations must be predid
that on-line provides the uncertainty of the decisions abouwvith some information on the uncertainty of a depicted fiber
the estimated fiber tracts. Experiments on both simulatdd arind of its presence in a certain location. In this paper we wil

real DT-MR images demonstrate the validity of the method.use a recently developed probabilistic tracking algorif@in
that takes into account the whole information provided by

1. INTRODUCTION the diffusion matrix, i.e., it does not only consider thenpri
e ) . cipal eigenvector direction but the complete 3D informatio
Diffusion Tensor (DT) Magnetic Resonance Imaging (MRI) gesides, the algorithm includes a procedure that adapts the
has recently gained significant popularity due to its abilit ,mber ofoffspring pathmerging from any studied voxel
to measure the anisotropic diffusion of water in structuredq the degree of anisotropy observed in its proximity, im-
biological tissues [1]. Since in cerebral white matter mosiyroying, this way, the estimation robustness in areas where
random motion of water molecules are restricted by axongjtipe fibers cross while keeping complexity to a moderate
membranes and myelin sheets, diffusion anisotropy allowgel.
depiction of directional anisotropy within neural fiberusts A parallelism between the proposed PTA and the MHT
tures. L _ _ _ _ strategy [11, 12] is developed. Since the MHT procedure is
The estimation of white matter fiber tracts in the bra'”directly related to fuzzy logic, a fuzzy inference engine fo
—e.g. corpus callosum, corticospinal tract— becomes venpe estimation of the uncertainty of the tractography pssce
interesting in many clinical applications: surgical plang) || pe then obtained. This recursive fuzzy system will cal-
radiation therapy planning and 3-D visualization. Besidescy|ate more reliable estimates of the tracts certainty.eo-S
strong demands exist to accomplish this task automaticallyq, 2, the main notions of the proposed tracking scheme are
by computer. _ .. summarized, while Section 3 describes the basic concepts of
The DT is normally interpreted by calculating its €igen-the MHT approach, in order to establish a parallelism of con-
values and eigenvectors. That eigenvector corresponding tepts in both approaches. Next, in section 4, the developmen
the largest eigenvalue describes the principal diffusien d of 5 recursive SAM fuzzy system for the performance eval-
rection while the corresponding eigenvalue is a quantgati \ation of the tracking scheme is studied. The paper finishes
measure of the diffusion in that specific direction. Most ofyith the Numerical Results and the Conclusions sections.
the existing methods for fiber tracking rely only onthe direc o the sake of brevity, the reader interested in the review

tion of prinpipal diffusion to create integral curves thatie ¢ previous related approaches can consult the correspgndi
mate the fiber paths [2, 3]. Other approaches explore Moi& ction in 9.

of the information contained in the diffusion tensor. For ex

ample, Hagmann et al. [4], consider the tensor as a prob-

ability distribution. Parker et al. (2001) [5] and Campbell 2 PROBABILISTIC FBER TRACKING

et al. [6] have proposed the use of level set theory to find

the tracts. These approaches focus on the problem of pré&he tracking algorithm used in this paper was initially de-
venting leakage from the bundle structure that represhats t veloped in [9]. Thus, this section presents a summary of the
fibers. On the other hand, Batchelor [7] uses more of thenethod. The algorithm uses probabilistic criteria andaiies
tensor information by iteratively solving the diffusionwesy  over several points in the analyzed volume (the points given
tion. This way, paths are created that originate from a ahoseby the highest probabilities in the previous iteration).eTh
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algorithm starts in a user-selected seed voxXgl, with k being the iteration numberf* = B/3 R, and

At every iteration, the method evaluates a set of paramep atn(0) = 1. At the end of the visualization stage, every
ters related to the central voxel of &3 x 3 cubic structure. p . ;
The central pointy,, represents the last point of the tract be_esnmated path is plotted with a color that depend&on
ing analyzed. In the first iteratioN; = V,. There exist 26

possible directions to take for the next iteration (in orter 23 P00l of possible seeds

select the next point of the tract). At the end of each iteration, a pool of voxels is formed by
) selecting thes best voxels according to Eq. (1). The first
2.1 Basic concepts voxel of the pool becomes the central voxglat next itera-

