
A GENERALIZED CONTINUED FRACTION-BASED ASYNCHRONOUS STREAM
CIPHER FOR IMAGE PROTECTION

A. MASMOUDI1,2, W. PUECH2, and M.S. BOUHLEL1

1Research Unit: Sciences and Technologies of Image and Telecommunications
Higher Institute of Biotechnology, Sfax TUNISIA

2Laboratory LIRMM, UMR 5506 CNRS University of Montpellier II
161, rue Ada, 34392 MONTPELLIER CEDEX 05, FRANCE

atef.masmoudi@lirmm.fr william.puech@lirmm.fr medsalim.bouhlel@enis.rnu.tn

ABSTRACT

In this paper, we are particulary interested by image pro-
tection. The conventional encryption standard may be not
applicable to images, due to the digital images properties
which are characterized with some intrinsic features such as
highly pixel redundancy and correlation. We propose a new
asynchronous stream cipher based on generalized continued
fraction (GCF). The proposed scheme is resistant to statis-
tic attack, differential attack and some other known attacks.
Experimental results prove that our scheme is efficient and
secure.

1. INTRODUCTION

With the advancements of communication technologies and
the fascinating developments in digital image processing, the
real-time secure image transmission over public networks
such as the Internet and through wireless networks need to
be secure. Thus, to make use of the communication infras-
tructure already developed and to maintain the secrecy, cryp-
tographic techniques need to be applied [1, 2]. Cryptographic
approaches are therefore critical for secure multimedia con-
tent storage and distribution over open networks such as the
Internet and wireless networks.

In this paper, we are particulary interested by image pro-
tection. The conventional cryptographic, such as DEA, AES
and RSA may not be good candidates, especially for fast and
real-time communication applications. In recent years, sev-
eral stream cipher methods have been proposed. Some of
them are synchronous like the chaos-based image encryption
system with stream cipher structure [13, 16, 21, 22, 7]. Other
are asynchronous, and the advantage of these techniques is
that if ciphertext digits are dropped or added, then the de-
cipher stream can self-heal by re-synchronization, and re-
sult errors are limited in a few plaintext digits. Furthermore,
asynchronous stream ciphers have statistically a better diffu-
sion than synchronous stream ciphers. In this paper, a new
asynchronous stream cipher based on the use of the general-
ized continued fraction (GCF) to modify the pixel’s value is
proposed.

The rest of this paper is organized as follows. In Sec-
tion 2, we overview the continued fraction method. In Sec-
tion 3 the proposed image encryption scheme based on GCF
is presented and discussed. Performances and cryptanalysis
of the new proposed scheme for image encryption are studied
in Section 4. Finally, Section 5 concludes the paper.

2. CONTINUED FRACTION

A continued fraction [8, 14, 17, 20, 18] refers to all expres-
sions of the form:

x = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

, (1)

where ai (i > 0) are the partial numerators, bi the partial de-
nominators, and the leading term b0 is the so-called whole
or integer part of the continued fraction. Note that the par-
tial numerators and the partial denominators can assume ar-
bitrary real or complex values. There are other notations for
a continued fraction in more or less common use. One conve-
nient way to express a generalized continued fraction looks
like this:

x = b0 +
a1

b1+
a2

b2+
a3

b3+
. . . . (2)

Pringsheim wrote a generalized continued fraction as fol-
lows:

x = b0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ . . . . (3)

In this paper we propose to use the following notation:

x = b0 +K∞
i=1

ai

bi
, (4)

where the K stands for Kettenbruche, the German word for
continued fraction. A simple continued fraction is a contin-
ued fraction where all the value ai = 1:

x = b0 +K∞
i=1

1
bi

. (5)

Theorem 1 Let fn denote the result of evaluating equa-
tion (1) with coefficients through ai and bi. Then:

fn =
An

Bn
, (6)

where An and Bn are given by the following recurrence:

A−1 = 1 B−1 = 0
A0 = b0 B0 = 1

A j = b jA j−1 +a jA j−2 B j = b jB j−1 +a jB j−2
j = 1, · · · ,n

The fractions (6) are referred to as general convergents.
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Continued Fractions [6] have become used in various
areas. For exemple, they have been used for computing
rational approximations to real numbers and for solving
various well known equations. R. M. Corless, in his
paper [10], presents the connection between chaos theory
and CF. The process of generating successive fractional
parts of a real number is given by a the Gauss map [11]
which is a non-linear equation. Gauss presents the following
map from [0,1) to [0,1), called Gauss map, to find the CF
representation of a real number:

G(x) =
{

0 if x = 0
1
x mod 1 otherwise (7)

The notation ”mod 1” means taking the fractional part. The
operation of generating the infinite list of CF representation
from a real number using Gauss map is a chaotic process.
The best general method for evaluating continued fractions
seems to be the modified Lentz’s method [12]. In detail,
the modified Lentz’s algorithm is presented in algorithm (1),
where T h is a threshold related to the floating-point preci-
sion.

Algorithm 1
1: begin
2: f0← b0
3: if (b0 = 0) then
4: f0← tiny
5: end if
6: C0← f0
7: D0← 0
8: for j← 1, · · ·n do
9: D j← b j +a jD j−1

10: if (D j = 0) then
11: D j← tiny
12: end if
13: C j← b j +a j/C j−1
14: if (C j = 0) then
15: C j← tiny
16: end if
17: D j← 1/D j
18: ∆ j←C jD j
19: f j← f j−1∆ j
20: if (|∆ j−1|< T h) then
21: exit
22: end if
23: end for
24: end

The algorithm (1) assumes that you can terminate the
evaluation of the continued fraction when | f j− f j−1| is suf-
ficiently small. There is at present no rigorous analysis of
error propagation in Lentz’s algorithm. However, empirical
tests suggest that it is at least as good as other methods.

3. PROPOSED ENCRYPTION SCHEME

Assuming that a gray scale plain image and its corresponding
cipher image are represented by X = {X1, · · · , ,XN} and Y =
{Y1, · · · , ,YN}, respectively. N is the number of pixels in both
original and encrypted image. Each element of X and Y is an
8−bit value representing the gray level of that pixel.

Algorithm 2
1: begin
2: for j← 1, . . . ,N do
3: S← 0
4: for α ← 1, . . . ,k div p do

5: Rα ← K p
i=1

Yj−p(α−1)+i +1
cp(α−1)+ i +1

6: S← S +Rα

7: end for

8: Yj← X j⊗ (
5

∑
i=1

(d1,id2,id3,i)s) mod 256

9: end for
10: end

Let K be a key of length k bytes Ci, k = C1, C2, · · · , Ck.
The unit of encryption is the pixel (1 byte). The proposed
encryption scheme consists in the fact that for each pixel of
the plain image, the encryption value depends upon the orig-
inal pixel, the value of the key K, and k pixels previously
encrypted. For each pixel Xi of the original image, we cal-
culate the value of the pixel Yi of the encrypted image using
the algorithm 2 with j ∈ [1, · · · , N] where N is the number of
pixels in both original and encrypted image, k is the length
of the key, α ∈ [1, · · · , k div p] where p is the number of Ci
and Yi used to form a generalized continued fraction with the
partial numerators are Yi and the partial denominators are Ci.
Rα is the result of evaluation of the continued fraction using
the algoritm 1 and S is the sum of all Rα .

The sum S is a double value and we choose its first 15
significant digits, S = 0.d1d2d3 . . .d15. Divide the 15 digits
into five integers with each integer consisting of three digits
(d1,id2,id3,i)s , i ∈ [1 · · ·5].

Next we propose to calculate the sum of these integers
5

∑
i=1

(d1,id2,id3,i)s, do mod 256 operation and do XOR opera-

tion of the generated byte with one byte of pixel Xi from the
original image. Finally, out put the calculation result Yi to the
encrypted image.

