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ABSTRACT

This paper introduces a novel approach to exemplar-based con-
nected digit recognition. The approach is tested for different sizes
of the exemplar collection (from 250 to 16,000), different length of
the exemplars (from 1 to 50 time frames) and state-labeled versus
word-labeled decoding. In addition, we compare the novel method
for selecting exemplars, based on Sparse Classification, with a con-
ventional K-Nearest-Neighbor approach. For word-labeled decod-
ing we developed a Viterbi search that applies minimum and maxi-
mum duration constraints. It appears that Sparse Classification out-
performs KNN, while state-labeled decoding provides better per-
formance than word-labeled decoding. In all conditions the per-
formance increases with the size of the collection. However, the
optimal window length is 10 frames for state-labeled decoding, but
35 frames for word-labeled decoding.

1. INTRODUCTION

For the last 30 years Automatic Speech Recognition (ASR) has been
completely dominated by pattern recognition techniques based on
Hidden Markov Models (HMMs) [1]. From a conceptual point of
view this implies the assumption that (almost) all relevant phenom-
ena in speech can be described in terms of a sequence of proba-
bilistic models. This corresponds to the dominant position in Psy-
cholinguistics that speech can be represented in the form of a rela-
tively small number of discrete units (for example phonemes) that
in one way or another abstract from the idiosyncrasies of individual
tokens and that can be concatenated to create larger units such as
syllables and words. More recently, a competing Psycholinguistic
theory has been proposed, in which it is assumed that mental rep-
resentations of speech include a record of detail of actual speech
signals (called episodes or exemplars) that encode idiosyncrasies
such as the speaker and possibly even the context in which an utter-
ance was produced [2]. Interestingly, the episodic representations
of speech proposed by that theory are reminiscent of the templates
that formed the basis for the Dynamic Programming (or Dynamic
Time Warping [DTW]) approach to speech recognition [3] that was
superseded by HMMs in the late seventies of the previous century.

Compared to the DTW approach, HMMs had several decisive
advantages: models that combined means with variances replaced
templates, allowing more powerful distance measures and Viterbi
decoding facilitated integrated search. HMMSs were not only supe-
rior to DTW in conceptual terms, they also were better adapted to
the limitations in memory and compute power of the digital com-
puters and the algorithms that were available.

Recent advances in compute power, and the development of al-
gorithms that can find structure in extremely large collections of
observations, may make episodic approaches computationally fea-
sible. At the same time it has become clear that not all speech phe-
nomena can be covered in the form of HMMs. There is general
agreement in the speech community about the need for novel ap-
proaches, not to fully replace HMMs, but certainly as an addition for
handling phenomena that HMMs do not account for [1, 4]. There-
fore, it is interesting to revisit pattern matching techniques such as
DTW and episodic representations, to investigate if these can handle
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problems that are notoriously difficult to solve in an HMM frame-
work. One such problem is speech recognition in adverse acoustic
conditions.

In [5] it was shown that an exemplar-based approach of isolated
digit recognition in noise can outperform conventional model-based
approaches. The approach, dubbed sparse classification (SC), is
based on the idea that all speech signals can be represented as a
linear combination of suitably selected exemplars. The classifica-
tion is based on finding the smallest number of labeled exemplars
in a very large collection of exemplars that jointly approximate the
observed speech token. Because there is no need for these exem-
plars to be close to each other in the original space, SC differs from
the usual interpretation of episodic recognition and other exemplar-
based approaches to speech recognition, which invariably search for
exemplars with the smallest distance to the observed speech token.

As a step toward noise robust continuous speech recognition we
extend our previous work on isolated digit recognition to continuous
digit recognition. To investigate the impact of the manner in which
exemplars are selected from a collection, we will compare SC to a
K-Nearest-Neighbor (KNN) approach to selecting exemplars from
a large collection. To keep the enterprise manageable we will limit
our experiments to noise-free continuous digit sequences, leaving
the extension to noise robustness for future research.

2. EXEMPLAR-BASED CLASSIFICATION

In ASR speech signals are represented as a spectro-temporal distri-
bution of acoustic power, called a spectrogram, which in its turn is
represented as a B x T dimensional matrix (with B frequency bands
and T time frames).

We express the spectrogram S as a single vector s of dimen-
sion D = B-T by concatenating 7" subsequent time frames. We
use a training corpus to create a collection A of exemplar spectro-
grams. The matrix A is formed as A = (a; ay...an_1 ay) with
a,, (1 <n < N) aspecific token in the set of N available exemplars.
With a, reshaped from a spectrogram just like s, the matrix A has
dimensionality D x N. Both s and the columns of A are normalized
to unit (Euclidean) norm.

