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ABSTRACT 

 

Diffusion-type algorithms have been integrated in recent 
years successfully into the toolbox of image processing. 
We introduce a new more flexible and powerful family of 
parabolic-hyperbolic partial differential equations (PDEs) 
that somewhat resembles the structure of the parabolic 
diffusion equation, but incorporates the second order 
derivative in time. It is instructive to consider intuitively in 
this context the dynamics of image processing as the 
deformation of an 'elastic sheet'. Indeed, our parabolic-
hyperbolic PDE models elastic deformation. This analogy 
between a well-known physical system and process on one 
hand, and the dynamics of an image processing scheme on 
the other hand, contributes interesting and important 
insight about images and their processing. We explore and 
demonstrate the capabilities and advantages afforded by the 
application of the proposed family of equations in image 
enhancement. The problem of computational complexity is 
addressed, and efficient numeric schemes are also 
presented. 
 

Index Terms— Parabolic-hyperbolic equations, PDE 
image processing, image enhancement, denoising, image 
edge analysis 
 

1. INTRODUCTION 
 

Relations between pixels in an image can be considered as 
analogous to interaction between particles in a physical 
system. Correlation, for example, can be considered to be a 
measure of the strength of interaction, and one may 
elaborate a Hook's law of the force produced by the 
attraction of pixels. Likewise, operations encountered in 
image processing, such as sharpening or denoising, have 
counterparts among physical processes. Finding an adequate 
representation of an image as a physical entity may, 
therefore, yield new image processing techniques, that have 
already been thoroughly explored and understood in the 
context of physics. Several such physics-based models lend 
themselves to the application of partial differential 
equations (PDE) in image processing. One advantage of this 
approach is the possibility to implement image processing 

as a short-time evolutionary process by means of the 
dynamics of PDEs. Deep insight into the behavior of such 
processing schemes is then facilitated by research results 
obtained in both applied and pure mathematics. 

One such approach that has led to very productive 
research and powerful algorithms, considers an image as a 
particle density map. Image processing schemes then 
become analogous to random particle motion, or diffusion. 
Diffusion-type PDEs have been successfully applied in 
recent years in enhancement and segmentation of images 
(see, for example, [1]-[4]).  

The purpose of the present study is to further improve 
the capability of the PDE-based image processing, by using 
the Telegraph-Diffusion operator, introduced in this context 
in [11]. 
 

2. BACKGROUND 
 

2.1. The Problem 
Consider an image degraded by random Gaussian additive 
blurring noise. Improving image quality insofar as one 
image attribute is concerned results in a compromise 
regarding other image attributes. Most filtering-based 
denoising schemes yield simultaneous noise reduction and 
image blurring. Likewise, sharpening or deblurring of an 
image entails an undesired side effect of noise enhancement.  

An important goal of image enhancing algorithms is to 
further improve the processes of deblurring and denoising. 
Solutions that achieve this goal are based on adaptive local 
control of the restoration process in accordance with image 
structure. 

Approaches presented in this paper are inspired by 
processes that favor smooth surfaces over peaks, striving to 
achieve minimal surface area. Such phenomena are often 
encountered in nature (diffusion, elastic motion). While 
these approaches benefit from a profound mathematical 
basis, they are also highly intuitive since we deal with them  
in everyday life. Further, the physics of such phenomena 
has been deeply investigated and is well understood. 
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Figure 1: Leftmost column: original image, noisy image (PSNR 28.0dB). Middle column: PM-TeD denoising result and error (PSNR 30.0dB). 
Rightmost column: FAB-TeD denoising result and error (PSNR 30.7dB). The error image is the difference between the noiseless and the denoised 
images added to a uniform gray image (gray level 0.5) to improve visibility. FAB-denoising error image contains much less details than PM denoising 
error, in which the bird is still clearly visible. 

2.2. Diffusion Processes 
The non-linear diffusion denoising process, defined by 
(2.1), was introduced by Perona and Malik (PM) in [1].  

 

  0,tk u u     
 

(2.1) 

where u is the processed image and ut, its first derivative in 
time. Setting the diffusion coefficient k to be large over 
smooth areas and small around edges allows anisotropic, 
content-dependant smoothing. The linear smoothing process 
can be described as a convolution with a Gaussian 
smoothing kernel. 

Gilboa et al. have generalized the process, allowing 
negative and complex diffusion coefficient k (or time). This 
resulted in Forward-And-Backward (FAB) diffusion [3], 
which enables local sharpening, as well as smoothing. 
Complex diffusion, [4], further generalizes the operator by 
incorporating the imaginary part which approximates a 
second spatial derivative of an image. It also lends itself to 
the application of the Schroedinger potential which is 
instrumental in enhancement of texture [14].  