Once a DT-MR volume has been scanned, the tracking prdion, expanding, this way, the current pathway. As proposed
cess starts in a user-selected seed vielA new pointv, is  in [14], the value ofs is adjusted depending on the degree
added to the estimated tract (or path) at every iteratiohef t Of anisotropy found in current vox®t and its surroundings.
algorithm. Poiny, is the voxel with the highest local proba- When this anisotropy is high, it means that a high direction-
bility P, a parameter which is calculated for every voxel thality exists in that zone, and the probability thgtbelongs

surrounds the last estimated point of the path. to a region where fibers cross is really low. Consequeatly,
Local probabilityR, is calculated as takes a small value (1, 2 or 3). On the other hand/ifs

found to be situated in a region of high anisotropy, the prob-
P =b(&;sp, + &SP+ &SP+ &45py) + (1— b)F (1) ab_ilities of_h_av_ing fibe_rs crossing or bra_nching is high_e_r. |
this case, it is interesting to explore various paths stguiitn
whereb stands for a weighting factor arfd, &,, &; andé, V. This can be achieved by increasing paramster
are the corresponding weights of the so-cak&doothness Notice that parameters,, i, , y, &3, &5, &3, €,) must be
parameterssp (described in [13]). Both their mathematical adjusted in order to get satisfactory results when estigati
expressions and their geometrical meaning are explained the tracts of the volume being analyzed. This is a tedious tas
[9]. These parameters measure the angles between the dirgigat has always been heuristically approached. In thisrpape
tions that join successive path points, as well as the anglage have used the strategy proposed in [15], where a neu-
between these directions and the eigenvectors associatedrhl network with a variable number of hidden layers and the
the largest eigenvalues found in those voxap,, sp, and  backpropagation algorithm for weights’ learning is progs
sp, are used to maintain the local directional coherence ofor the estimation of these parameters. This adjustment is
the estimated tract and avoid the trajectory to follow ugijk  useful when the algorithm is applied to a different part &f th
pathways. The threshold ferp, is set such that the tracking brain (fiber bundles) or when the scanning conditions have
direction could be moved forward consistently and smoothlychanged.
preventing the computed path from sharp transitions.
22 Fractional anisotropy 3. PARALLELISM PTAVSMHT
ParameteP! in Eq. (1) can be written as A fuzzy version of Reid's classical MHT algorithm [_12] was
proposed in [11]. This system is based on the likelihood
R=a-y- fa(V,)+(1—a)-p,-R, O<a<1 (2) discrimination and it was applied to the tracking of n_at_u_ral
language text-based messages. [11] shows the possilfility o
where parametenr allows the user to give a higher relative handling information about any time-varying phenomenon,
weight to either the anisotropy or the local probabilitydan as long as the phenomenon can be described by means of
U, and i, are scaling factors.fa represents the fractional a few keywords, and the phenomenon itself is statistically

anisotropy, which is calculated’as causal in the sense that the distribution of future statstais
tistically dependent on the past observed states. Thiy stud
(A= A0)2+ (Ay—Ag)2+ (A — Ag)2 has already been carried out through the mathematical anal-
fa= 2AZL A2 +72) ; (3)  ysis of single-fuzzy-input single-fuzzy-outgaedback sys-
1772773 tems for hypotheses likelihood determination.

It is easy to see the following parallelism that leads to
the possibility of a tract probability estimation based ext+
messages (fuzzy-messages): (i) the natural-language mes-
sages in [11] and the noisy DT-MR image constitute, in both
cases, the source afoisy or ambiguousinformation, (ii)
thetracksused in the MHT algorithm, which are defined as

with (A;,A,,A5) being the three eigenvalues of the diffusion
matrix of voxelV,. Finally, parameteR in Eq. (2) is cal-
culated based on the probability of going from the last esti
mated voxel of the tracl, to its surrounding voxels. This
probability takes into account the eigenvalues and eigenve

tors available at point. from the DT-MR image diffusion sequences of associated symboln be clearly associated
matrix. Specifically, it takes into account the projectidn o ?#e osiblo so ulences 3(’)]‘ Sints 10 the 33[’) . acel i the
each of the eigenvectors to each of the directions involred i © P q po! ) Space, I
the change of spatial position frov to V. tracking context, (iii) the system in [11] associates ot _
ProbabilitiesP in Eq. (1) can be recursively accumu- messages generated along time by using a specific stochastic
! énodel for the applications’ dynamics. In our case, this nhode
can be the information provided by the anisotropy measured

successive values b, using Eq. (3), (iv) the termiarget denotes some condition

P_.(K=P-P_.(k—1) (4) that generates observable phenomena. In our context, these
path path targets are the sequences of points that define a tract.
1Though not explicitly shown, the set of valu@sis properly normalized Ano_ther Important Issue that must be taken into ac-
so that they can be interpreted as probabilities. count is that the fuzzy inference rules that update the
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tracks/sequences probabilities (Fig. 3 in [11]) must now be
especially adapted. In our problem, every time a new pgint
is processed, the set of possible tract hypotheses is senlea
with equiprobable hypotheses.

