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ABSTRACT

It is well known that performance of adaptive filters
is mainly a compromise among computational complexity,
speed of convergence and steady-state behavior. The affine
projection (AP) algorithm offers a good convergence speed
that increases with the projection order N and a computa-
tional complexity that can be reduced by applying different
fast strategies. However, its steady-state mean square error
(MSE) worsens when N grows. This work introduces the
convex combination of two AP adaptive filters in order to im-
prove the performance capabilities of the overall filter. The
purpose of the convex AP approach is to improve the con-
vergence performance of a single AP algorithm but not at the
expense of an increase of the steady-state MSE. To achieve
this we combine two AP filters with different projection or-
ders, one of high N order that performs faster than other with
a lower order but with a better MSE. Moreover, the compu-
tational cost of the AP combination scheme would be similar
to that of the higher order AP filter working separately. Sim-
ulation results have validated the proposed approach.

1. INTRODUCTION

In adaptive filtering, affine projection (AP) algorithms are at-
tractive mainly due to its fast convergence speed in compar-
ison with LMS-type classical algorithms [1]. Moreover, this
algorithm exhibits a convergence speed that increases with
its projection order (V). However, this performance improve-
ment involves two negative effects: firstly there is an increase
of its computational complexity that could become too high
for many applications, and secondly, the mean square error
(MSE) at steady-state worsens when N grows [2]. The first
issue can be suitably minimized by applying different fast
strategies that lower the computational cost of the AP algo-
rithm [3, 4], and even in case of real-time applications, by
using hardware platforms powerful enough where the com-
putational load is not constrained. Nevertheless, regarding
the second issue, the MSE at steady-state is inherent to the
adaptive algorithm and it can not be applied any strategy to
improve it.

The aim of this paper is to develop a new adaptive filter-
ing approach based on the parallel combination of two AP
adaptive filters which supplements the work presently avail-
able in the literature. The purpose of the AP combination is
to improve the convergence speed of a single AP algorithm
but not at the expense of an increase in the steady-state MSE.
The convex combination strategy presented in [S], whose ba-
sic idea is to combine two algorithms of complementary ca-
pabilities to get a global filter of improved performance, is

Partially supported by: CICYT grant TEC2006-13883-C04-01.

© EURASIP, 2009

being used. In this work we consider two AP algorithms
with different projection orders, one of high N order that
performs faster and other with a lower order but with a bet-
ter steady-state MSE. The two adaptive filters are indepen-
dently adapted using its own error signal and the outputs of
both filters are combined by a mixing parameter that is ad-
justed in order to minimize the overall mean square error. It
should also be noted that the rule to determine the optimal
combination of the adaptive filters is not trivial and requires
a great effort. Some works have been previously published
regarding this issue for LMS type adaptive filters, see [6].
On the other hand, in case the two AP adaptive filters of the
parallel scheme have the same number of filter coefficients,
most of the computational load of the lower order algorithm
is shared with the algorithm of higher order, so the computa-
tional cost of the parallel structure, which is contrary to what
might think, is not much larger than the computational cost
of the AP algorithm with higher order working individually.

This paper is organized as follows. Section 2 briefly re-
views the adaptive controller using the AP algorithm. In Sec-
tion 3 the convex combination of the AP algorithm is intro-
duced. Section 4 presents some experimental results and fi-
nally, conclusions follow in Section 5.

2. AFFINE PROJECTION ALGORITHM

The affine projection algorithm is an adaptive filter whose
objective is to iteratively estimate the adaptive filter weights
in such a way that a function of the error signal e[n] is mini-
mized. This type of algorithms is based on multidimensional
orthogonal projections on affine subspaces and was firstly
introduced in [7]. Figure 1 shows the block diagram of an
adaptive filter using the AP algorithm.

This algorithm uses N data vectors to update the filter
coefficients and can be considered as a generalization of the
Normalized LMS (NLMS) algorithm [1], which uses only
one input signal vector. Regarding the NLMS algorithm, the
update equation can be given by,

win+1] = win]+ pxfin] o [nlxln)) eln] ()

being w(n| a vector formed by the L adaptive filter coeffi-
cients at the nth time instant, u is a step-size parameter, and
x(n] is a vector with the most recent L samples of the input
signal x[n],

x[n] = (x[n],x[n—1],....x[n— L+ 1])T. 2)
On the other hand, the AP algorithm is characterized by the
adaptation rule of

wln+1] = win] + u Al (AT [n]Aln])"eln],  (3)
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Figure 1: Block diagram of an adaptive system using the AP
algorithm

where A[n] is a matrix of size L x N defined as
Aln) = (x[n],x[n—1],...x[n—N+1]), 4)

and the N x 1 error vector e[n] is expressed as,
e[n] =d[n] — A[n]w[n] Q)

d[n] being an N x 1 vector composed of the desired signal
samples.

