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ABSTRACT
A typical concept-detection problem is characterised by greatly dis-
proportionate sizes of the populations of training samplesin the
concept and anti-concept classes. In many cases, the population
of anti-concept (negative) examples outnumber the conceptexam-
ples. In this paper, an inverse random under sampling methodis
proposed to solve this imbalance problem. By the proposed method
of inverse under sampling of the anti-concept class we can construct
a large number of concept detectors which in the fusion stagefacili-
tate a fine control of both false negative rates and false positive rates.
In this method the main emphasis in learning the discriminant func-
tions is on the concept class, leading to an almost perfect separation
of the two classes for each detector. The proposed methodology is
applied to commonly-used video and image collection benchmarks:
Mediamill and Scene datasets. The results indicate significant per-
formance gains. For some concepts, the improvement in the average
precision is by several orders of magnitude, and the mean average
precision is 12% and 17% better for Mediamill and Scene datasets
respectively when compared with conventionally trained logistic re-
gression classifier.

1. INTRODUCTION

The image/video database retrieval problem involves finding in the
database, instances of multimedia content that is similar to the con-
tent of interest, specified by the user. The required contentcan be
specified by example, or it can be defined abstractly in terms of con-
cepts. In the former case we refer to the retrieval problem ascontent
based retrieval, and in the latter case asconcept-detection. In this
paper we shall focus on the latter variant where it is assumedthat
for each concept we have a set of representative examples (images).
A machine learning algorithm is then used to construct a model of
the concept class that can successfully discriminate concept samples
from negative (anti-concept) instances.

Mathematically, the concept-detection problem can be formu-
lated as either one class or conventional two-class patternrecogni-
tion problem. In the former case we build a generative model of
the concept class and the concept-detection then involves testing
the hypothesis that an unknown image is consistent with the model,
i.e. could have been generated by it. The alternative is to view the
concept retrieval as a two-class problem where the second class is
represented by negative samples, i.e. images that do not contain the
specified concept. The problem can be solved using generative or
discriminative models learnt using the training data.

In many practical situations the number of examples repre-
senting the concept class is very limited. This precludes building
a reliable generative model and, in consequence, the approaches
which rely on such models are inappropriate. Thus most of the
image/video database methods in the literature adopt the two-class
formulation and, as the rest of this paper, resort to discriminative
machine learning solutions. For example, in [3], Support Vector
Machines (SVMs) are used in a hierarchical manner for image an-
notation and retrieval. In [15], the goal is to detect the presence
of 101 semantic concepts in videos. The detection of each con-
cept is formulated as a binary classification problem. In this dis-
criminative setting, again SVMs are employed. [8] considers the

situation where each image/video can take multiple class labels,
i.e., the multi-label problem. However, the underlying probabilistic
model is still discriminative. More examples of using discrimina-
tive machine learning techniques for image/video classification can
be found in [5, 7, 9, 13].

A typical concept-detection problem is characterised by greatly
disproportionate sizes of the populations of training samples in the
concept and anti-concept classes. For the negative class itis very
easy to compile a large training set, which is invariable constituted
by fusing the training samples of all the other concept classes to
form the negative class. With this approach, the relative sizes of the
concept class and negative sample class training sets can differ by
several orders of magnitude. This huge disparity in the training set
cardinalities poses a challenging machine learning problem when
designing the concept detectors.

The problem of disproportionate class size is not unique to im-
age/video retrieval. In has been encountered in other applications
in pattern recognition and statistics. A number of different sam-
pling strategies have been suggested to deal with it. The possibilities
explored in the literature include stratified sampling [2] where the
same number of training samples is drawn for each class. As the
negative class in stratified sampling becomes under sampled, this
approach opens the possibility of drawing a large number of differ-
ent anti-concept training sets and designing multiple classifiers that
can then be fused to improve the detection performance.

Classifier designs based on disproportionate training setssizes
manifest themselves in exhibit conditional classificationerrors that
are dependent on the population size probabilities. We shall argue
that in order to achieve good retrieval performance, as measured in
terms ofaverage precision, it is essential to provide the designer
with a very fine control over both false positive rate (incorrectly
detecting negative samples as belonging to the concept class) and
false negative rate.