In Section 4, the proposed stream cipher is analyzed us-
ing different security measures. These measures include vi-
sual test, key sensitivity test, histogram analysis, correlation
analysis of adjacent pixels and differential analysis.

4. EXPERIMENTAL ANALYSIS

In this section, we present some security analysis of the
proposed image encryption scheme, including the most
important ones like key sensitivity test, statistical analysis,
and differential analysis [9, 5].

4.1 Visual testing
A number of images are encrypted by the proposed
method, and visual test is performed. Three examples
are shown in Fig.1 (a), (c) and (e), where each image
is in 8-bit grey-level with 256 × 256 pixels. Fig.1 (a)
is the Lena plain-image, Fig.1 (c) is a black image with
128× 128 white bloc and Fig.1 (e) is a medical image.
All images were encrypted with the encryption key K =
A0DEACB6A2B0401DB5F076CC277ABC4A expressed in
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hexadecimal format and consists of a 128 bits. By compar-
ing the original and the encrypted images in Fig. 1, there is
no visual information observed in the encrypted images. The
encrypted images are visual unknowable with a big differ-
ence from original images.
The encrypted image should be greatly different from its
original form. there are two measures using to quantify the
above requirement, noted NPCR and UACI [3, 4].
Let C1(i, j) and C2(i, j) be the ith row and jth column pixel
of two images C1 and C2. We define a two-dimensional array
D, having the same size as C1 and C2.
• NPCR (Number of Pixel Change Rate): The NPCR is

used to measure the number of pixels in difference of two
images. The NPCR can be defined as

NPCR =
∑i, j D(i, j)

W ×H
×100%, (8)

where W and H are the width and height of the image
and D(i, j) is defined as follows:
If C1(i, j) = C2(i, j) then D(i, j) = 1, otherwise
D(i, j) = 0.

• UACI(Unified Average Changing Intensity): The UACI
measures the average intensity of differences between
the two images. The UACI is defined as

UACI =
1

W ×H

[
∑
i, j

|C1 (i, j)−C2 (i, j) |
255

]
×100%. (9)

It is clear that in order to resist difference attack, the
NPCR value should be small enough, and the UACI value
should be large enough to a ideal cipher system. Experi-
mental results for NPCR and UACI between original and en-
crypted image are shown in Table 1.

Table 1: Pixel difference between original and encrypted im-
age

test item test results
NPCR 0.4150
UACI 30.0102

4.2 Statistical analysis
a) Histograms of encrypted images:

With a statistical analysis [19] of the original and en-
crypted images, their grey-scale histograms are shown in
Fig.2. The standard Lena image of size 256× 256 and
256 grey levels is employed in this test. It is shown in
Fig.2 (a). A 256×256 image composed of all black pix-
els (pixel value 0) is taken an example of homogenous
image Fig.2 (e). Fig.2 (d) and Fig.2 (h) show the his-
tograms of two encrypted images which are significantly
different from the histograms of the original images (Fig.
2 (b) and Fig. 2 (f) respectively) . From the Figure we
can see the uniformity distribution of gray-scale of the
encrypted images. Hence, the proposed algorithm does
not provide any clue to employ any statistical analysis
attack on the encryption image.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Image encryption experimental result:(a) Lena
plain-image, (b) encrypted image of (a), (c) black image, (d)
encrypted image of (c) , (e) medical image, (f) encrypted im-
age of (e).

(a) (b)

(c) (d)

Figure 2: Histograms of original images and encrypted im-
ages.

b) Correlation of adjacent pixels:
For an ordinary image, each pixel is usually highly cor-
related with its adjacent pixels either in horizontal, ver-
tical or diagonal directions. However, the proposed en-
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cryption scheme should generate a cipher image with low
correlation of adjacent pixels [22]. Taking the horizontal
correlation as an example, for each pixel of the image, a
duplet (xi , yi), can be found, where yi is the horizontal
adjacent pixel of xi. Obviously, there may be more than
one duplet for each pixel, and the horizontal correlation
coefficient is computed as Eq.13.