These properties of the diffusion operator are useful in 
image denoising and enhancement, since they allow both 
smoothing (denoising) and sharpening of an image by 
adjusting the diffusion coefficient.  
 

2.3.Damped Elastic Deformation Processes 
Damped elastic deformation (DED) processes are also 
endowed with smoothing properties. These processes are 
represented by a damped wave equation (also known as the 
telegraphers’ equation): 
 

 

   0 ,t t tu k u u cu       
 

(2.2) 

where ut and utt are respectively the first and second 
derivatives in time of u, k is the elasticity coefficient and c 
is the damping coefficient. The dynamics of (2.2) depicts 
the deformation of a thin elastic sheet, placed in a (liquid) 
damping environment. Elastic nature of the process 
encourages reduction of surface area, and therefore 
facilitates smoothing of singular structural anomalies, such 
as noise peaks. A discrete representation of an elastic sheet 
is a grid of particles connected by springs. Forces between 
the particles may be viewed as analogous to correlation 
between pixels. It is therefore possible to control the inter-
pixel correlation by adjusting k. Non-zero damping, ensures 
energy loss and, therefore, convergence. Damping can also 
control the speed of the process – weaker damping results in 
more rapid evolution, as well as its nature – over-damped 
process resembles diffusion, while under-damped process 
exhibits wave-like characteristics. 

This parabolic-hyperbolic equation is often encountered 
in various fields, such as description of random motion of 
particles ([10]), transmission of signals over telegraph wires 
(hence the terminology) and wave transmission to name a 
few. It has also been thoroughly investigated 
mathematically ([7], [9]). Equation 2.2 was first introduced 
in the context of image processing by Ratner and Zeevi in 
[11]. 

 It is interesting to note that (2.2) converges to the 
diffusion eq. (2.1) after very long time [6], [7]. Given 
positive and bounded coefficients, DED (TeD) converges to 
a unique bounded solution ([9]). The interesting behavior in 
the context of image processing is, however, short-time 
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Noise 
stdev 

Noise 
PSNR 

DED 
PSNR 

Diff. 
PSNR 

DED 
iterations 

Diff. 
iterations 

0.2 27.6 51.2 45.4 6 8 

0.3 21.1 46 41 15 20 

0.4 17 37.3 35 50 70 

0.5 13.5 25.3 24.7 250 350 
 

Table 1: Denoising results for image consisting of 2 regions separated 
by an edge, with different levels of white Gaussian noise. The PSNR 
was computed near the edge and not over an entire image. Columns (left 
to right): noise STD, noisy image PSNR, DED denoised image PSNR, 
diffusion result PSNR, number of iterations of DED simulation, 
iterations of diffusion simulation. Maximal stable time steps were used 
(DED: 0.4, diffusion: 0.1). 

evolution, i.e. the process that is stopped after time period 
long enough to reduce noise and produce other desirable 
effects, yet short enough to preserve meaningful 
information. It is also important to note that although (2.2) 
is a wave equation, in most cases addressed in the context of 
image processing, the wave-like nature is suppressed by 
over-damping (i.e. ), to avoid unwanted artifacts. 
Allowing k to become negative around edges results in edge 
enhancement. This algorithm, which advances DED into 
negative time regime, is called Forward-and-Backward 
(FAB) DED. It is based on FAB-diffusion, proposed by 
Gilboa et al. in [7]. Although it does not necessarily 
converge to a steady-state solution, in practice it achieves 
significant improvement over the basic DED denoising 
scheme (Fig. 2). 

24k c

Similarly to diffusion, linear 1D elastic deformation can 
be represented as convolution with kernel htd (described in 
detail in [12]). An important advantage of htd over Gaussian 
kernel is that its characteristics can be better controlled by 
the two coefficients k and c. It also better approximates an 
ideal ("box") lowpass, due to the higher-order nature (in 
time) of the equation. This should improve its performance 
in presence of high-frequency details (such as edges). 

 

3. DED-BASED ALGORITHMS 
 

Due to similarity between the diffusion and DED equations, 
various diffusion-based research results are applicable to 
DED-based image processing. Several such applications are 
presented in this section. 