In this paper, a novel inverse random under sampling (IRUS)
method is proposed for the class imbalance problem in which the
ratio of the respective training set cardinalities is inversed. The idea
is to severely under sample the negative class (majority class), thus
creating a large number of distinct negative training sets.For each
training set we then find a linear discriminant which separates the
positive class from the negative samples. As the number of positive
samples in each training set is greater than the number of negative
samples, the focus in machine learning is on the positive class and
consequently it can invariably be successfully separated from the
negative training samples. Thus each training set yields one clas-
sifier design. By combining the multiple designs, we construct a
composite between the positive class and the negative class. We
shall argue that this boundary has the capacity to delineatethe pos-
itive class more effectively than the solutions obtained byconven-
tional learning.

The proposed methodology is applied to an image database and
a video database involving 6 and 39 concepts respectively. We use
standard benchmarking sets, namely the Mediamill Challenge video
database [15] and Scene database [17, 3], for which the stateof
the art performances are well documented in the literature and fea-
tures are pre-computed and available on line. We validate the ad-
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vocated approach and demonstrate that it yields significantperfor-
mance gains. In the case of some concepts the improvement in the
average precision is by several orders of magnitude, and themean
average precision is 12% and 17% better for Mediamill and Scene
datasets respectively.

The paper is organised as follows. Section 2 provides brieflyre-
view several class imbalance methods followed by proposed inverse
random under sampling method (IRUS) in section 3. Section 4 de-
scribes the experimental setup followed by results and discussion in
Section 5. The paper is drawn to conclusion in Section 6.

2. RELATED WORK

The most commonly used methods to handle imbalanced data sets
involve under sampling or over sampling of the original datasets.
Random over sampling and random under sampling are the most
popular non-heuristic methods that balance class representation
through random replication of the minority class and randomelim-
ination of majority class examples respectively. There aresome
limitations of both random under sampling and random over sam-
pling. For instance, under-sampling can discard potentially useful
data while over-sampling can increase the likelihood of overfitting
[1]. Despite these limitations, random over sampling in general is
among the most popular sampling techniques and provides compet-
itive results when compared with most complex methods [1, 11].

Several heuristic methods are proposed to overcome these
limitations including Tomek links, Condensed Nearest Neighbour
Rule (CNN), One-sided selection and Neighbourhood Cleaning rule
(NCL) are several well-known methods for under-sampling [10]
while Synthetic Minority Over-Sampling Technique (SMOTE)is
a well-known method for over-sampling technique [6]. The main
idea in SMOTE is to generate synthetic examples by operatingin
the “feature space” rather than the “data space” [6]. The minor-
ity class is oversampled by interpolating between several minority
class examples that lie together. Depending upon the amountof
over-sampling required, neighbours from thek nearest neighbours
are randomly chosen. Thus, the overfitting problem is avoided and
the decision boundaries for the minority class are spread further into
the majority class space [1].

Liu et al [11] and Chan et al [4] examine the class imbal-
ance problem by combining classifiers built from multiple under-
sampled training sets. In both approaches, several subsetsfrom
the majority class with each subset having approximately the same
number of samples as the minority class are created. One classifier
is trained from each of these subsets and the minority class and then
the classifiers are combined. Both these approaches differ in group-
ing multiple classifiers and in creating subsets from the majority
class.

3. PROPOSED INVERSE RANDOM UNDER SAMPLING
METHOD (IRUS)

In this section, we will discuss the proposed inverse randomunder
sampling (IRUS) method. For convenience, we refer to the minority
class as the concept class and the majority class as the anti-concept
class. A conventional training of a concept detector using adata
set containing representative proportions of samples fromthe con-
cept and anti-concept classes will tend to find a solution that will
be biased towards the larger class. In other words, the probabil-
ity of misclassifying samples from the anti-concept class will be
lower than the probability of error for the concept class. However,
the actual performance will be determined by the underlyingover-
lap of the two-classes and the class prior probabilities. Thus, we
need to control the probability of misclassification of samples from
the anti-concept class to achieve the target performance objectives.
This may require setting the operating point of the detectorso as to
achieve false positive rate that is lower than what would be yielded
by conventional training. This could be achieved by biasingthe
decision boundary in favour of the anti-concept sample error rates
using threshold (off set) manipulation. Alternatively, wecould in-
crease the imbalance between the number of samples from the two-

classes artificially by eliminating some of them. The lattersolution
is not very sensible, as we would be depleting the class whichis
naturally underrepresented even further. The former solution would
lead to a substantial increase in the false negative rate.

