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ABSTRACT

In this paper, we propose a time-frequency division multi-
plexing (TFDM) communications system for multiple users
which uses prolate spheroidal wave functions (PSWFs) as the
transmission basis. A hexagonal time-frequency lattice pro-
vides optimal packing of the data in a fixed time-bandwidth
support. We show that when using chirp modulation created
by fractional Fourier transform (FrFT) the resulting system is
robust to noise. The chirps having an instantaneous frequency
with the angle ofπ/3 with respect to the time sets a hexag-
onal lattice structure. The reconstruction of the data can be
done efficiently by windowing and filtering. We illustrate the
performance of the proposed TFDM system in the presence
of additive white Gaussian noise by means of simulations.

Index Terms— Time-frequency division multiplexing,
pulse shaping, prolate spheroidal wave functions, fractional
Fourier transform, nonuniform sampling.

1. INTRODUCTION

Higher transmission rates and demand for increased mobility
in wireless communications require new techniques that are
robust to noise, and to the time delay and the frequency
Doppler dispersions effects of the transmission channel.
Multicarrier techniques transmit by dividing data into par-
allel streams to be modulated by subchannels each having
a different carrier frequency. Orthogonal frequency division
multiplexing (OFDM) is a prime example of these techniques,
where mutual orthogonality in the frequency domain of the
outputs from each subchannel is ensured. The modulating
pulses must have a structure robust to the Doppler and delay
spread effects caused by the time-frequency dispersion of the
transmission channel [1]. There are methods to overcome
channel effects i.e., use of cyclic prefix or zero padding but
these methods degrade the system transmission rate. An
important feature of OFDM is its implementation with Fast
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Fourier Fransform (FFT) which not only provides efficiency
in its implementation, but also matches the assumed linear
time-invariant (LTI) nature of the channel since the eigen-
functions of LTI channels are the Fourier bases. However,
channels that display any frequency dispersion are not LTI
and their eigenfunctions are then rather approximated by
chirps [2].

Although orthogonality of the transmission bases is not
needed, their linear independence is. The transmission
pulses should have maximum concentration in the joint time-
frequency (T-F) domain. In conventional OFDM, each sym-
bol is transmitted using a rectangular pulse with an associated
sinc spectrum. Assuming an ideal channel, transmission of
data without interference is possible ensuring each subcarrier
is in the zeros of the other subcarriers. However, when the
channel is frequency dispersive, the orthogonality between
subcarriers is violated. Therefore, it is necessary to use other
pulses to avoid the spectral leakage associated with the sinc
spectrum. The search for the optimum pulse for transmis-
sion over dispersive channels is an active research area where
Nyquist pulses with raised cosine spectra, Hermitian pulses
and an optimized combination of Slepian sequences [3] are
among the proposed ones. Prolate spheroidal wave functions
(PSWFs) have maximum energy concentration within a given
time interval so they can be adjusted according to obtain
robustness to Doppler effects [4].

In this paper, we propose a multiplexing approach that
uses both time- as well as frequency-division multiplexing in
an optimal way, instead of only frequency division as in the
OFDM system. The chirp modulation will be implemented by
using the Fractional Fourier Transform (FrFT) [5, 6], which
has a computational complexity equivalent to that of the FFT.
Our transmitted signal consists of a set of chirps having in-
stantaneous frequencies with an angle ofπ/3 thus giving a
hexagonal lattice structure in the time-frequency plane. Chirp
modulation arises from the need to attain signal bases suit-
able for the analysis/synthesis of nonstationary signals [2, 7].
Such a structure allows an optimal packing of the modulated
data in the T-F space and reduces the T-F localization loss [8].
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The chirp modulation will be implemented by using the Frac-
tional Fourier Transform (FrFT) [5, 6], which has a compu-
tational complexity equivalent to that of the FFT. Moreover,
we consider non-uniform sampling and show that the PSWFs
not only provide appropriate pulses but also allow efficient
sampling and reconstruction

2. PRELIMINARIES

2.1. Prolate Spheroidal Wave Functions

The PSWFs{sm(t)}, 0 ≤ m ≤ M −1 are time-limited func-
tions and they display maximum energy concentration among
all time-limited functions within a given frequency band [4].
Defined on a time support−T/2 ≤ t ≤ T/2 and a desired
frequency band(−W,W ) which depends onT andM , the
PSWFs are connected with the sinc functionS(t) as eigen-
functions of the integral operator

λmsm(t) =
∫ T/2

−T/2

sm(τ)S(t− τ)dτ (1)

where{0 ≤ λm ≤ 1} are the corresponding eigenvalues mea-
suring the energy concentration ofsm(t) in (−W,W ).