For speech recognition the reshaped exemplar spectrograms a,
must have labels corresponding to linguistically meaningful classes
(words, syllables, phonemes, subphonemic units etc.). Since a,, typ-
ically contains multiple time frames, an exemplar may be associated
to more than one class. For example, an exemplar may contain the
trailing part of one word and the beginning of the next, as in a digit
sequence eight two. We map every exemplar a, to a label vector
y,. Denoting the total number of possible classes with Q, y, is a
binary vector of length Q of which the nonzero elements indicate
with which classes a,, is associated.

We obtain a label matrix Y of dimensions Q x N by concate-
nating all exemplar labels y,: ¥ = (y; y2...y~—1 yn). Finally
we denote the unknown label vector associated with the observed
speech s as y*.

For recognition we first obtain a vector v of length N that maps
the observed speech vector s to exemplars in A. The weight vector
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v tells us which exemplars are associated with the observed speech.
We then obtain the label vector y* by calculating the score fs as:

f,=Yv ey

with v > 0 a sparse column vector and f; a vector of length Q.
Keeping track of only the nonzero elements of f; we obtain the bi-
nary label vector y*. The procedure for creating label vectors f* is
independent from the procedure for selecting the exemplars (SC or
KNN).

2.1 K-Nearest-Neighbor classification

In exemplar-based speech recognition one can use K-Nearest-
Neighbor (KNN) techniques to associate an unknown speech token
s with exemplars from the collection A that are closest to s given
some distance measure. For every exemplar a, we obtain the Eu-
clidean distance to s and retain the K exemplars with the smallest
distance. Then a binary vector v of length N is created with K
nonzero elements pertaining to the indices of the exemplars with
the smallest distance.

2.2 Sparse Classification

In our sparse classification approach we try to find exemplars that
Jjointly approximate the observed speech token. As in [5], we as-
sume s can be represented as a linear combination of the exemplar
spectrograms a,;:

N
s = anan =Ax 2)

n=1

with x the N-dimensional sparse representation of s. Depending
on the dimensionality D and N, this system of equations is over-
or under-determined. It has been shown that x can be recovered in
both regimes by searching the sparsest solution [6, 7]:

min{ ||x|p } subject to s =Ax 3)
X

Interpreting the weights of this linear combination as the label
weights, we can use the sparse representation x to form the weight
vector v necessary for classification. Solving Eq. 3 does not guaran-
tee non-negativity of all elements of x. This is different from KNN,
where all distances are guaranteed to be non-negative. Because it is
difficult to imagine how negative weight could be cognitively plau-
sible, we decided to use v = |x].

3. CLASSIFICATION OF CONTINUOUS SPEECH

The mathematics of sparse classification requires that all exemplars
in the collection A have a fixed time dimension 7. However, con-
tinuous speech cannot be represented as a concatenation of fixed-
length units. Therefore, we use a sliding window approach. After
assigning weighted labels to individual windows, we use Viterbi de-
coding to obtain word-based transcriptions.

3.1 Classification in a sliding time window

Consider a speech utterance U represented as a spectrogram with B
frequency bands and / time-frames (cf. Fig. 1). We slide a window
S of length T through U, with shifts of A frames. The ratio of A and
T determines the degree with which subsequent windows overlap.
Larger step sizes A reduce computational effort but can decrease
recognition accuracy. In this paper we keep the shift constant at
A =1 frame. The total number of windows we process is W =
I—T+ 1. Window length T is varied between 1 and 50.

Using the procedure described in Section 2 we obtain a score
vector f), for every window (w € W). Rather than converting these
to binary labels y" we use the weights as numerical scores. We
collect all score vectors in a matrix F of size Q x W. Recognition
then proceeds by finding the path with the best score. An example
of the score matrix is shown in Fig. 2.
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Figure 1: Schematic diagram of time-continuous classification us-
ing overlapping windows.

3.2 Viterbi decoding

So far, we have made no assumptions about the kind of labels that
are associated with exemplars. The eventual goal of classification
is a word-based transcription, but that leaves room for labels cor-
responding to smaller units. However, the choice of unit implies
different constraints on the decoding strategy.