The problem of learning decision functions in situations involv-
ing highly imbalanced class sizes is sometimes mitigated bystrati-
fied sampling. This aims to create a training set containing acompa-
rable numbers of samples from all the classes. Clearly, in stratified
sampling the training set size would be determined by the number of
samples in the underrepresented class. This would lead to a drastic
subsampling of the anti-concept class with the resultant reduction in
the accuracy of the estimated class boundary. This loss of accuracy
can be recovered by means of multiple classifier methodology. By
drawing randomly multiple subsets from the anti-concept class data
set, each adhering to the stratified sampling criteria, we can design
several detectors and fuse their opinions. For a typical imbalance of
priors of say 100 : 1, the number of the designs would be too low
to allow an alternative approach to controlling false positive error
rate and one would have to resort to the biasing methods discussed
earlier.

Suppose we take the data set manipulation to the extreme and
inverse the imbalance between the two-classes. Effectively we
would have to draw sample sets from the anti-concept class ofsize
proportional toP2 whereP is the prior probability of the concept
class. This would lead to very small sample sets for the anti-concept
class and therefore, a poor definition of the boundary between the
two-classes. Nevertheless, the boundary would favour the concept
class. Also, as the number of samples from the negative classis
very small in relation to the dimensionality of the feature space,
the capacity of each boundary to separate the classes fully is high.
Moreover, as the number of samples drawn is proportional toP2, the
number of independent sets that can be drawn will be of the order of
1
P2 . This large number of designs could then be used for controlling
the false positive rate using a completely different mechanism. This
contrasts with the complex task of biasing a decision boundary in
high dimensional space.

Concept Class

Anti−Concept Class

Figure 1: Schematic diagram showing each boundary partitions the
training data set by a hyperplane tangent to the surface of the vol-
ume occupied by the concept class.

Interestingly, there is another important benefit of the theIRUS
method. As the number of samples forming the negative class is
very small, each detector design will be significantly different. This
will produce highly diverse detectors which are required for effec-
tive classifier fusion. The fused decision rule achieves better class
separation than a single boundary, albeit estimated using more sam-
ples. This is conveyed schematically in Figure 1. Each boundary
partitions the training data set by a hyperplane tangent to the sur-
face of the volume occupied by the concept class. It is the union
of these tangent hyperplanes created by fusion, which constitutes a
complex boundary to the concept class. Such boundary could not
easily be found by a single linear discriminant function. Ifone re-
sorted to nonlinear functions, the small sample set training would
most likely lead to a over fitting and, consequently, to poor gen-
eralisation on the test set. Figure 2 provides supporting evidence
for the above conjecture. The histogram of discriminant function
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values (i.e. distance from the decision boundary) generated by one
thousand classifiers designed using the inverse imbalance sampling
principle for a single negative class test sample (blue bar)shows
many of the classifiers scoring positive values which lie on the con-
cept class side of the boundary. This is expected for more than half
of the classifiers, as the negative sample will lie beyond theconcept
class, but nevertheless on the same side as the concept class. In
contrast, discriminant function values for a single positive class test
sample show that most of the classifiers scoring positive values lie
on the concept side of the boundary.
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Figure 2: Histogram of Discriminant Function generated by one
thousand classifiers.

In summary, we propose a classifier design approach which is
based on an inverse imbalance sampling strategy. This is accom-
plished by combining the outputs of the multiple concept detectors
in the fusion stage and thus allows a very accurate definitionof the
boundary between the concept class and the anti-concept class.

The pseudo code of IRUS is shown in Algorithm 1.SandSets
are user specified parameters.S controls the number of negative
samples drawn at random in each model with values ranging from 1
to Nc−1. Setsdetermine the number of models or classifiers with
values greater thanNa/S. For each setΞ′

a paired withΞc we learn
a modelhi . For each modelhi , the probability of unseen instances
belonging to concept classDc is calculated. The probabilities from
all models are added. The output is a probability setΞp of the test
instances belonging to concept class.Ξp is then used to calculate
the performance measure discussed in Section 4.3.

Algorithm 1 PseudoCode for Inverse Random Under Sampling
(IRUS)
Require: Ξc: Training set of concept patterns with cardinalityNc

Ξa: Training set of anti-concept patterns with cardinalityNa
Ξt : Test set with cardinalityNt
S: Number of samples fromΞa for each Model
Sets: Number of classifiers

Ensure: Ξp: Probability set of Test instances belonging to concept
class
Ξp ⇐ 0
for i = 1 toSetsdo

