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ABSTRACT

In this paper, we propose a single-channel speech separation method
by using a sparse decomposition with a periodic signal model. In
our separation method, a mixture of speeches is approximated with
periodic signals with time-varying amplitude. The decomposition
with the periodic signal model is performed under a sparsity penalty.
Due to the sparsity penalty, a segment of the speech mixture is de-
composed into periodic signals, each of them is a component of the
individual speaker. For speech separation, we introduce the cluster-
ing using a K-means algorithm for the set of the periodic signals.
After the clustering, each cluster is assigned to its corresponding
speaker using codebooks that contain spectral features of the speak-
ers. In experiments, comparison with MaxVQ that performs sepa-
ration on frequency spectrum domain is demonstrated. The experi-
mental results in terms of signal-to-distortion ratio (SDR) show that
our method outperforms MaxVQ with less computational cost for
assignment of speech components.

1. INTRODUCTION

In under-determined source separation problems, the sparse repre-
sentations of sources have been utilized[1]-[3], [8]. Short-time DFT
(Discrete Fourier Transform) is one of the sparse representations for
speeches and has been applied to multi- and single-channel speech
separation problems. Basically, the separation based on the short-
time DFT is achieved by masking that eliminates time-frequency
components of interferences. The time-frequency masks are com-
posed by two sensors[1] or statistical models[2, 3] of the sources
for single-channel speech separation. In other approaches for single
channel speech separation, the DFT spectra of the source signals
are learnt for the separation. For learning, independent subspace
analysis[6], non-negative matrix factorization[9] and non-negative
sparse coding[7] have been employed.

For learning the waveforms of the speech to improve the spar-
sity of the signal representation, the learnt dictionaries that are gen-
erated by sparse coding techniques[5]-[8] have been utilized. The
sparse coding is a generative model that represents signals in lin-
ear combinations of atoms in a dictionary. The dictionary and the
coefficients of the linear combination are alternatively updated un-
der a sparsity penalty. The sparse coding yields the dictionaries
that mainly consists of oscillatory functions for speech and audio
signals[7, 8]. Thus, if the observed signal can be supposed to be a
mixture of audio signals, it is expected that the observed signal can
be decomposed into the small number of the oscillatory signals.

In order to decompose the signals with a model for oscillatory
signals, the sparse periodic decomposition with the sparsity penalty
has been proposed[10][11]. In this decomposition method, a signal
model that represents periodic signals with time-varying amplitude
is employed. The waveforms and the envelopes of hidden periodic
signals in the mixture are iteratively estimated under the sparsity
penalty. This decomposition can be interpreted as a sparse coding
with non-negativity of the amplitude and the periodic structure of
signals. By imposing the constraint that are described by the signal
model, the sparse periodic decomposition represents a signal with
simple computation without preliminarily learnt dictionary.

In this paper, the sparse periodic decomposition is applied to
single-channel speech separation. In our approach, the speech mix-
ture is divided into analysis frames. Each frame is decomposed into
the periodic signals, each of which is supposed to be a component of
the individual source. To estimate the source speeches, the periodic
signals are grouped into clusters as many as the expected maximum
number of the sources. After the clustering, the clusters are assigned
to the sources with spectral features of the sources.

In next section, we explain the definition of the model for the
periodic signals that is employed for our speech separation method.
Then, the cost function including the sparsity and the algorithm for
the decomposition are explained. Next, we introduce the group-
ing and assignment for the result of the periodic decomposition and
realize single-channel speech separation. In this experiment, the
separation performance of the proposed decomposition is compared
with MaxVQ[2] that performs separation in frequency spectrum do-
main.

2. SPARSE PERIODIC DECOMPOSITION

2.1 Model for periodic signals with time-varying amplitude
Let us suppose that a sequence { fp(n)}0≤n<N is a finite length pe-
riodic signal with length N and an integer period p. It satisfies the
periodicity condition with integer period p ≥ 2 and is represented
as

fp(n) = ap (n)
K

∑
k=0

tp (n− kp) (1)

where K = b(N − 1)/pc that is the largest integer less than or
equal to (N − 1)/p. The sequence {tp(n)}0≤n<p corresponds to
a waveform of the signal in a period and is defined over the interval
[0, p−1]. tp(n) = 0 for n≥ p and n < 0. This sequence is referred to
as the p-periodic template. The sequence {a(n)}0≤n<N represents
the amplitude variation of the periodic signal.