Thus, N data vectors are used to update the L filter coef-
ficients at each iteration as given in (3). This rule is the solu-
tion to an optimization problem constrained by the minimum
perturbation principle, which implies a minimum variation
of the weight vector while constraining the filter coefficients
so that a replica of the desired signal d[n] is generated by fil-
tering the input signal x[n] as shown in Fig. 1. The weight
vector variation is defined as

Awln+1]=wn+1] —w(n] (6)
and the objective cost function to minimize is given by
|Aw[n+1]]* = AwT [n+ 1JAw[n + 1] (7)
with the constraint
wln4+1)x[n—kl=dn—k], k=0,1,..N—1 (8)

where the projection order N is lower than L.

In practical applications, possible instabilities due to the
(AT[n]A[n])~" matrix inversion can be avoided by adding
the term 61, where 0 is a small positive constant and I is the
N x N identity matrix. This technique is called regulariza-
tion. Then we may rewrite (3) as

wn+ 1] = wn] + uAn] (AT [n]A[n] +8T) 'e[n].  (9)

The update equation in (9), verifies on the one hand that
the computational cost grows with the projection order, and
on the other hand, that the NLMS algorithm defined in (1) is
a particular case of the AP algorithm for N =1 and 6 =0,
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Figure 2: Convergence curves of the AP algorithm for differ-
ent projection orders: N =1, 2, 3,5 and 10

although the NLMS also supports the regularization parame-
ter [8]. Regarding the performance of both algorithms, the
NLMS exhibits a worse convergence speed, but a smaller
steady-state MSE, see more details in [2]. In Fig. 2 it can
be easily seen how the speed of convergence increases with
the projection order but also the steady-state MSE. There-
fore it would be interesting to combine the steady-state per-
formance of an AP algorithm with low N order (considering
also the NLMS) with a fast AP algorithm for high N order.
Next section describes the convex combination scheme that
solves this problem.

3. CONVEX AP ALGORITHM

The aim of a convex combination approach is to improve the
performance of adaptive schemes so that the overall perfor-
mance is better than the performance of each algorithm sepa-
rately or at least as good as the best individual algorithm [5].
In a classical adaptive system, the target is to minimize a cost
function dependent on the desired signal d[n] and on the in-
put signal x[n] that feeds the adaptive filter. In an AP convex
combination scheme, rather than using a single AP adaptive
filter we use two AP adaptive filters, each of them generating
a different output. The algorithm that determines the coeffi-
cients of both filters (see w[n] and w;[n] in Fig. 3) is given
by the AP algorithm (9). Taking into account the output of
both filters, y;[n] and y;[n] at time n, we obtain the output of
the parallel filter as

yln] = Afnlyi[n] + (1 = A[n])y2[n],

being A[n] a mixing parameter in the range (0, 1) that con-
trols the combination of the two filters at each iteration, and
comes from

(10)

1
1l

Aln] (1)
where a[n] is updated in order to minimize the instantaneous
square error of the overall filter, J[n] = e[n]* = (d[n] — y[n])?,
by using the gradient descent method [5]. Thus, the update
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Figure 3: Block diagram of the convex AP scheme

equation for a[n] is given by

aln+ 1] = aln] — £VJ|n]

= aln] + paelnl(ealn] — s [)A [ (1 = 2ln]), 1P
being
dA[n] 01— Al
dal =l =200). (13)

Moreover ej[n] and e;[n] are the output error signals of the
component filters, and L, is a step-size parameter that control
changes in a[n] from one iteration to the next. Its correct ad-
justment depends on some characteristics of the system such
as the step sizes of adaptive filters or the input signal. On the
other hand, the update of a[n] at each iteration tries to extract
the best properties of combined filters. The rule to determine
the optimum combination is not trivial and different schemes
have been previously proposed (see e.g. [6]).

It is clear that this AP combination approach involves a
computational burden higher than the classic adaptive filter,
but in general this complexity is not twice the complexity
of the simple AP algorithm because the parallel combina-
tion usually involves an AP algorithm of low order (with a
small computational load). Moreover, in the typical case in
which both algorithms have the same number of filter coeffi-
cients, as we assume in this work, they could share the data
buffers for the desired and reference signals, further reducing
memory and complexity requirements of the combination. It
should also be noted that the implementation of the AP al-
gorithm implies a matrix inversion (see (9)) that turns out to
be the main computational burden of the algorithm. Never-
theless some iterative strategies [9] already proposed, such
as the Levinson-Durbin recursion [10], could be applied in

order to reduce the complexity of the convex AP algorithm.
The applied iterative method efficiently provides the inverse
of a matrix of N order from the inverse matrix of N — 1 order.
Therefore computation of matrix inversions for the AP al-
gorithm with low order does not involve any additional cost
since it is embedded in the calculation of the inverse ma-
trix of the higher order AP algorithm. Table 1 evaluates the
complexity of the considered algorithms. It illustrates the
number of multiplications required by the convex AP and the
standard AP component filters for the general case and also
for a typical case (L =45, Ny = 1 and N, = 10). It can be
seen that the computational complexity of the convex AP al-
gorithm for Ny = 1 and N, = 10 is much higher than that of
single AP algorithm for N; = 1, but only slightly more com-
plex than single AP with N, = 10.