Ξ′
a ⇐ Randomly pickSsamples without replacement fromΞa

Ts ⇐ Ξ′
a +Ξc

Train base classifierhi usingTs samples
for j = 1 toNt do

Dc ⇐ Probability distribution of Test SampleΞt j belonging
to concept class fromhi
Ξp j ⇐ Ξp j +Dc

end for
end for

4. EXPERIMENT DESIGN

4.1 Datasets

The effectiveness of the proposed classifier is tested on Mediamill
challenge [15] and Scene [3] benchmarks. The mediamill challenge
by Snoek et al [15] provides an annotated video dataset, based on
the training set of NIST TRECVID 2005 benchmark [14]. This
dataset consists of 86 hours of video, divided into a training set
(70% of the data or 30993 examples) and test set (30% the data or
12914 examples). On this dataset, the 39 LSCOM-Lite categories
are used [12, 16]. The feature vector used in these experiments con-
sists of 120 visual features and available on-line1 (Experiment1 in
mediamill challenge by Snoek et al [15]). In scene dataset [3, 17], 6
categories are used. This dataset is divided into 1211 training sam-
ples and 1196 test samples. The feature vector consists of 294 fea-
tures and available on-line2. Table 1 and 2 show the ground truths
in both Mediamill and Scene datasets. Detail description about how
these feature are computed can be found in [3, 15].

4.2 Benchmark Methods

Logistic Regression (LR) is used as the base classifier for the pro-
posed inverse random under sampling technique (IRUS). The IRUS
method is compared with the baseline performance based on the
SVM classifier withRBF kernel [15] and Hybrid Ensemble Boost-
ing Learning method (HMLB) reported in [17]. In addition, wehave
compared IRUS with sampling techniques Random Under Sam-
pling (RUS), Random Over Sampling (ROS) and SMOTE. For all
sampling techniques, LR is used as a base classifier. We have also
compared IRUS with ensemble techniques Bagging and AdaBoost
with decision tree (C4.5) as base classifier. The WEKA [18] imple-
mentation is used for LR, SMOTE, Bagging and AdaBoost.

4.3 Evaluation Measure

Average precision is standard image ranking measure and is used in
this paper. The average precision is a single-valued measure that is
proportional to the area under a precision-recall curve. This value is
the average of the precision over all relevant judged shots.This met-
ric combines precision and recall into one performance value. This
measure is computed from the ranking list of all the key frames in
the database established by ordering their similarities toa specified
concept. Average Precision for each concept (AP) is defined as

AP=
1
|R|

|R|

∑
k=1

ck (1)

whereR is the complete set of the positive samples in a test set and
the contributionck of thekth element in the ranking list is defined
as

ck = {
|R∩Mk|

k i f concepttrue
0 i f conceptnottrue

(2)

whereMk = {i1, i2, ...., ik} is a ranked list of the topk retrieved sam-
ples from the test set.

5. RESULTS AND DISCUSSION
5.1 Experiment1: Video Benchmark

Table 1 shows the average precision (AP) for each concept using
various methods for the mediamill challenge. From the results, it is
observed that IRUS method has highest performance in 15 out of 39
concepts. For concepts like animal, court, natural-disaster, police-
security, prisoner, screen, snow, and waterbody, improvement of
over 50% is achieved over LR and SVM. However for some con-
cepts, especially flag-usa and sky, there is decrease in performance.
This is explained by the fact that for these concepts, some anti-
concept samples are ranked very high; i.e. these samples always lie

1http://www.science.uva.nl/research/mediamill/challenge/
2http://mlkd.csd.auth.gr/multilabel.html
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Concept Ground Truth LR SVM [15] HMLB [17] RUS ROS SMOTE Bagg AdaBoost IRUS
Train (Nc) Test RBF S= N0.3