2.2. Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) is a generalization
of the conventional Fourier Transform. Theath-order FrFT
of x(t) is defined as [6]

xa(t) =
∫

Ba(t, t′)x(t′)dt′ , 0 ≤ a < 4, (2)

where

Ba(t, t′) =
e−j(π sgn(a)/4+φ/2)

| sinφ|1/2
ejπ(t2 cot φ−2tt′ csc φ+t′2 cot φ)

is the transformation kernel,φ = aπ
2 andsgn(·) is the sign

function. The FrFT of ordera = a0 transforms a signal into
the a0

th-order fractional Fourier domain, which is oriented
by φ0 = a0π/2 with respect to the time axis in the counter-
clockwise direction [5, 6]. The FrFT domains corresponding
to a = 0 anda = 1 are the time and frequency domains, re-
spectively. Theath-order FrFT for0 < a < 1 interpolates
between the functionx(t) and its Fourier transformX(f).
The continuous FrFT given by equation (2) can be computed
from discrete samples ofx(t) using the fast computation al-
gorithm [6] withO(N logN) operations.

The FrFT rotates the Wigner distribution (WD) of the sig-
nal in the clockwise direction,

Wxa
(t, f) = R−φ {Wx(t, f)} , (3)

whereWx is the WD ofx(t) andWxa is the WD of frac-
tionally Fourier transformed signal, and the rotation operator
acting on the WD is

Rφ {Wx(t, f)} = Wx(t cos φ + f sinφ,−t sinφ + f cos φ) .

2.3. Nonuniform Sampling with PSWFs

In practice sampling is done nonuniformly where the sample
times vary at random around the uniform times. In this paper,
we assume stochastic jitter sampling of signals with a uniform
distribution. Accordingly, the samples are taken at times

t̂k =
Nn

Ns
kTn + ∆ 0 ≤ k ≤ M − 1 (4)

whereTn is the Nyquist sampling period, andNn/Ns ≥ 2 is
a sampling factor that allows signal reconstruction using the
PSWFs based sampling [10]. This sampling method leads to
reconstruction via the truncated projections of a time-limited
signal onto PSWFs basis. The random variable∆ is assumed

uniformly distributed in
[
−0.5Nn

Ns
Tn, 0.5Nn

Ns
Tn

]
.

3. TIME-FREQUENCY DIVISION MULTIPLEXING

In order to generate the chirp transmission basis, we obtain
first a set of bandpass PSWFs that are orthogonal in the fre-
quency domain each at carrier frequencies{ωm 0 ≤ m ≤
M − 1}. Given that the time durationT and the bandwidth
of the PSWFs can be assigned independently, the bandwidth
of each of these bandpass sequences can be chosen depend-
ing on the number of symbolsM we wish to transmit in the
overall assigned bandwidth. Ifs(t) is the smoothest of the M
PSWFs of lengthT and bandwidthW , the band-pass PSWFs
are then obtained by centeringS(ω) = F [s(t)] at frequencies
{ωm}, m = 0, · · · ,M − 1 corresponding to the M subchan-
nels. Given the high energy concentration ofS(ω), the or-
thogonality in frequency can be attained by letting the carrier
frequencies be separated at leastW .

The bandpass PSWFs defined for0 ≤ t ≤ T are given as

zm(t) = sm(t)ejωmt m = 0, · · · ,M − 1 (5)

whenM symbols are being sent. For a sequence of symbols
{di, i = 1, · · · ,M}, the transmitted signal in the frequency
domain is given by

Y (ω) =
M−1∑
m=0

dmS(ω − ωm) (6)

or in the time domain as

y(t) =
1
2π

M−1∑
m=0

dm

∫ ωm+W

ωm−W

S(ω − ωm)ejωtdω

=
M−1∑
m=0

dmzm(t) 0 ≤ t ≤ T (7)

If we sample this signal uniformly forT = NTn where
N is the length of thesm(t), we obtain the frame samples
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yT = [y(0) · · · y(N − 1)] which can be expressed in matrix
form as

yT = dT


z0(0) z0(1) · · · z0(N − 1)
z1(0) z1(1) · · · z1(N − 1)

· · ·
zM−1(0) zM−1(1) · · · zM−1(N − 1)


= dT Z

wheredT = [d0 d1 · · · dM−1] corresponds to the symbols
being transmitted in a frame andZ represents the basis func-
tions. Using the orthogonality of theZ matrix, and compen-
sating for the effects of the transmission channel we are able
to find estimates of the symbols [9].