In this section, we discuss the decomposition of mixtures of the
periodic signals that can be represented in the form of (1). We as-
sume that the amplitude of the periodic signal varies slowly and can
be approximated to be constant within a period. By this simplifica-
tion, we define an approximate model for the periodic signals with
time-varying amplitude as

fp(n) =
K

∑
k=0

ap,ktp(n− kp). (2)

In order to represent periodic components without DC component,
the average of fp(n) over the interval [0, p−1] is zero and the am-
plitude coefficients ap,k is restricted to non-negative values.

For convenience, a p-periodic signal is represented as an N-
dimensional vector f p = Aptp. In this form, the amplitude coef-
ficients and the template are represented in an N by p matrix Ap
and a p-dimensional template vector tp that is associated with the
sequence tp(n), respectively. Ap is a union of the matrices as

Ap =
(
Dp,1,Dp,2, · · · ,Dp,K+1

)T (3)
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where superscript T denotes transposition. {Dp, j}1≤ j≤K are p by p
diagonal matrices whose elements correspond to ap, j−1. Dp,K+1 is
a p by N − pK matrix whose non-zero coefficients that correspond
to ap,K appear only in (i, i) elements. Since only one element is non-
zero in any row of the Ap, Ap is defined as a matrix that consists of
orthogonal columns, l2 norms of which are normalized. To hold the
condition that the average of the periodic signal in (2) over a period
is zero, we impose the condition

uT
ptp = 0 (4)

on the p-template vector. up is a p-dimensional vector which ele-
ments equal to the diagonal elements of Dp,1.

Alternatively, p-periodic signals in (2) can be represented as
fp = Tpap. In this form, the amplitude coefficients and the template
are represented in an N by K +1 matrix Tp and K +1-dimensional
amplitude coefficients vector ap whose elements are associated with
the amplitude coefficients {ap,k}, respectively. Tp consists of the
column vectors that correspond to the shifted versions of the p-
periodic template. As same as Ap, only one element is non-zero in
any row of Tp. We define Tp as a matrix that consists of columns,
l2 norms of which are normalized.

In this study, we employ an approximate decomposition method
that obtains a representation of a given signal f as a form:

f = ∑
p∈P

fp + e (5)

for speech separation. P is a set of periods that are preliminary spec-
ified for the decomposition. e is an approximation error between the
model and the signal f. We assume that the observed signal f is a
mixture of signals that consists of few periodic components. Un-
der this assumption, a sparsity penalty is introduced to the periodic
decomposition in the form of (5).

2.2 Sparse decomposition with periodic signal model
The sparse representation is a generative model for signals and rep-
resents a signal f into atoms that are column vectors of a dictionary
Φ as f =Φc+ e. l2 norm of each atom in Φ is normalized to unity.
c is a coefficient vector. e is a supposed noise component that ap-
pears in the signal. The number of the column vectors ofΦ is larger
than the dimensionality of the signal f. The problem of the sparse
representation is to decompose the signal f while minimizing the
number of non-zero coefficients in c. In many studies, the sparsity
of the coefficient vector c is measured by l1 norm. The sparse co-
efficients that approximate the signal f under the noise assumption
are obtained by

ĉ = argmin
c

1
2
||f −Φc||22 +λ ||c||1 (6)

where || · ||1 denotes the l1 norm of a vector and λ denotes a La-
grange multiplier. This unconstrained minimization problem is re-
ferred to as basis pursuit denoising (BPDN) [4]. The dictionary Φ
is fixed for signal approximate decomposition in the BPDN. In the
sparse coding strategies[5, 7, 8], the dictionary Φ is adapted to the
set of the signals. The dictionary is updated with the most proba-
ble one under the estimated coefficients and the set of the signals.
From Bayesian point of view, the minimization (6) is the equivalent
of MAP estimation of the coefficient vector c with a Laplacian prior
[5].