From what has been said, it can be deduced that the con-
vex AP algorithm reduces the transient period before the al-
gorithm converges and achieves a good steady-state MSE. To
obtain this we combine the better convergence performance
of a high order AP algorithm with the better steady-state per-
formance of an AP algorithm with a low N order. In case of
rapid transitions in the desired signal, the convex AP combi-
nation should follow changes in the signal without worsening
its steady-state performance.

4. SIMULATION RESULTS

In order to test the performance of the proposed parallel com-
bination of AP algorithms as an alternative to the commonly
applied single AP algorithms some simulation results have
been obtained. Two qualities have been considered: conver-
gence speed and the steady-state MSE. Convergence is de-
fined as the ratio between the instantaneous estimated power
of the error signal and the instantaneous estimated power of
the desired signal, expressed in decibels. Several simula-
tions have been carried out using a uniform random signal of
zero mean and variance ze = 1 to produce the input signal
x[n]. The desired signal has been generated by filtering the
input signal through a moving average (MA) filter of order
50 whose coefficients have been randomly chosen. In order
to better estimates the signal power, the algorithms were run
1000 times, each with 10000 iterations. Two AP algorithms
with the same step sizes (u; = pp = 0.001), and adaptive
filters of 45 coefficients have been used as the filter compo-
nents. Moreover, i, was set to 1.

Fig. 4 illustrates the convergence curves of the convex
AP approach (combining an AP algorithm for N = 10 and
the AP for N = 1 (NLMS)) and comparing it with the conver-
gence curves of the two single AP algorithms independently
working. As can be seen, the combination approach presents
the fast convergence of the rapid AP algorithm and the low
steady-state MSE of the AP algorithm for N = 1.

Performance of AP combination scheme has also been
studied if there are changes of either the plant or the in-
put signal. Thus the experiment has been carried out using
the same configuration as before, but the variance of the in-
put signal and the plant were varied during the experiment.
Changes were performed every 10000 samples and the al-
gorithms were run during 40000 iterations. That means the
algorithms should converge four times. As it can be seen in
Fig. 5 the convex AP approach behaves as well as the best
component filter. In the transient periods it follows the faster
AP algorithm and once it has reached the steady-state follows
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Algorithm Multiplies per iteration Typical case
AP filter (N = 1) 2L+ N}(L+1)+2N,L+O(N; /2) 226.5
AP filter (N, = 10) 2L+ N3 (L+1)+2N2L+O(N3 /2) 6090

Convex AP 4L+ NHL+1)+N3(L+ 1)+ (N, +N2)L+ O(N; /2) + L(Ny +N2) + 5 6321

Table 1: Number of multiplications per iteration of the AP component filters and of their convex AP combination approach
for the general case and also for a typical case (L =45, Ny = 1 and N, = 10).
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Figure 4: Convergence curves of the AP component filters
(for N =10 and N = 1) and of their convex AP combination
approach.

the slow AP algorithm.

In order to improve even more the steady-state perfor-
mance of the convex AP approach, we can think of combin-
ing a high order AP filter with an LMS adaptive filter, which
exhibits a lower steady-state MSE. Thus, this hybrid con-
vex approach reduces even more the final MSE but with a
moderate convergence speed. Fig. 6 shows the convergence
curves of the hybrid convex approach (AP filter for N = 10
and LMS filter), the convex AP approach (two AP filters for
N =10and N = 1), and the different single component filters
(LMS, AP for N=10and N = 1).

5. CONCLUSIONS

This work presents a new approach that improves the per-
formance of AP adaptive filters. The applied scheme, previ-
ously introduced for LMS filters, uses two AP adaptive filters
that are independently adapted using its own error signal and
mixes their outputs to improve the performance of the overall
filter. The purpose of the AP combination scheme is to ob-
tain an AP adaptive filter with fast convergence speed (using
an AP adaptive filter with high projection order) and small
steady-state MSE (being the other component filter an AP
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Figure 5: Convergence curves of the AP component filters
(for N =10 and N = 1) and of their convex AP combination
approach for non-stationary condition.

algorithm with low projection order). This new scheme is
especially suitable when trying to achieve high speeds but
without sacrificing steady-state MSE performance. More-
over, it has been shown that, as an alternative to the convex
AP combination scheme, a hybrid convex approach using a
high order AP algorithm and an LMS algorithm can be con-
sidered, reducing even more the MSE but at the expense of a
moderate loss in convergence speed.

Simulation results in stationary and non-stationary condi-
tions have validated the convex AP scheme proposed. So, in
case of rapid transitions in the desired signal, the convex AP
combination follow changes in the signal without worsening
its steady-state performance.

Further research suggests the implementation of convex
AP schemes in real-time applications that require good con-
vergence performance such as sound reproduction or control.
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