By defining spatially (and temporally) varying elasticity 
and damping coefficients, it is possible, as in diffusion, to 
locally control the degree of smoothing. In this paper we 
address primarily the case of varying elasticity coefficient, 
although  initial  experiments  have shown  that  variation of 

damping coefficient can further improve the performance. 
To introduce our approach, we assume an image to be an 
assembly of smooth regions separated by edges. Intra- 
regional   pixels   are  highly  correlated,  while  inter-region 
correlation is weak. When represented as an elastic sheet, 
the process is applied to the noisy input image u0. To 
remove noise and preserve edges, the sheet is made more 
elastic in smooth areas and more rigid around edges. The 
same k used in diffusion ([1], [3]) is applicable here: 
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(3.1) 

where  is a small constant and (positive constant) is the 
elasticity parameter. Thus, the intra-regional correlation is 
further increased, while inter-regional correlation remains 
low. An image that results from the application of the basic 
DED operator consists mostly of flat surfaces separated by 
sharp edges (Fig. 2); a cartoon-like representation of the 
original image. Variations on the theme are presented in 
[11].  



Computational complexity of the algorithm is as in 
diffusion O(nN), N being the number of input elements and 
n - the number of iterations. The strength of DED is in 
denoising fine details and edges (due to the fact that it is 
closer to an ideal lowpass). Experiments with images 
indicate that DED performs better than diffusion at lower 
noise levels (Table 1). This should be expected, since high 
noise levels degrade an image so badly that it becomes 
impossible to restore the finer details.  

 

4. EFFICIENT NUMERIC SCHEMES 
 

Discretization schemes and their convergence received little 
attention so far. Weickert et. al., in [8], presented one such 
scheme, which differs from the basic approach in that it 
improves stability. Further development of the scheme and 
its application to the DED method are presented below. 

To simplify matters, we first discuss a one-dimensional 
case, where ui,j is the i-th element (spatial coordinate x=i*h) 
of vector uj  (input at time t=j* ). Basic discrete 
representation of (2.2) is as follows ( and h being the 
temporal and spatial steps): 
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(4.1) 
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It defines the following iterative, explicit (Forward Euler) 
update scheme of u: 
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 

 

 

(4.2) 

An advantage of Forward Euler scheme is that it is 
straightforward, and can follow the continuous process with 
any given accuracy by using small enough time steps. This 
is also the major drawback of the explicit scheme - it 
requires small time steps to converge to a stable solution, 
and is therefore very demanding computationally. The most 
stable, implicit solution (that uses vectors of time step t+1 
in the right-hand side of the equation) is immediate (i.e. 
single iteration). However, it requires the solution of N 
nonlinear equations, where N is the number of elements in 
u. An intermediate scheme closely related to Backward 
Euler (BE) discretization, was proposed in the context of 
image processing by Weickert et. al. in [8], resulting in the 
following discrete equation: 

Figure 2: DED denoising. (a) – noisy image (PSNR 28dB). (b) – explicit 
DED denoising, 20 iterations (PSNR  32.3). (c) – semi-implicit DED 
denoising, 2 iterations (PSNR 32.2). (d) – semi-implicit DED, 1 iteration 
(PSNR 30.6) 
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(4.3) 

This leads to the semi-implicit update scheme (for pixel 
dimension h = 1, unity matrix I): 

 

  
  

2 1

2 1

1

2 ,

j

j j

c I A u

c I A u u

 

 





  

   
 

 

(4.4) 

where uj is the input vector at time j* , and A is a tri-
diagonal matrix, which allows efficient inversion of 

 by using Thomas algorithm (TDMA). 

Although it requires additional calculations, the scheme 
retains linear complexity, and is much more stable then the 
standard approach, allowing larger time step and fewer 
iterations (reduction by order of magnitude). 

  21 c I A    

Other time discretization schemes are also applicable, 
e.g Crank-Nicolson (CN), or Richtmeyer-Morton (RM). 
Experimental comparison shows more stable performance 
of CN then that of BE scheme for large time-steps and 
fewer iterations (Fig. 2, 3). It is interesting to note that the 
improvement of CN over BE is more significant in diffusion 
then in DED, which may imply that DED is inherently more 
stable then diffusion. This is further supported by the fact 
that a numeric stability requirement for linear discrete 

diffusion equation is 2 2h k  , while that of linear 

discrete DED is h k   [13] (k being the diffusivity in 

diffusion and elasticity in DED), i.e. DED allows larger 
time step. 

Generalization of the algorithm to higher dimensions is 
not trivial. The naïve approach of writing the Backward 
Euler scheme for 2D results in non-zero values outside the 
main three diagonals of A, requiring O(n2) operations. 
Solution proposed by Weickert et al. [8] performs the 
update separately along each axis, resulting in a good 
approximation of the original scheme. The 2D input image 
is raster-scanned twice per iteration – along x and y axes, 
and the two resulting vectors are updated. 