In conventional HMM-based speech recognition the basic units
are states, and every word or phoneme is composed of sequences
of such states. In that case, the search for the best state sequence
through the matrix F is constrained by the state sequences in the
acoustic word models. In our current exemplar-based approach,
however, we are free to associate exemplars with either states,
phonemes, entire words or any other unit.

In this paper, we consider two different labels types: state-based
labels and word-based labels.

3.2.1 State-based labeling

In the case of state-labeled decoding, we used a conventional
Viterbi algorithm that was available as back-end of the HMM-based
speech decoder described in [8]. In this case, state transitions are
constrained by the state-sequences underlying the acoustic word
models, while word transitions are controlled by word entrance
penalties and language models.

3.2.2 Word-based labeling

In the case of word-labeled decoding the optimal path through the
matrix F' must avoid frequent transitions between word hypotheses,
which would lead to many insertion errors. In conventional Viterbi
decoders insertions are limited by adjustment of the word entrance
penalty, but it is well known that this does not necessarily prevent
the emergence of very short words along the best path. We used an
implementation of the Viterbi algorithm that allows incorporating
minimum and maximum duration constraints to control the lengths
of same-label sequences in the best path.

Above, we used indexes w for the columns (windows) and ¢
for the rows (labels) in the matrix F. However, since the modified
Viterbi algorithm operates on any kind of rectangular matrix, in this
subsection we will use the default notation of i and j to index the
columns and rows.

The aim is to find the best path starting at any point in the
first column ({(1,/),1 < j < Q}) to any point in the last column
(W, j),1 < j<Q}) of the matrix, in such a way that the hori-
zontal stretches of this path (i.e. parts of the path with the same j)
obey minimum and maximum length constraints. To this end we
modified the conventional Viterbi algorithm as follows:

o The set of predecessors. In the conventional Viterbi implemen-
tation, usually the best path is sought between the lower left
point (1, 1) and upper right point (W, Q) of the matrix F, al-
lowing only transitions from neighboring points {(i — 1, j), (i —
1,j—1),(i,j—1)}. In the modified Viterbi algorithm, however,
we allow the set of predecessors of the point (i, j) to be the set
{(i—1,k)}1<k<o-

o Transition penalties. We modify the penalties that are associ-
ated with each transition step for two reasons: (a) the set of pre-
decessors is larger than in conventional Viterbi and (b) a penalty
o must be imposed when duration constraints are violated.

1756



Digit-based classification scores

* | I

I Hi *
* L |

3 W g—

100 150 200 250
time [Windows]

digit label

N O © ® N o g » w N
T

@

(a) Scores using word-labeling

digit label

O ©W 0 N O a A N
T T T T T T T T

State-based classification scores

‘<33

1‘. 149

165

a~ R 1

e |

state label

-
e
w

161

“.1 177
300

Bl

z Y
sill I |

50 100 150 200 250
time [Windows]

(b) Scores using state-labeling

Figure 2: Example of time-continuous classification scores obtained using Sparse Classification, a window length of 20 frames and a
collection of 16000 exemplars. Fig. 2a shows scores obtained using word-based class labels and the scores displayed in Fig. 2b represent
HMM-state based labels. The corresponding digit labels are also shown. The utterance spoken is ‘6Z8ZZ64’, with ‘Z’ representing ‘zero’.

The label ‘sil’ represents silence.

We introduce the following notation. We introduce matrix of local
costs L = —F. Additionally we define two auxiliary matrices of the
same size as L. The first auxiliary matrix G (which is also used in
conventional Viterbi) will eventually contain the global costs. The
second auxiliary matrix D will be used during the search such that
the integer D(i, j) eventually specifies the duration of the most re-
cent label hypothesis along the best path from the first column to
(i, ). Foreach j, 1 < j < Q the minimum and maximum duration is
specified by means of two user-specified arrays min(j) and max ().
And possibly there is a language model M(g;,q;) that specifies the
cost of the bigram g; — ¢; for all label pairs g;,q;. The term M
specifies the language model costs of a transition between two la-
bels.

The balancing between the local costs in the L matrix, the
penalties in M, and penalty o determines the path that is considered
optimal. The higher the value of o, the more expensive transitions
between labels become if such a transition incurs a violation of the
duration constraints; in the limit (ot — o), only durations of labels
k are allowed between min(k) and max (k).

As can be inferred from Algorithm 1, the novel Viterbi algo-
rithm recursively updates elements of global cost matrix G while
keeping track of the class index k that minimized the global score.
After the recursion, the backtrace based on the values of IA<,~ for
i=W,W—1,...,1provides the best path through the matrix F tak-
ing into account the imposed duration constraints.

