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ABSTRACT
The presence of impulsive noise can severely degrade the

accuracy performance of conventional direction of arrival es-
timation algorithms. In this paper, we propose a non-linear
transformation function to suppress the impulsive noise. The
proposed function is called Modified Modulus Transforma-
tion and it is used to preprocess the impulsive noise con-
taminated signal prior to covariance estimation. Simula-
tion results are presented to illustrate the efficacy of the
proposed approach for high resolution direction finding in
highly-impulsive environments. This observation is also cor-
roborated with real data.

1. INTRODUCTION

Direction of arrival (DOA) estimation is an important prob-
lem in sensor array processing research and is relevant to
many applications such as radar and wireless communica-
tions. Over the past decades, a number of high resolution
direction finding (DF) algorithms have been proposed [1–4].

The noise in practical radio environments, especially in
the HF and VHF bands, is non-Gaussian and impulsive in na-
ture [5]. In addition to natural phenomenon, e.g. lightning,
impulsive noise sources are increasingly attributed to human
activities [5]. However, most of the conventional DOA es-
timation methods are not robust against impulsive noise and
break down rapidly in their presence.

Maximum-likelihood (ML) estimation and robust covari-
ance matrix estimation, have been proposed to overcome this
limitation. The ML approach requires prior knowledge of
the noise distribution [6–8]. While optimal, these estimators
are computationally intensive and require knowledge of the
noise parameters as well as user-defined threshold values and
weighting functions.

Robust covariance estimation methods based on normal-
ized sample covariance matrix have been proposed [9–11]
and have enabled conventional DOA estimation to achieve
good performance in the presence of impulsive noise. In
[12], the authors showed that the performance of conven-
tional DOA estimator can be improved by preprocessing the
amplitude of the received signal with Gaussian-tailed zero-
memory nonlinearity (GZMNL) before covariance estima-
tion.

In this paper, we propose an alternative non-linear func-
tion, called Modified Modulus Transformation (MMT), to
suppress the impulsive noise in the received signals prior
to DOA estimation with conventional methods. It is worth-
while to point out that the MMT does not require prior in-
formation about the statistics (temporal distribution) of the
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impulsive noise nor parameters tuning, though it is depen-
dent on the amplitude distribution. As shown later in the
results analysis, MMT can offer an improved DOA estima-
tion performance through better impulsive noise suppression,
as compared to other robust covariance estimation methods
proposed in [9–12].

The organization of the paper is as follows: In Section
2, the signal model of the antenna array system is discussed.
Section 3 presents the proposed modified modulus transfor-
mation function. Simulation and real-data results are shown
in Section 4 and a short conclusion is drawn in Section 5. In
the sequel, the superscripts (·)T and (·)H denote the transpose
and Hermitian operations respectively.

2. DATA MODEL

Consider an array of N sensors, which receives L narrowband
signals emitting from far-field sources of DOAs {θl}L

l=1. The
DF problem is to estimate the (L < N) signal DOAs

Θ = [θ1,θ2, . . . ,θL]T (1)

from the independent array snapshots {x(t)}M
t=1, modeled as:

x(t) = A(Θ)s(t)+ i(t)+w(t), t = 1,2, . . . ,M (2)

where

A(Θ) = [a(θ1),a(θ2), . . . ,a(θL)] (3)

is the (N×L) direction matrix and a(θl) is the (N×1) array
steering vector. The signal-waveforms vector is denoted by
s(t). The vector w(t) models identically and independent
distributed (i.i.d.) sensor noise. The vector i(t) is due to
impulsive noise.

3. COVARIANCE MATRIX ESTIMATION IN THE
PRESENCE OF IMPULSIVE NOISE BASED ON A

MODIFIED MODULUS TRANSFORM

Conventionally, the array covariance matrix is estimated:

R̂ =
1
M

[
XXH]

(4)

where

X = [x(1), x(2), . . . , x(M)] . (5)

In the presence of impulsive noise, DF methods using the
array covariance matrix estimated as in (4) will result in poor
DOA estimation accuracy performance.
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Figure 1: Transfer function of MMT.
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Figure 2: Transformation of a Gaussian signal contaminated
with impulsive noise by applying MMT.

In this paper, we propose to use a non-linear trans-
formation function known as Modified Modulus Transform
(MMT) to suppress impulsive noise prior to covariance esti-
mation. It is a modification from [13, 14] and is given by:

g(x) =

{ sign(xr) [log10 (|xr|)+1]+ ...
j sign(xi) [log10 (|xi|)+1] , x 6= 0

0, x = 0
(6)

where xr and xi denotes the real and imaginary parts respec-
tively of x and sign(.) denotes the sign operation. It suffices
to point out that, unlike the modulus transformation proposed
in [13, 14], the proposed MMT does not require any tuning
parameter. Furthermore it does not make any assumption
about the temporal distribution of the impulsive noise. As
with other existing non-linear transformations, the MMT in
(6) is performed on the real and imaginary parts of x(t) in-
dependently.
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Figure 3: QQ-plot of the contaminated data in (2), before and
after applying MMT.

The transfer function of MMT (6), as depicted in Fig. 1,
is a companding function where the small valued signals are
scaled almost linearly while the larger ones are compressed.
Within this region, the MMT does not cause any phase per-
turbations. The transfer function of the modulus transforma-
tion is also included as a comparison. For extremely high
values of the impulsive noise, the MMT shows a better sup-
pression performance.

Fig. 2(a) and 2(b) plot a Gaussian signal contaminated
by impulsive noise1 and its MMT transformed counterpart.
The QQ-plot in Fig. 3 shows that the MMT transformed sig-
nal is no longer heavy-tailed and is approximately Gaussian
distributed.