As a consequence, the MHT system can be viewed as
a probabilistic approach for multiple targets tracking.eTh
oretically, this algorithm conservesl the hypotheses that
explain the observation until certain time, together with a
estimation of the probability of each hypothesis [11]. Ad th
end, the hypothesis with the highest likelihood is takerhas t
solution. On the other hand, the uncertainty in the preaticti w
of the future positions found in the MHT of [11], resembles o ] o
the creation of new fiber tracts based on the previous onekigure 2: Fuzzification of the crisp similarity between trac
The PTA maintains a finite set of hypotheses (seepihal  hypothese®, andOg.
of future seedm section 2.1) with their associated probabil-
ities, and tracts are visualized based on these data.
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»

Next, we relate therediction errore used as input in the
4. FUZZY ESTIMATION OF TRACTOGRAPHY FIE-2 with the anisotropy obsgrved in_the last (curyentlytpr .
PEREORMANCE cessed) point of the tract. This way, if a large anisotropy is
obtained, the tract would be rather smooth in the proximity
In this section we propose a recursive SAM (Standard Addiof the current voxel and will take a small value for those
tive Model [16]) fuzzy subsystem that allows to monitor the hypotheses (future points to expand the current tract)ilat
performance of a DT-MRI tracking system such as our PTAvolve a small change in the fiber direction. On the other hand,
The SAM model allows to work with linguistic descriptions when the anisotropy is small (meaning an isotropic volume
and ambiguities. This kind of description allows to fuzzy- area), parameterwould be the same for every direction (hy-
guantify the errors in the tractography problem. potheses). The value efmust, also, be fuzzified.

The system here proposed consists in three connected This way, the FIE-1 estimates the likelihood of two close
fuzzy inference engines (FIEs), as depicted in Fig. 1. Itidracts. Next, FIE-2 weights this estimate with respect to
necessary to develop an algorithm where the inputs to thée prediction error (that is inversely proportional to the
MHT system have some correlation. anisotropy) and obtains a second likelihood. This value is

used to update thglobal likelihood(or global reliability),

A Ty Sy ; which is a measure of the tracking estimation error probabil
ity. This third process is performed by FIE-3. Thus, thisdhi
block updates, with a feedback system, the previous system
knowledge every time a new point is processed.

: FIE-1 -2
Op—+— FIE-2

5. NUMERICAL RESULTS

In order to evaluate the proposed algorithm, we have used
both synthetic and real DT-MR images.

Figure 1: Recursive SAM fuzzy system for estimation of the>-1 Syntheticimages
error probability of the estimated error tracts. First, four different synthetic DT-MRI data in a 5050 x 50
grid have been generated (see Fig. 3). The first three im-

The inputsO, and Oy to FIE-1 are two different tracts ages were used for testing in [9]. To make the simulated field
(hypotheses) estimated by the algorithm sharing in commomore reali.stic, Rician_ noise [17] was added to the difquion
the first and the last points (in practice, both tracts must st Weighted images which were calculated from the Stejskal-
and finish in near voxels). These tracts are prolonged on oriEanner diffusion equatidnusing the gradient sequence in
side with a new sample every time a new point is considereflL8] and ab-value of 1000.
(at every iteration of the tracking algorithm), while thatla The noisy synthetic diffusion tensor data was obtained
point of the tracts is lost. This way, the compared tractehavusing an analytic solution to the Stejskal-Tanner equation
always the same length. Eigenvectors in the isotropic areas weke= A, = A5, while

In order to evaluate the similarity between two tract hy-in the remaining voxels of the imadg = 7,A, = 2,A; = 1.
pothese, and Og, it is necessary to quantify their simi- Inour study, the SNR varies from 5 to 30 dB.