For our periodic decomposition, we also impose the sparsity
penalty on the decomposition under the assumption that the mix-
ture contains a small number of periodic signals that can be ap-
proximated in the form of (2). Our objective is to achieve sig-
nal decomposition to obtain a small number of periodic subsignals
rather than the basis vectors. In order to achieve this, the prob-
ability distribution of the l2 norm of each periodic signals is as-
sumed to be the Laplacian, then the distribution of the set of the
periodic signals is P({fp}p∈P) ∝ ∏p∈P exp

(
−αp||fp||2

)
. The noise

is assumed to be Gaussian, then the conditional probability of f
is P

(
f|{fp}p∈P

)
∝ exp

(
− 1

2λ ||f −∑p∈P fp||22
)
. Along with Bayes’

rule, the conditional probability distribution of the set of the peri-
odic signals is

P
(
{fp}p∈P|f

)
∝ P

(
f|{fp}p∈P

)
P

(
{fp}p∈P

)
. (7)

Substituting the prior distributions of the periodic signals and the
noise into (8), we can derive the likelihood function of the set of
periodic signals. From the likelihood function, we define the cost
function E for the periodic decomposition as:

E
(
{fP}p∈P

)
=

1
2
‖ f − ∑

p∈P
fp ‖2

2 +λ ∑
p∈P

αp ‖ fp ‖2 . (8)

In our periodic decomposition, a signal f is decomposed into a set
of periodic signals while reducing the cost E. To find the set of
the periodic subsignals {fp}p∈P, we employ a relaxation algorithm.
This relaxation algorithm always updates one chosen periodic sub-
signal while assuming all the other periodic subsignals to be fixed.
The template and amplitude coefficients of the chosen periodic sig-
nal are alternatively updated in an iteration. In the algorithm, we
suppose that the set of the periods P consists of M periods which
are indexed as {p1, · · · pM}. The relaxation algorithm for the sparse
periodic decomposition is as follows:
1) Set the initial amplitude coefficients for {Ap}p∈P
2) i = 1
3) Compute the residual r = f −∑ j,i fp j

4) Represent fpi as Api tpi . If ‖ fp ‖2= 0, then the amplitude coeffi-
cients are specified to be constant. Update the template tpi with
the solution of a subproblem:

min
tpi

1
2
‖ r−Api tpi ‖2

2 +λαpi ‖ tpi ‖2 s. t. uT
pi

tpi = 0 (9)

5) Represent fpi as Tpi api . Update the template api with the solu-
tion of a subproblem:

min
api

1
2
‖ r−Tpi api ‖2

2 +λαpi ‖ api ‖2 s. t. api ≥ 0 (10)

6) If i < M, update i ← i + 1 and go to step 3). If i = M and the
stopping criterion is not satisfied, go to step 2).

For stable computation, the update stage of the amplitude coeffi-
cient in Step 5) is omitted when the l2 norm of the template tpi
becomes zero after Step 4). The closed form solution of (9) is

t̂pi =

{ ‖v‖2−λαpi
‖v‖2

v for ‖ v ‖2> λαpi

0 for ‖ v ‖2≤ λαpi

(11)

where

v = AT
pi

rpi −
uT

pi
AT

pi
rpi

‖ upi ‖2
2

upi . (12)

The solution of (10) is

âpi =

{ ‖w‖2−λαpi
‖w‖2

w for ‖ w ‖2> λαpi

0 for ‖ w ‖2≤ λαpi

(13)

where
w =

(
TT

pi
rpi

)
+

. (14)

(·)+ denotes replacing the negative elements with zero. Both solu-
tions of the subproblem guarantee decrement of the cost E. Thus,
the cost E decreases until convergence. However, the set of the re-
sultant periodic signals does not always obtain a minimum of the
cost function exactly. If any periodic signal becomes zero in an
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Fig. 1. Example of sparse periodic decomposition. (a), (b) Source
speech segment, (c) mixture and (d) distribution of l2 norm of the
decomposed periodic signals.