Suppose that we wish to sentM symbols for each useru
such that each of these users have their own chirp carrier, then
we will have a chirp basis

zum(t) = s

(
t− u

T

2M

)
ej(uωmt+πt2θ/T ) (8)

for u = 0, · · · , U − 1. To pack the symbols in the most
efficient way, we chooseθ = 1/6 so that the instantaneous
frequency of each of the chirps isIF (t) = uωm +πt/3T and
a hexagonal TF lattice is obtained. The pulsesdumzum(t) are
obtained using the rotation property of the FrFT. This can be
seen in Fig. 1, where we have divided the overall number of
symbols into 4 groups and then converted each of these into
a chirp with the hexagonal lattice structure as shown. The
transmitting signal is thus

y(t) =
M−1∑
m=1

U−1∑
u=1

dumzum(t). (9)

Given the narrow bandwidth of the PSWFs, the length
of the transmitting signal is large so we need to decrease
the sampling rate. In [10] we have shown that for a time-
limited signal of lengthT and bandwidthB the minimum
number of samples required by Nyquist (with sampling pe-
riod Tn is Nn = T/Tn ≥ TB/π), i.e., it is connected with
the time-bandwidth dimension of the signal. These samples
will then be affected by the channel which changes the lo-
cation of the chirps as they are delayed in time and shifted
in frequency. The transmitter and receiver of the proposed
TFDM system is shown in Fig. 2. For a time varying channel
with L paths, each with attenuation factors{α`}, time delays
{τ`} and Doppler frequency shifts{φ`} and noiseη(t), the
received signal would be

yr(nTs) =
L∑

`=1

α`y(nTs − τ`)ejφ`nTs + η(nTs) (10)

for a channel whereTs is the PSWF sampling period. In the
T-F plane the effects of the time and frequency shifts and the
attenuation, as well as the effect of the noise are not as severe

as in the frequency or in the time domains. The channel noise
will be distributed over the T-F plane and the T-F character-
ization of the chirps will not be affected by small time and
Doppler delays.

At the receiver we use the inverse FrFT to dechirp the
received signal and then interpolate the resulting signal using
a bank of windows and filters covering the time and frequency
of the received signal. This allow us to recover a version of
the sent signal, which when correlated with the different basis
components we find estimates of the sent symbol.

4. SIMULATIONS

To illustrate the performance of the proposed TFDM, we per-
formed Monte Carlo simulations and measured the bit error
rate (BER) for signal to noise ratios (SNR) between−10 to
10 dB. For each SNR value500 trials were performed. The
effect of the channel is the addition of Gaussian noise. The
results of our simulation are shown in Fig. 3. We considered
U = 4 each withM = 64 bits. The results clearly display
the robustness of the system to noise, in great part due to the
time-frequency hexagonal lattice structure and the advantage
of using chirp modulation by means of PSWFs. In the TF
plane the added white noise is distributed all over, thus the
advantage of using windowing and filtering.

To show that the separation of the symbols and the pulses
used to represent these symbols is important we ran a second
simulation where we halved the separation between the orig-
inal frequency spectra of the pulses and besides the PSWF
pulses we used rectangular pulses. The rectangular pulse is
similar to the chirp OFDM proposed by [7]. The BER in-
creases for both rectangular and PSWF pulses compared with
the previous simulation due to the decrement of the pulse sep-
aration. However, the BER results are better than those of the
rectangular pulses due to the frequency concentration of the
PSWF pulses.
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Fig. 1. Generation of hexagonal lattice: (a) original PSWFs
shifted in time and frequency, (b) chirp PSWF obtained from
FrFT of original functions in (a).
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Fig. 2. Transmitter (top) and receiver diagram for the pro-
posed TFDM system.

5. CONCLUSIONS

In this paper we have presented a novel time-frequency divi-
sion multiplexing system that uses both time and frequency
division. The advantage of our method over conventional
OFDM are: (1) the chosen PSWF provide time-limited pulses
with optimal energy concentration; (2) the chirp modulation
is more appropriate for typically time-varying channels; and
(3) the robustness to noise inherent in the hexagonal time-
frequency lattice structure. Our method replaces the conven-
tional FFT with the FrFT, the conventional Fourier basis with
chirp basis.
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Fig. 3. BER vs SNR of first Monte Carlo simulation of TFDM
using PSWF transmission pulses separatedP = 512 samples,
andM = 64 bits .
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Fig. 4. BER vs SNR of second Monte Carlo simulation of
TFDM using rectangular and PSWF transmission pulses sep-
aratedP = 256 samples, andM = 64 bits.
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