 

5. CONCLUSIONS 
 

Experimental results and their analysis indicate that the 
proposed DED operator achieves better results than those 
obtained previously by means of diffusion-type operators. 
In addition, the new operator offers greater flexibility by 
incorporating a controllable coefficient.  

Different numeric solution schemes are the subject of 
ongoing research. These include semi-implicit schemes 
(Backward Euler, Crank-Nicolson, etc.), and multigrid 
methods. Initial results show that semi-implicit schemes are 
applicable to DED, and that further investigation in the 
context of DED image processing contributes also to 
enhancement of diffusion-based schemes. Parallelization of 
the algorithm seems to be a natural step towards on-line 
implementation in video processing and enhancement.  

48



7. Gallay, Th., Raugel, G.: Scaling Variables and Asymptotic 
Expansions in Damped Wave Equations. Journal of differential 
equations, vol. 150, no. 1, pp. 42-97, 1998. 
 

8. Weickert, J., ter Haar Romeny, B. M., Viergever, M. A.: 
Efficient and Reliable Schemes for Nonlinear Diffusion Filtering. 
IEEE Trans on Image Processing, vol. 7, No. 3, March 1998. 
 

9. Nakao, M.: Decay and global existence for nonlinear wave 
equations with localized dissipations in general exterior domains. 
Operator Theory, Advances and Applications, Vol.159, pp.213-
299, 2007. 

 
Figure 3: Performance of Backward Euler (BE) and Crank Nicolson (CN) 
discretization schemes, measured as the difference between PSNR achieved 
by explicit scheme (60 iterations, close approximation of the continuous 
process) and the respective semi-implicit scheme. The measurements were 
taken for several runs of the denoising algorithm, each with a different 
number of iterations (less iterations – larger time steps). PSNR of the noisy 
image was 28.0dB, PSNR of explicit diffusion denoising was 30.7dB and 
of explicit DED denoising  31.0dB. 

 

10. Dunbar, S. R.: A Branching Random Evolution and a 
Nonlinear Hyperbolic Equation. SIAM Journal on Applied 
Mathematics, Vol. 48, No. 6. (Dec., 1988), pp. 1510-1526. 
 

11. Ratner, V., Zeevi, Y. Y.: Telegraph-Diffusion Operator for 
Image Enhancement. ICIP 2007 Proceedings, September 2007. 
 

12. Ratner, V., Zeevi, Y. Y.: Image representation and 
enhancement on elastic manifolds. PRIME 2008 Proceedings, June 
2008. 

Since PSNR is not always useful as a measure of an 
image quality (e.g. in image enhancement applications), 
some adequate quality metrics remains to be determined. 
Based on these, it will become possible to develop an 
automatic parameter adjustment scheme. The proposed 
operator can be adjusted and implemented in processing of 
higher dimensional signals such as video or 3D models. 

 

13. Ames, W. F., Numerical Methods for Partial Differential 
Equations, 2nd ed. Academic Press, Orlando, 1977.  
 
14. Honigman, O., Zeevi, Y. Y. : Enhancement of Textured 
Images Using Complex Diffusion Incorporating Schroedinger's 
Potential. ICASSP 2006 Proceedings, June 2006. Improved texture preservation schemes, incorporating 

external force into the equation (similar to [14]) are 
currently explored. 

 
6. ACKNOWLEDGEMENT 

 

Research supported in part by the Ollendorff Minerva 
Center of the Technion, and by Philips Consumer Lifestyle. 

 
7. REFERENCES 

 

1. Perona, P., Malik, J.: Scale-Space and Edge Detection Using 
Anisotropic Diffusion. IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 12, no. 7, pp. 629-639, July 1990. 
 

2. Alvarez, L., Lions, P.L., Morel, J.M.: Image Selective 
Smoothing and Edge Detection by Nonlinear Diffusion. SIAM 
Journal on Num. Analysis, vol. 29, no. 3, pp. 845-866, June 1992. 
 

3. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Forward-and-Backward 
Diffusion Processes for Adaptive Image Enhancement and 
Denoising. IEEE Trans. on Image Proc., vol. 11, no. 7 , July 2002. 
     

4. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image Enhancement and 
Denoising by Complex Diffusion Process. IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1020-1036, 
August 2004. 
 

5. Sochen, N., Zeevi, Y.Y.:, Images as Manifolds Embedded in 
a Spatial-Feature Non-Euclidian Space. EE-Technion report No. 
1181, November 1998. 
 

6. Zauderer, E., Partial Differential Equations of Applied 
Mathematics. Wiley, New York 1998. 
 

49


	ABSTRACT


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2007. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