Fig. 2. Estimated sources from mixture in Fig. 1(c) with K-means
clustering of the decomposed periodic signals.

iteration, the amplitude coefficients are specified to be constant in
step 4) of the next iteration. The proper search direction for fp may
not be obtained by these amplitude coefficients. However, the l2
norms of the periodic signals that are eliminated by the shrinkage in
(11) and (12) with λp are small enough to approximate the signal.
Hence, we accept the periodic signals obtained by this algorithm
as the sparse decomposition results instead of the proper minimizer
of the cost E. An example of the sparse decomposition with the
periodic signal models is shown in Fig. 1. In this example, the ob-
served signal f is the mixture of two speech segments in a rate of
8 kHz. The source frames and mixture are shown in Fig. 1 (a), (b)
and (c), respectively. The set of periods for the decomposition is a
range [10,120] that corresponds to the region of the pitches of most
male and female speeches. The products λαpi should be specified
proportional to the expected l2 norm of the noise that is approxi-
mated with the periodic signal model. In this experiment, the set
of the parameters λαpi is specified as σ

√
p+1+ p/N that is the

expected l2 norm of the approximated Gaussian noise with the vari-
ance σ2. σ is specified to 1% of the l2 norm of the signal. The
distribution of the l2 norms of the resultant periodic subsignals of
the mixture in Fig. 1 (c) is shown in Fig. 1 (d). For this mix-
ture, 18 periodic signals appear in the decomposition result. Most
of the periods distribute around the fundamental pitch periods of

the sources. To recover the sources from the set of the decomposed
periodic signals, these periodic signals have to be assigned to the
sources. In next section, the clustering and assignment are applied
to the periodic signals to achieve single-channel speech separation.

3. SINGLE CHANNEL SPEECH SEPARATION

In this section, we apply the sparse periodic decomposition to the
single-channel speech separation. For the speech separation, the
observed speech mixture is divide into analysis frames. We suppose
that a frame z of the observed mixture consists of source speech
signals {xi}Ns

i=1 as
z = x1 +x2 + · · ·xNs , (15)

where Ns is the maximum number of speakers. Each source xi is
supposed to be decomposed into a set of periodic signals {fi

p}p∈Pi

with our periodic signal model shown in (2). Pi denotes the set of
periods that have non-zero periodic signals of the i-th speaker. For
the separation of the sources, we assume that the source signals do
not share same period as

Pi
∩
P j = /0 (16)

where i , j. Under this assumption, the observed mixture z can be
represented with the periodic signals

z = ∑
p∈P1

f1
p + ∑

p∈P2

f2
p · · · ∑

p∈PNs

fNs
p . (17)

By using this periodic representation of the mixture, the speech sep-
aration problem can be achieved by following three stages at each
frame. The first stage is decomposition of the source frame z into
the periodic components shown in (17). We employ the sparse peri-
odic decomposition for this stage. The second stage is grouping of
the periodic signals that represent same speaker into same cluster.
A K-means clustering is used to group the periodic signals into the
clusters as many as the maximum number of speakers Ns. By sum-
ming the periodic signals in each cluster, the frame of the mixture
is decomposed into Ns signal components. In the third stage, each
component is assigned to the proper speaker. For this assignment,
we use the preliminary learnt features of the supposed speakers. In
following two subsections, we explain the clustering of the decom-
posed periodic signals and the assignment of the clustered speech
components.

3.1 Clustering of periodic signals
For the clustering, the periodic representation of the mixture frame
z in (16) is supposed to be obtained by the sparse periodic decom-
position. Due to the sparsity penalty, the periodic subsignal of i-th
speaker are highly correlated with i-th source signal xi. Therefore,
we assume that each periodic signal satisfies the relationship

(fi
p)

Txi

‖ xi ‖2
>

(fi
p)

Tx j

‖ x j ‖2
(18)

where p is any period in Pi for i , j. Under this assumption, if the
actual source signals are obtained, each periodic subsignal can be
classified into the cluster that corresponds to the individual speaker.
However, the actual source signals are unknown for the separation.
We hence use a K-means clustering algorithm for the grouping. In
this stage, the decomposed periodic signals are grouped into the
clusters as many as the supposed maximum number of the sources.