c
Court 63 39 0.069 0.093 0.000 0.004 0.026 0.048 0.047 0.061 0.189
Prisoner 103 28 0.005 0.047 0.000 0.003 0.006 0.005 0.007 0.048 0.137
Snow 126 68 0.054 0.085 0.108 0.011 0.024 0.042 0.152 0.131 0.170
Bus 132 83 0.011 0.013 0.000 0.008 0.010 0.011 0.009 0.013 0.011
Explosion 164 134 0.081 0.098 0.076 0.025 0.056 0.079 0.077 0.049 0.083
Charts 234 66 0.290 0.327 0.171 0.017 0.106 0.224 0.347 0.300 0.282
Boat 242 70 0.043 0.096 0.121 0.044 0.031 0.041 0.112 0.183 0.138
Desert 250 186 0.106 0.103 0.174 0.065 0.094 0.113 0.110 0.080 0.142
Natural Disaster 250 120 0.048 0.055 0.065 0.027 0.042 0.046 0.059 0.057 0.113
Flag USA 285 121 0.183 0.227 0.171 0.043 0.145 0.212 0.130 0.085 0.087
Police/Security 286 100 0.018 0.012 0.000 0.013 0.017 0.017 0.054 0.029 0.100
Aircraft 306 122 0.080 0.073 0.187 0.046 0.066 0.082 0.086 0.074 0.138
Weather Report 307 161 0.342 0.405 0.307 0.114 0.178 0.319 0.263 0.261 0.429
Animal 309 117 0.148 0.209 0.141 0.028 0.062 0.119 0.310 0.395 0.436
Maps 358 156 0.378 0.476 0.389 0.110 0.256 0.377 0.386 0.356 0.504
Truck 361 132 0.039 0.038 0.040 0.033 0.036 0.036 0.031 0.022 0.043
Screen 475 245 0.095 0.101 0.061 0.055 0.073 0.087 0.107 0.095 0.185
Office 485 226 0.076 0.077 0.282 0.056 0.065 0.079 0.077 0.064 0.108
Mountain 508 131 0.190 0.141 0.134 0.121 0.169 0.181 0.215 0.176 0.252
People Marching 597 533 0.261 0.228 0.332 0.208 0.245 0.297 0.178 0.165 0.205
Water Body 716 244 0.173 0.150 0.146 0.121 0.150 0.188 0.257 0.272 0.333
Corporate-Leader 797 168 0.018 0.016 0.000 0.016 0.018 0.019 0.016 0.015 0.019
Sports 1166 337 0.211 0.304 0.115 0.119 0.139 0.147 0.181 0.184 0.199
Vegetation 1198 599 0.215 0.183 0.191 0.193 0.192 0.197 0.161 0.131 0.179
Military 1283 850 0.242 0.217 0.250 0.226 0.236 0.241 0.182 0.152 0.239
Meeting 1405 627 0.245 0.257 0.272 0.223 0.233 0.234 0.198 0.163 0.233
Car 1509 766 0.232 0.252 0.253 0.188 0.208 0.222 0.250 0.233 0.241
Building 2126 1441 0.303 0.316 0.335 0.257 0.286 0.293 0.278 0.232 0.297
Road 2404 852 0.190 0.195 0.212 0.177 0.183 0.185 0.196 0.184 0.198
Government Leader 2899 1016 0.235 0.213 0.202 0.211 0.224 0.224 0.167 0.152 0.217
Sky 3339 1469 0.535 0.478 0.373 0.513 0.520 0.511 0.446 0.394 0.451
Crowd 3559 2082 0.519 0.480 0.397 0.505 0.513 0.517 0.454 0.414 0.454
Urban 3651 1136 0.217 0.222 0.197 0.204 0.211 0.205 0.242 0.215 0.223
Walking/Running 4219 2174 0.370 0.353 0.311 0.359 0.363 0.367 0.330 0.286 0.334
Studio 4234 1834 0.640 0.636 0.463 0.606 0.612 0.614 0.660 0.628 0.666
Entertainment 6088 1621 0.281 0.166 0.194 0.273 0.277 0.262 0.323 0.293 0.293
Outdoor 10130 4950 0.739 0.688 0.688 0.735 0.736 0.732 0.736 0.703 0.710
Face 19883 8055 0.897 0.895 0.712 0.898 0.897 0.895 0.881 0.876 0.895
People 24071 9798 0.941 0.831 0.830 0.942 0.941 0.941 0.930 0.918 0.937
MAP (Nc < 1000)) 0.123 0.140 0.132 0.053 0.085 0.119 0.138 0.133 0.187
MAP (Nc > 1000)) 0.412 0.393 0.353 0.390 0.398 0.399 0.389 0.362 0.398
Overall MAP 0.249 0.250 0.228 0.200 0.222 0.241 0.247 0.233 0.279

Table 1: Comparison of Average Precision with different methods for Mediamill data set.S= Number of negative samples used for each
classifier in IRUS (See Algorithm 1). The second and third columns show the Ground Truths withNc is the number of samples in the
concept class.