It follows that with the application of MMT on the ar-
ray data, the transformed data will comprise instances of
x(t) that are almost linearly scaled and those that are com-
pressed due to the presence of large impulses. As a result, the
estimated array covariance matrix using MMT transformed
data can provide a reasonably good approximation of the
true array covariance matrix, due to the suppression of the
large valued impulses, to allow DOA estimation with con-
ventional methods. For the same impulsive noise model, the
MMT performs better than the modulus transformation (MT)
in [13, 14]. This will be illustrated in the next Section.

4. RESULTS ANALYSIS

In this section, we compare the DF performance of MMT
with other existing robust covariance estimation methods,
for both simulated and real data. For the simulations, we
consider two far-field sources impinging on an uniform lin-
ear array of N = 8 omnidirectional sensors from the DOAs
Θ = [θ1 =−5◦ θ2 = 5◦]T and M = 200 snapshots are used
for DOA estimation. The RMSE performance metric is aver-
aged over 10,000 Monte Carlo runs.

For the purpose of simulation and performance analy-
sis, each entry in the vector i(t) + w(t) from (2) is given
as r exp( jφ), where the random phase, φ , is drawn from a

1The impulsive noise is generated using the model described in (7).
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Figure 4: DF estimation accuracy of first DOA, θ1 =
−5◦: RMSE versus SNR by varying ε , with κ =
75 and γ2 = 1. The corresponding values of ε are
[0.1, 0.3, 0.5, 0.7, 0.9].

uniform distribution between [−π, π) while r is the mag-
nitude of a random variable drawn from the ε-contaminated
Gaussian mixture model (ε-cGMM) [15]:

fε(ν) = (1− ε) fG
(
ν ;γ2)+ ε fG

(
ν ;κγ2) , (7)

and where 0≤ ε ≤ 1 represents the amount of contamination.
The term fG

(
ν;γ2

)
is a Gaussian distribution with variance

γ2 and κ > 1 represents the relative strength of the impulsive
component.

In this simulation, we used the MUSIC algorithm [1] for
DOA estimation with array covariance matrix estimated after
applying MMT. We also compared the DF accuracy perfor-
mance against the MT method (with λ = 0); SCM method
[11], fixed point covariance matrix (FPCM) estimate [9, 10],
GZMNL method [12] and the no impulsive noise case, where
perfect knowledge of the locations of the contaminated sam-
ples is available. The CRB on the accuracy of estimating the
DOA vector Θ in (1) is also included as a comparison. The
derivation of the CRB is given by equations (4)-(9) from [8].

Figs. 4-5 show the DF estimation accuracy of the first
DOA, θ1 =−5◦, versus the SNR, which is obtained by vary-
ing ε and κ respectively. In both Figures, throughout the
range of SNR values, we note that our proposed method per-
forms better than the existing techniques.

Fig. 6 shows an example of the high-resolution DF ca-
pability of our proposed methods, when three sources Θ =
[−15◦,30◦,50◦]T are present. The results show that some
existing methods fail to resolve the two closely-separated
sources at 30◦ and 50◦. In comparison, our proposed method
performs very well in this scenario.

We also show the small-sample performance of our pro-
posed method in Fig. 7. Even when the number of available
array snapshots is reduced, we can see that the DF estimation
accuracy of MMT still outperforms the other methods. It has
the closest performance to the CRB among the methods con-
sidered here.
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Figure 5: DF estimation accuracy of first DOA, θ1 = −5◦:
RMSE versus SNR by varying κ , with ε = 0.3, and γ2 =
1.The corresponding range of κ is [10, 30, 50, 80, 100].

Besides the simulated data, the proposed method is also
verified using real data. This data is obtained by collecting
high frequency (HF) radio wave using the following mea-
surement setup: Four Active HF antennas are connected to
the data acquisition system developed by the Interactive Cir-
cuits and Systems (ICS) Limited and placed on the roof top
of Block S2 School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. Fig. 8 shows
the experimental setup.

The receiving ICS system has a 4-channel 14-bit analog-
to-digital converter module in PCI Mezzanine Card (PMC)
format, with sample rates of up to 100 MHz/channel and a
digital down converter (DDC) option. In this experiment,
the receiver frequency is 30MHz and set the effective sam-
pling rate is 12.5MHz for each channel. Due to the congested
nature of the HF band, we use short-time Fourier transform
(STFT) to reduce the wide receiver bandwidth to a much nar-
rower band so that we can observe the signals-of-interest at
each channel.

The results of applying the MMT on the real parts of the
data, from one channel, is shown in Fig 9. Similar results are
observed for the other channels and are not produced here. It
can be seen that the MMT gives good impulsive noise sup-
pression performance. Though the magnitude of the data is
changed (this happens for all 4 channels), the MMT still al-
lows for high resolution DF. Fig 10 shows this capability.
The MMT is able to pick up the 2 signal sources and with
a better resolution, while the other existing methods do not
perform so well. The results show the robustness of the pro-
posed method. In both Figs. 6 and 9, the higher MUSIC
spectral peak, after applying MMT, indicates that a more ac-
curate covariance was likely to have been estimated.

5. CONCLUSION

We have proposed a modified modulus transformation to mit-
igate the impact of impulsive noise for high-resolution di-
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Figure 6: DF in the presence of three sources: MUSIC spec-
trum with ε = 0.5, κ = 100 and γ2 = 1.

rection finding. This transformation is simple to implement
and works well against heavy-tailed data. This is illustrated
by simulation and real data results, which show better accu-
racy performance of direction of estimation algorithms for
the proposed method over existing approaches.

We are developing theoretical analysis of the pro-
posed transformation, in terms of its detection performance.
Notwithstanding this, we have provided the motivation of the
proposed transformation, through the transfer function and
the results analysis.
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