Commonly, the K-means algorithm minimizes the sum of the
Euclidean distances between a center and elements in each cluster.
By the assumption shown in (18), we employ the normalized cor-
relation as the metric of the K-means algorithm. In this clustering,
the feature vector that is used for the K-means algorithm is defined
as the amplitude of the frequency spectrum of each decomposed
periodic signal. Our signal model for periodic signals in (2) can
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represent the amplitude variations of the periodic signals, but can-
not represent frequency variations. The frequency variations that
appear within a frame is represented by a sum of the periodic sig-
nals, of which periods are neighboring. The frequency spectra of
such periodic signals are closely related, but the amplitude varia-
tions are not. Therefore, we employ the amplitude spectrum of the
periodic signal as the feature of the clustering to ignore amplitude
variations and improve the accuracy of the clustering.

After the clustering, the decomposed component is obtained by
summing the periodic signals in same cluster. By this clustering, the
frame of the mixture is decomposed into the components as many
as the maximum number of sources Ns. We suppose that these de-
composed components are denoted as {di}Ns

i=1.
The example of the decomposition is shown in Fig. 2. These

signals are given by the K-means clustering from the periodic de-
composition in Fig. 1(d) of the mixture Fig. 1(c). Each source
frame is approximated by the corresponding cluster of the decom-
posed periodic signals.

3.2 Assignment of clusters to speakers
After the clustering, the frame of the mixture is decomposed into Ns
components. The source separation problem is reduced to the prob-
lem that is to find the assignment in the possible NNs

s combinations
of the decomposed signals and the sources. To find the assignment,
features of the speakers that are preliminary learnt are utilized. We
suppose that the clean speech signals of the speakers are available
and can be utilized to the assignment. In this work, the codebook
that contains the representative vectors that represent the normal-
ized amplitude frequency spectra of the speakers are utilized. The
codebook is learnt for each clean speech of the speaker by the shape
vector quantization using LBG (Linde-Buzo-Gray) algorithm. For
the assignment, the similarities that are defined as the normalized
correlations between the representative vectors and candidates of
the separated outputs that obtained for all possible combinations
are computed. When K = 2, the decomposed components for the
frame are d1 and d2. The possible separated outputs are

x̂1 = u1d1 +u2d2

x̂2 = (1−u1)d1 +(1−u2)d2

where x̂1 and x̂2 are estimates of the 1st and 2nd speaker, respec-
tively. u1 and u2 are chosen from {0,1} to maximize the sim-
ilarity between the separated output and any representative vec-
tor in the codebooks. Let us suppose that the codebooks of for
the amplitude spectra of the 1st and 2nd speaker are obtained as
{c1,i}Nc

i=0,{c2,i}Nc
i=0, respectively. Every representative vector is nor-

malized to unity. Nc denotes the number of the representative vec-
tors in each codebook. The similarity is defined as

maxi(cT
1,ix̃1)+maxi(cT

2,ix̃2)

‖ x̃1 ‖2‖ x̃2 ‖2
,

where x̃1 and x̃2 are the amplitude spectra of the candidates of the
separated outputs x̂1 and x̂2. u1 and u2 that maximize this sim-
ilarity are selected for the assignment. Since the number of the
combination of the separated out is NNs

s , the computational cost for
this assignment is proportional to O(NcNNs

s ). After the assignment,
each estimation of the source is added to the separated output with
multiplying the hanning window.

4. SEPARATION RESULTS

For the separation experiments, the speech signals were selected
32 continuous speech signals of about 8 s taken from ATR-SLDB
(Spoken Language Database). The speech signals are obtained by
8 Japanese male speakers and 8 female speakers reading sentences.
Two speech signals are obtained by each speakers. 480 speech mix-
tures that consist of two speeches obtained by different speakers are

Table 1. Averages and standard deviations of SDR (F and M denote
female and male speech, respectively)

SPD SPD+K-means SPD+K-means Binary Mask MAXVQ
w. oracle w. oracle w. codebook w. oracle w. codebook

F/F+M 11.0/0.9 9.6/0.9 7.2/1.2 14.4/1.2 6.1/1.4
M/F+M 10.6/0.9 9.2/0.9 6.8/1.2 14.0/1.2 5.8/1.5
F/F+F 11.3/1.0 10.0/1.1 2.9/1.9 14.1/1.5 2.5/2.1