Concept Ground Truth (Nc) LR SVM HMLB [17] RUS ROS SMOTE Bagg AdaBoost IRUS
Train Test RBF S= N0.2

c
Mountain 196 235 0.829 0.896 0.526 0.812 0.807 0.839 0.884 0.866 0.888
Field 197 200 0.681 0.873 0.533 0.707 0.646 0.673 0.876 0.899 0.877
Fall Foliage 199 165 0.922 0.960 0.651 0.930 0.924 0.927 0.920 0.948 0.880
Urban 207 204 0.501 0.689 0.371 0.446 0.476 0.478 0.674 0.668 0.765
Beach 227 200 0.702 0.772 0.374 0.663 0.680 0.707 0.759 0.727 0.817
Sunset 277 256 0.488 0.562 0.349 0.437 0.491 0.509 0.566 0.586 0.610
MAP 0.687 0.792 0.467 0.666 0.671 0.689 0.780 0.782 0.806

Table 2: Comparison of Average Precision with different methods for Scene data set.
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on the positive side of the boundary. Overall, IRUS yields signifi-
cant performance gains. In the case of some concepts the improve-
ment in the average precision is by several orders of magnitude, and
the mean average precision is 12%, 11%, 22%, 39%, 26%, 16%,
13% and 20% when compared with LR, SVM, HMLB, RUS, ROS,
SMOTE, Bagging and AdaBoost respectively.

To show the effectiveness of IRUS especially for highly unbal-
anced concepts, we have divided all concepts in two clusters. One
cluster consists of concepts with less than 1000 training samples and
other cluster with greater than 1000 training samples. As clear from
Table 1, there is improvement of 52%, 34%, 41%, 251%, 119%,
57%, 40%, 49% when compared with LR, SVM, HMLB, RUS,
ROS, SMOTE, Bagging and AdaBoost respectively for highly un-
balanced concepts from the first cluster. For the second cluster, the
performance is almost similar in all methods with LR has highest
MAP. Since, the detection of each concept is formulated as a binary
classification problem, it is always possible to use separate classi-
fiers for different concepts. Thus, for concepts from secondcluster,
conventional learning like LR, SVM can easily be adopted.

5.2 Experiment 2: Image Benchmark

Table 2 shows the average precision (AP) for each concept using
various methods for the scene dataset. From the results, it is cleared
that the proposed method is significantly better in all concepts when
compared with LR, HMLB, RUS, ROS and SMOTE. This table also
indicates that when IRUS is compared with SVM, Bagging and Ad-
aBoost, performance varies for different object categories. For ex-
ample, SVM has higher performance in Mountain, AdaBoost per-
forms better in Field and Fall Foliage while IRUS performs higher
in Urban, Beach and Sunset. Overall, the mean average precision
(MAP) for IRUS is 17%, 2%, 72%, 21%, 20%, 17%, 3%, and 3%
when compared with LR, SVM, HMLB, RUS, ROS, SMOTE, Bag-
ging and AdaBoost respectively.

5.3 Discussion

The proposed inverse random subsampling method is very effec-
tive for image and video retrieval problems with highly unbalanced
data sets. The results clearly indicate that traditional sampling tech-
niques are not effective when dealing with highly unbalanced data
sets in the retrieval problems. When IRUS is compared with other
sampling methods RUS, ROS and SMOTE improvement of 251%,
119%, and 57% respectively is achieved for highly unbalanced con-
cepts (Cluster1 from Mediamill Challenge). The evaluationof run
time parameters (S andSetsSee Algorithm 1) are not shown due
to lack of space. For mediamill challenge,S= N0.3

c is used for all
concepts while for sceneS= N0.2

c is used. The other run time pa-
rameter,Setswhich determine the number of classifiers is equal to
1.5×Na/S for both data sets. In this paper, fusion is performed
through that the sum of scores obtained from individual classifiers.
It is part of our future research to investigate other ways ofcombi-
nation such as Fuzzy Integral, Dempster-Shafer etc to improve the
performance.

6. CONCLUSION

A novel inverse random under sampling (IRUS) method is proposed
in this paper to solve the imbalance problem in concept-detection.
By the proposed method we can construct a large number of
concept detectors which in the fusion stage facilitate a finecontrol
of both precision and recall. The main idea is to emphasise
learning the discriminant functions for the concept class,leading
to almost perfect separation of the two-classes for each detector.
The distinctiveness of IRUS is assessed experimentally using
image and video benchmarks. The results indicate significant
performance gains. For some concepts, the improvement in the
average precision is by several orders of magnitude, and themean
average precision is 12% and 17% better for Mediamill and Scene
datasets respectively when compared to conventionally trained
logistic regression classifiers. In this paper, logistic regression
is used as a base classifier. It would be interesting to see how
other well-known classifiers like NaiveBayes, SVM, KNN, LDA
behave when used as a base classifier in our proposed inverse under

sampling method.
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