E (x) =
1
N

N

∑
i=1

xi (10)

D(x) =
1
N

N

∑
i=1

(xi−E (x))2 (11)

cov(x,y) =
1
N

N

∑
i=1

(xi−E (x))(yi−E (y)) (12)

γxy =
cov(x,y)√

D(x)
√

D(y)
(13)

where N is the total number of duplets (xi,yi) obtained
from the image, and E(x) and E(y) are the mean val-
ues of xi and yi, respectively. Table 2 shows all the three
correlation coefficients of Lena image and those of its en-
crypted image. Fig. 3 shows the correlation distribution
of two horizontally adjacent pixels in the plain-image and
that in the ciphered image. These correlation analysis
proves that the our encryption algorithm satisfy zero co-
correlation.

Table 2: Correlation coefficients of adjacent pixels in the two
images

plain-image ciphered image
horizontal 0.9411 0.0028
vertical 0.9702 0.0005
diagonal 0.8960 -0.0004

4.3 Key sensitivity test
According to the basic principle of cryptology, a cryptosys-
tem should be sensitive to the key. Thus, we propose the
following tests [15].
a) Assume that a 128-bits ciphering key is used. A typical

key sensitivity test has been performed, according to the
following steps:
First, a 256 × 256 Lena plain-image
is encrypted by using the test key
A0DEACB6A2B0401DB5F076CC277ABC4A.
Then, the least significant bit of the key is
changed, so that the original key becomes, say
A0DEACB6A2B0401DB5F076CC277ABC4B in this
example, which is used to encrypt the same image.
Finally, the above two ciphered images, encrypted by the
two slightly different keys, are compared. The numerical
result shown in Table 3 demonstrating that the image
encrypted by the first key and the image encrypted by
the second key have 99.58% pixels different from each
other, although there is only one bit difference in the two
keys. Fig. 4 shows the test result.

Correlation of horizontal adjacent two pixels for original image

Pixel gray value on location (x,y)
(a)

Correlation of horizontal adjacent two pixels for encrypted image

Pixel gray value on location (x,y)
(b)

Figure 3: Correlations of two horizontally adjacent pixels
in the plain-image and in the cipher-image: (a) correlation
analysis of plain-image, (b) correlation analysis of cipher-
image.

(a) (b)

Figure 4: Key sensitivity test 1: a) Encrypted image with
key = A0DEACB6A2B0401DB5F076CC277ABC4B, b) Dif-
ference between the two encrypted images (a) and Fig. 1.b.

Table 3: Pixel difference between image encrypted by keys
with 1-bit difference

test item test results
NPCR 0.4120
UACI 33.4578

b) In addition, to testing with slightly different en-
cryption keys, decryption using key with only
1-bit difference is also performed. Fig. 5
clearly shows that the image encrypted by the
key A0DEACB6A2B0401DB5F076CC277ABC4A
is not correctly decrypted by using the key
A0DEACB6A2B0401DB5F076CC277ABC4B there,
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which has only one bit difference between the two keys.
Thus, having a perfect approximation of the encryption
key makes decryption impossible.

(a) (b)

Figure 5: Key sensitivity test 2: c) Decrypted image with
key = A0DEACB6A2B0401DB5F076CC277ABC4A,
d) Decrypted image with key =
A0DEACB6A2B0401DB5F076CC277ABC4B.

5. CONCLUSION

In this paper, the well-known generalized continued fraction
has been used to design a secure symmetric image encryption
scheme. We have detailed some numerical analysis of our ap-
proach. The experimental tests which have been performed
demonstrating the high security of the new image encryption
scheme. This scheme can be used for real time Internet im-
age encryption and transmission application.
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