M/M+M 9.9/0.9 8.3/0.9 3.1/1.6 12.9/1.0 2.0/1.8

Table 2. Averages and standard deviations of SIR (F and M denote
female and male speech, respectively)

SPD SPD+K-means SPD+K-means Binary Mask MAXVQ
w. oracle w. oracle w. codebook w. oracle w. codebook

F/F+M 16.3/1.4 17.3/1.6 13.2/1.9 35.4/7.0 13.0/2.5
M/F+M 17.4/1.6 18.2/2.1 13.1/2.9 33.8/6.9 17.2/3.3
F/F+F 16.7/1.4 17.2/1.6 8.0/2.5 30.9/3.2 8.9/3.9

M/M+M 15.5/1.4 16.3/1.5 8.3/2.3 29.5/2.8 8.0/3.0

generated. The sampling rate of each speech signal is converted to
8 kHz. For each speaker pair, the mixtures are generated at SNR
(Signal to Noise Ration) of the source speeches in the mixtures at
0 dB. Each mixture is divided into frames that contain 360 samples
with 3/4 overlap for the periodic decomposition.

Five separation methods are applied to the mixtures. Three
methods are based on the sparse periodic decomposition. The first
method is based on the periodic decomposition with oracle. In this
method, the decomposed periodic signals are assigned to the speak-
ers by using the actual sources in the mixture. The ideal perfor-
mance of the source separation by using the periodic decomposi-
tion is obtained by this method. Moreover, the assumptions shown
in (16) and (18) are verified by this experiment.

The second method performs the separation with the K-means
clustering. In the second method, the periodic signals are grouped
into two signals by the K-means algorithm at every frame, and each
decomposed component that is obtained by summing periodic sig-
nals in same cluster is assigned to the speaker by using the ac-
tual source in the mixture. By comparing the first with the sec-
ond, degradations that are caused by the K-means clustering can be
evaluated. The third method is the semi-blind separation with the
speaker’s codebooks that were explained in Sect. 3.

Two DFT-based separation methods are performed for compar-
ison. The first is the ideal binary masking that indicates the ideal
performance of the DFT based speech separation. The second is
the MaxVQ[2] that also uses codebooks that are generated from
log-spectra of clean speeches of the speakers to compose the binary
masks. In the MaxVQ, the spectra of the mixture are assumed to
be produced with the mixture-maximum model[2]. The MaxVQ
seeks all possible pairs of the representative vectors belong to the
speakers to find the pair that obtains the closest mixture-maximum
to the input mixture[2]. For the DFT based methods, the length of
the segments is specified as 512 samples that provides the optimum
frequency resolution for speech separation[1]. The number of the
representative vectors Nc for the proposed method and the MaxVQ
is specified as 256 and are obtained from the clean speeches of 1
min that does not include the sources in the mixtures. For evalua-
tion of the separated results, we employ SDR (Signal to Distortion
Ratio), SIR (Signal to Interference Ratio) and SAR (Signal to Ar-
tifact Ratio) that are commonly used for the evaluation of signal
separation[12].

The average SDRs, SIRs and SARs of the separation results
are shown in Tables 1, 2 and 3, respectively. In these table,
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Table 3. Averages and standard deviations of SAR (F and M denote
female and male speech, respectively)

SPD SPD+K-means SPD+K-means Binary Mask MAXVQ
w. oracle w. oracle w. codebook w. oracle w. codebook

F/F+M 12.4/0.7 10.6/0.9 8.2/1.1 14.5/1.2 7.4/1.0
M/F+M 12.0/0.7 10.1/0.8 8.2/1.1 14.0/1.2 6.3/1.4
M/M+M 11.4/0.7 9.2/0.9 5.4/1.3 13.0/1.0 4.1/1.3
F/F+F 12.7/1.0 10.9/1.0 5.3/1.3 14.2/1.5 4.6/1.4

“w. oracle” denotes the results of the separation using the actual
source signals in the mixture. Audio examples are available at
http://sip.sys.es.osaka-u.ac.jp/˜nkszk/EUSIPCO2009/.