4. EXPERIMENTS
4.1 Experimental setup

For our experiments we used the clean versions of the training data
and test set ‘A’ of the AURORA-2 corpus [9]. Acoustic feature vec-
tors consisted of mel frequency log power spectra: B = 23 bands
with center frequencies starting at 100 Hz (frame shift = 10ms).

As a reference, a conventional HMM-based speech decoder
(described in [8]) achieves 99.5% accuracy on this test set using
PROSPECT features [8]. HMM-state based labels of the exemplars
were obtained via a forced alignment with the orthographic tran-
scription using the HMM-based recognizer. Digits were described
by 16 states with an additional 3-state silence word. From the
frame-by-frame HMM-state labels we extracted digit labels. Min-
imum and maximum digit durations were also extracted from the
state-based transcription.

We created collections of exemplars by randomly selecting

Algorithm 1: Modified Viterbi algorithm
Initialization step:
for j=1to Qdo
G(1,j)=L(1,)); D(1,j) =1
end for
All other entries in G and D will be defined later in the
search.

Recursion step:
for i=2to W do
for j=1toQdo

R +Cur +L(i,j)}
o ki = the minimizing value for k

o D1 k) itk =
e D(i,j) = {lotherwise

end for

end for

In this scheme, Cg, denotes the duration violation cost
which is dependent on i, j,k,D(i — 1,k), min(k), and max (k)
and is specified as:

o if (k# j) A= (min(k) < D(i— 1,k) < max(k))
Co if (k # j) A (min(k) < D(i —1,k) < max(k))
dur o if (k= j)AN(D(i—1,k) > max(k))
0 if (k=j)A(D(i—1,k) < max(k))

16000 windows from the speech in the training set. We repeated
the random selection for 6 window lengths, from 7 =1 to T = 50
frames. Contrary to the experiments with isolated digits in [5] no
time normalization was applied to the windows. The spectrograms
of the windows were reshaped to vectors and subsequently added
as the columns of the collection. For experiments with collection
sizes smaller than 16000 we used the first N columns of the original
collection to form the final collection A.

The speech decoding system was implemented in MATLAB.
The duration penalty o appeared to be not critical, and was set to
a = 10. We did not use a language model. The minimization in
Eq.3 was approximated by the SolveLasso solver implemented
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Table 1: Word recognition accuracy for several window lengths and collection sizes. The results shown here pertain to SC classification.

Collection size [N]
Window [T] || 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000
1 5.0 [10.5]22.7 [ 31.2]38.143.8] 49.2
5 2091329 41.0 | 48.5| 553 | 62.1 | 650
10 37.744.6 | 58.2 | 63.7 | 68.3 | 70.5 | 73.7
20 46.7|55.7|67.5| 727 |78.5| 81.1 | 83.2
35 4951632713 ] 78.0| 823 | 84.6 | 85.5
50 41.8(52.0| 584|655 704|737 75.6

(a) Using word-labeled decoding

Collection size [N]
Window [T] || 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000
1 36.4]40.3]50.8]61.0]69.0] 763 804
5 64.7|78.7| 87.8 |93.1 956|969 | 97.7
10 64.2180.4190.1 | 93.896.6 | 97.4 | 98.2
20 6748471916 938|954 963 | 96.7
35 61.7 7277|785 | 82.0 | 84.2 | 853 | 86.1
50 45.7156.7| 62.6 | 67.0 | 69.6 | 71.0 | 71.5

(b) Using state-labeled decoding

Table 2: Word recognition accuracy for several window lengths and collection sizes. The results shown here pertain to KNN classification.

Collection size [N]

Window [T] || 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000
1 9.0 [17.1]257|323]356(395| 38.6
5 85(16.7| 164 | 13.2 | 21.1 | 289 | 29.0
10 49 (182|419 | 443 | 41.2|43.0| 46.0
20 27156 |336|448| 565|620 | 649
35 7.5(17.1]31.0 ] 502 | 61.5]|69.8 | 75.1
50 321149 27.1 | 37.8 | 51.0 | 59.4 | 65.9

(a) Using word-labeled decoding

as part of the SparseLab toolbox.! This iterative method was

terminated after 30 iterations, resulting in x having (at most) 30
nonzero coefficients. Correspondingly we use the K = 30 nearest
neighbors when doing KNN classification.