larity using a 3D distance. As a consequencsjnailarity The “star” image consists of six orthogonal sine half-
coefficientthat depends on the distance between these twaves, each of them with arbitrary radius. This is the most
considered tracts can be assigned. complicated situation since the diffusion field experinsent

In order to implement a fuzzy system, we must establistyariations with the three coordinate axes and there exists a

a relation between thisrisp value (defined if0—M]) and ~ crossing region. Three different tracking results are show
the fuzzy sets where a linguistic variable is defined. Thidn Fig. 3 bottom-right. Estimated tracts are printed over th

relation is shown is Fig. 2. P , S .
. - . This equation relates diffusion weighted measureme)t(measure-
This a"QWS to obtam the possible fuzzy values pfout-  ments without diffusion weighting%): S= S, exp(—dD), with D being the
put of the first FIE and input to the second). diffusion coefficient.
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Figure 4: Mean probability of error of the probabilisticdka

ing scheme proposed, with and without the fuzzy method for
Figure 3: Synthetic DT-MR images used for testing the pro-estimation of the probability of error. Synthetic imagesnfr
posed algorithm: “cross” (top, left), “earth”, “log” andt&™  Fig. 3 were used.

(bottom, right).

more accurate certainty estimates.

red synthetic image. The algorithm is always able to fol-  Figure 5 shows how the fuzzy procedure greatly de-
low the right paths. (Tracking examples for the other simple creases the variance of the estimator, leading to more trobus

synthetic images can be found in [9]). and accurate estimations, specially for low quality images
The differentiation between voxels belonging to a fiber or

to a very isotropic area, respectively, is attained by magpi 7 with fuzzy without fuzzy | _

the path probabilities given by the output of the FIE-3 (see o Barth sesessas

Fig. 1) into a color scale and classifying them according to
some fixed thresholds Three different seed$(, S, andS;)
are shown on the star figurg, andsS, belong to the intrinsic
volume (voxels with a very high anisotropy) and the algo-
rithm moves through the most probable direction following
the main direction of the cross in each situation. On therothe
hand, when an extrinsic point such@sis selected as seed,
the algorithm explores in the neighboring voxels until itin
a voxel with a high anisotropy value (poiRf). OnceP, is
found, the tracking algorithm proceeds as in the cas8, of 1
ands,.

These simulations show how the algorithm finds the
proper fiber path whatever (extrinsic or intrinsic) seedefox SNR (dB)
is chosen. Notice that, the extrinsic se&jsare located far

away from the fiber bundles region, thus making the algo-

rithm explore a wider range of points before reaching thé:igure 5: Variance of the reliability estimators for the ifou

pointsP, that belong to an existing fiber path synthetic images. Bold traces correspond to PTA without
1 : f

Next, we compare the estimates of the tracts certainty JdHzzy assistance. Non-bold lines correspond to PTA+fuzzy.
the probabilistic tracking algorithm (PTA) described irtse

“Of? 2'1.With and Witho.t.jt implementi_ng the fuzzy engine fOrﬁ"nuch smaller estimation variances. This estimation proce-
estimating the probability of error. Figure 4 shows the mea Yure is rarely influenced by both the SNR of the image and

probability of wrong estimation (average value in 10 execu- oo .
tions) and Fig. 5 presents the mean variance of these estim3.29¢€ complexity (in terms of anisotropy).

tors, for different signal qualities. : : - ;

It can be seen that: (i) the probability of error increasess'2 Testing with rea! br.am SCOFpL.JS callosum images )
as the SNR of the original image improves; more complexI he proposed PTA is finally applied to a real DT-MR im-
images have larger tracking error estimates, (ii) the frapk age. Specifically, we have selected tiwpus callosunof
error improves notably when the fuzzy engine is used for esthe brain (see Fig. 6). o _
timation, and (iii) though not shown in the Figure, the fuzzy ~ Tracking results are shown for six different trials. It can
engine was also added to a Bayesian tracking approach sifie appreciated how the algorithm is able to follow the main
ilar to that proposed in [10]. Analyzing this case, it could b fiber bundle direction without getting out of the area of inte

appreciated that the PTA-fuzzy algorithm obtained slightl €st. As an example, we have included the second case (on the
top-middle) were a wrong path arises from the correct fiber

31f no fuzzy system is used, the path probabilities are giveEd. (4). bundle.

Estimation variance
.

It can be observed that the fuzzy-aided approach gets
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