In Table1, we see that the ideal SDRs obtained by the sparse
periodic decomposition is lower than the ideal binary masking of
DFT by about 3 dB. Since the frequency resolution of the periodic
decomposition is lower than the DFT in the high frequency range,
the interferences mainly occur in the high frequency range. These
interferences are also reflected in the average SIR in Table 2. Com-
pared with the ideal results of the periodic decomposition, the SDR
of the separation results with the K-means clustering is lower than
the ideal SDR by about 1.5dB. We see that the K-means clustering
decreases the average SARs by about 2 dB in Table 3. However,
the decrements of the SIRs due to the K-means clustering do not
occur in Table 2. This reason is that the errors of the clustering
of the periodic signals degrade both of target speech and interfer-
ence simultaneously. Hence, the SIRs after the clustering slightly
increase. The results of the separation with the K-means clustering
and the codebooks of the speakers is about 7 dB for opposite gen-
ders and 3 dB for same gender in SDR. As seen in the results, most
of the degradations of the separation results occur in the assignment
stage using the speakers codebooks.

Compared with the MaxVQ, the average SDRs obtained by the
proposed method with the assignment using the codebooks are sig-
nificantly larger than the MaxVQ for female-male mixtures. For
female-male mixtures, the average SIRs obtained by the MaxVQ
are higher than the proposed results. However, the average SARs of
the MaxVQ are lower than the proposed separation by about 1 dB
for all combinations of genders. Actually, heave bubble noises that
are caused by the hard mask that is generated from the codebooks
are audible in the results obtained by the MaxVQ. In our results,
the interferences and undesired amplitude attenuations of the target
speech suddenly occur in the separation results due to the error of
the assignment of the decomposed components. If the assignment
accuracy of the proposed method is improved, these degradations
can be suppressed.

There is room for improvements in the assignment of the de-
composed components. The DFT based separation is the problem
of the assignment of the 257 frequency bins in this experiment. In
contrast, the number of the decomposed signal yield by the pro-
posed method with the K-means clustering is the maximum number
of expected speakers Ns. Comparing with the DFT, the separation
problem can be reduced to small size of a combination problem
in our separation method. The computational cost of the MaxVQ
for the assignment of the frequency bins is proportional to O(NNs

c )
where Nc is the numbers of the representative vectors in the code-
book. The proposed method requires O(NcNNs

s ) operations for the
assignment of the decomposed signals where Ns = 2 in this work.
The computational cost for the assignment of the source compo-
nents is drastically reduced by the sparse periodic decomposition
with the K-means clustering.

5. CONCLUSIONS

In this paper, we proposed a speech separation method using the
sparse signal representation that decomposes a signal into the set

of the periodic signals with time-varying amplitude. In this decom-
position, the signal is decomposed while reducing the cost that in-
cludes the sparsity penalty. By this sparsity penalty, each decom-
posed periodic signal of the speech mixture correlates with the cor-
responding source and can be grouped to form the source by the
simple clustering algorithm. We demonstrate the comparison with
the DFT-based separation methods and show that the separation re-
sults of the proposed method are comparable to the DFT-based sep-
aration methods.

In our separation method, every frame is decomposed into the
components as many as the maximum number of the expected
speakers. In the clustering stage, if the number of the active speak-
ers is estimated, the separation quality can be improved. The use of
an information criterion will facilitate the estimation of the number
of the cluster that corresponds to the number of active speakers.

In the separation results in Table 1, we see that most degra-
dations occur in the assignment using the codebooks of the speak-
ers. For the DFT based separation methods, the soft masks that
are generated using the GMM (Gaussian Mixture Model) of the
speeches have been proposed to improve the quality of the sepa-
ration results[3]. The assignment stage of the proposed method can
be improved by using the advanced speaker models. Moreover, the
assignment of this work does not utilize temporal continuity of the
speech spectrum and fundamental frequency. We can also improve
our method by using the temporal continuity of speech pitches for
improvement of the accuracy of the assignment. The accurate and
robust assignment of the decomposed signals is a topic for future
research.
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