4.2 Window length and collection size

Episodic speech recognition introduces several new parameters,
such as the number of exemplars and their duration (number of
frames). Because the parameters might well show significant in-
teractions, we investigated the recognition accuracy as a function of
the number of exemplars and the duration.

We carried out recognition experiments with a number of
collection sizes N and window length 7. We consider window
lengths of 1,5,10,20,35 and 50 frames and collection sizes of
250,500, 1000,2000, 4000, 8000, 16000 exemplars. For every win-
dow, we first determine the associated exemplars, using KNN and
SC classification. For both methods we then do decoding twice:
once using word-labeling (Tables 2a and 3a) and once using the low
level state-labeling (Tables 2b and 3b).

5. RESULTS AND DISCUSSION
5.1 Word-labeling vs. state-labeling

From the recognition accuracies in Tables 2a and 3a (word-labeled
decoding) and Tables 2b and 3b (state-labeled decoding) it can be
seen that state-labeled decoding outperforms word-labeled decod-
ing. This holds both for Sparse Classification and KNN Classifica-
tion.

Both for word-based and state-labeled decoding the best perfor-
mance is obtained with a collection size of 16000 exemplars. With
marginal exceptions for KNN word-labeled decoding performance
increase is monotonic with collection size. The optimum with re-
spect to window size is different: For word-labeled decoding the
best recognition accuracies are obtained with a window length of
35 frames. That number happens to be equal to the mean number of
frames per digit. For state-labeled decoding the best accuracies are
obtained with a window length of 10 frames. Here too, the observa-
tion holds for SC and KNN.

!This toolbox is publicly available from http://www.sparselab.
stanford.edu

Collection size [N]
Window [T] || 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16000
1 26.3[143.6] 604 | 73.1 | 84.9 [ 89.1 | 91.9
5 29.1162.11839(91.2]924 1929 | 934
10 21.1|44.9|79.0 | 89.8 | 93.1 |1 93.9 | 94.5
20 126 1319|643 | 81.5|89.1 | 91.3 | 929
35 10.1|21.4|40.3|59.6 | 72.0 | 78.0 | 81.6
50 11.6 | 14.6 | 30.6 | 43.0 | 55.5 | 624 | 67.3

(b) Using state-labeled decoding

A detailed analysis (not shown here) revealed that word-labeled
decoding yielded many more insertion and (to a lesser extent) dele-
tion errors than state-labeled decoding. This is caused by the fact
that in word-labeled decoding it is difficult to distinguish between
the start and end of a word in the label sequence. The HMM-state
models, on the other hand, are composed of a sequence of 16-states
each of which must be visited in a prescribed order. As can be ob-
served in Fig. 2a, with word-labeled decoding any spurious digit ac-
tivation that exceeds the (necessarily small) minimum duration may
cause an insertion error. In contrast, Fig. 2a illustrates that with the
state-based decoding spurious state activations do not lead to inser-
tions. The state sequence that underlies individual digits forces the
Viterbi search to find solutions that have a clear diagonal structure.

Deletions can occur when encountering repeated words. For
example, in Fig. 2 the repeated digit ‘6’ will result in a deletion
error if the combined length of the two digits does not exceed the
maximum duration for this digit. When doing HMM-based state
decoding the distinction between the two subsequent digits is trivial.

The optimum window length seems to be one that covers a
number of labels that is just large enough for the Viterbi search
to harness its constraints. In word-labeled decoding window length
should be larger than the minimum duration of a word, but not so
long that many windows cover more than two words. For state-
labeled decoding windows should be long enough to cover a state
sequence that is characteristic for a word, but not so long that many
windows cover more than one word. Another possibly interesting
issue here is that a 10-frame window covers roughly the same num-
ber of frames that are taken into account when using delta and delta-
delta features in traditional HMM-based decoding.

A decoding approach not studied in this work is using a phone-
based representation (cf. [4]). It is conceivable that a phone-based
representation allows for a more natural extension to large vocab-
ulary tasks, while still providing robustness against errors like re-
peated digits and insertions.

5.2 Window length

SC outperforms KNN for all window lengths except for single-
frame windows. Apparently, SC is better able to exploit time con-
text information than KNN. Somewhat unexpectedly, for single-
frame windows, KNN classification with state-labeled decoding
performs better than SC: 91.9% at N = 16000 (cf. Table 3b) as
opposed to 80.4% at N = 16000 (cf. Table 2b). The situation is
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reversed when doing word-labeled decoding but a detailed analysis
showed this is again due to insertion errors.

Our current experiments do not allow to formulate a definitive
explanation of why SC is worse in single-frame classification than
KNN. A post mortem analysis shows that quite frequently a sin-
gle example is sufficient to approximate one frame in the utterance.
Most likely, this is due to the fact that the minimization in Eq. 3 is
too underdetermined. If the single label returned by the solver hap-
pens to be wrong, it may be impossible for the Viterbi decoding to
recover the correct path.

5.3 Collection size

When comparing the results with respect to collection size it is clear
that we obtain higher accuracies with larger collection sizes. The in-
crease in recognition accuracy when increasing the collection sizes
beyond 4,000 exemplars is sub-linear. At the same time, the com-
putational complexity grows faster than linear in the collection size.
The sub-linear performance improvement with growing collection
size is most likely due to the fact that the additional exemplars are
often very similar to exemplars already present in the collection and
thus contribute little, if any, additional information. This raises the
question whether there are better procedures for creating a collec-
tion than just by making random selections. The answer is most
probably yes, but it is far from evident how a more intelligent se-
lection of exemplars should proceed. For SC an obvious option is
some kind of greedy search, in which candidates that are too close
to exemplars that are already in the collection are discarded.

It is interesting to see that SC outperforms KNN for small
(< 1000 exemplars) collection sizes. This is most likely due to the
fact that with KNN it may happen that all 30 exemplars that are clos-
est to the unknown token happen to be associated to a ‘wrong’ label.
This is the more likely since all chosen exemplars will be close to
each other. SC on the other hand can combine exemplars ‘from all
over the place’ to jointly approximate the observed speech token.
This increases the possibility that the correct labels are included.
Of course, SC may also select remote labels if the correct one is in-
cluded among the exemplars with the highest weights. Apparently,
this inclusion of ‘wrong’ labels does not have a large impact on the
Viterbi decoder.

5.4 Noise robust ASR

The recognition accuracies obtained with SC hold promise for im-
proving noise robustness using a Missing Data Technique (MDT)
[10]. At the heart of MDT is the assumption that it is possible to es-
timate —prior to decoding— which spectro-temporal elements of the
acoustic representations are reliable (i.e., dominated by speech) and
which are unreliable (i.e., dominated by background noise). One
way of noise robust speech decoding is to base recognition only on
features which are labeled reliable.

The Compressive Sensing theory underlying the SC method
asserts that a sparse representation of a signal can be recovered
from a very limited number of measurements (features). In [5] we
showed that SC can successfully recognize isolated digits in noise
using very few reliable features, provided that a sufficiently accu-
rate missing data mask is available. The current paper shows that
also good recognition accuracies can be obtained with SC on a con-
nected noise-free digit task. This warrants further research to see
whether SC can also be made to work on connected speech in noisy
conditions.

It remains to be investigated whether the KNN approach to se-
lecting examples can also be extended to noisy speech.

6. CONCLUSIONS

We have extended our previous work on isolated digit recognition
by applying Sparse Classification (SC) to continuous digit recog-
nition. SC is based on the idea that arbitrary speech signals can
be represented as a sparse linear combination of suitably selected
exemplars. The technique works by finding the smallest number
of labeled exemplars that jointly approximate the observed speech.

We compared this non-parametric technique with a conventional K-
Nearest-Neighbor (KNN) approach.

For the purpose of continuous digit recognition we applied a
sliding time window approach, applying SC and KNN to every win-
dow individually. The classification in individual windows is based
on finding labeled exemplars that identify the observed speech to-
ken. Next, Viterbi decoding is used to find the best path through the
label matrix. Connected digit recognition experiments on the clean
speech test set of AURORA-2 show SC compares favorably com-
pared to a K-nearest-neighbor (KNN) approach, achieving a recog-
nition accuracy of 98.2% vs 94.5% for KNN.

For word-labeled decoding we developed a novel implemen-
tation of the Viterbi search that imposes minimum and maximum
duration constraints on the units on the best path. Nevertheless,
state-labeled decoding clearly outperformed word-labeled decod-
ing. This is due to the fact that the local constraints in state-labeled
decoding are more effective, irrespective of the duration constraints.
We have also investigated the influence of window length and col-
lection size and showed that the best recognition accuracies are ob-
tained using as large a collection as possible and a window length
of 10 frames for state-labeled decoding.

The promising results of our experiments open new directions
of research in exemplar-based speech recognition and makes the
way free for future research on the noise robustness properties re-
ported on in [5].
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