
REDUCING THE SEARCH COMPLEXITY FOR LOW BIT RATE VECTOR
QUANTIZATION BASED ON SHELLS OF GOLAY CODES

Adriana Vasilache1, Septimia Sârbu2, Ioan Tăbuş2

1Nokia Research Center
2Department of Signal Processing
Tampere University of Technology

email: adriana.vasilache@nokia.com; septimia.sarbu@tut.fi; ioan.tabus@tut.fi

ABSTRACT
We study in this paper ways to reduce the complexity
required by a vector quantization scheme, which uses the
shells of Golay codes for coding sub-vectors of the input
vector. Such a scheme was recently shown to achieve top
performance in terms of segmental SNR in the generic
situation of data affected by outliers, which is relevant
for the case of audio data in various sub-layers of trans-
form based speech and audio codecs. The optimization
of bit allocation and shell selection process can be sim-
plified into a greedy algorithm with a very slight loss of
performance over the exact optimal solution. We study
here various algorithmic solutions, able to keep a good
performance, while drastically reducing the complexity
of the previously proposed full search algorithm.

1. INTRODUCTION

The interest in low bit rate quantization stems from the
recent activities in ITU-T standardization of embedded
scalable speech and audio codecs [1], [2] where the lay-
ered structure of the codec requires fixed rate quantiza-
tion of long transform domain vectors at bit rates within
the range 0.3-0.7 bits per sample (bps). Important prior
work regarding the Golay codes for encoding i.i.d Gaus-
sian sources at 1/2 bits per sample can be found in
[9],[10] and [11], as well as vector quantization schemes
regarding linear, nonlinear error-correcting codes and
lattices, with application to audio and speech coding, in
[7], [8], [10], and in the references therein.

One of the low bit rate quantization tools recently
proposed in [3] is using a Golay code [6], to define a
vector quantizer for long input vectors, where selected
subvectors are encoded using a scalar gain, sign informa-
tion, and significance information given by a Golay code
word. It is convenient to define the Golay code as a code-
book, organized as a union of shells or spheres, where
each shell contains all code words having the same Ham-
ming weight. The optimization process requires search-
ing for the nearest neighbor separately within each shell
of the Golay code in order to achieve a good distortion
at fixed rate for the quantization scheme. However the
direct search in each shell for a big number of subvectors
leads to a high complexity of the overall scheme. The
optimization problem can be solved exactly using linear
programming, or can be (slightly) sub-optimally solved
by employing a greedy search for selecting which shell
of the Golay codebook to be used for a given subvector.
While the approach in [3] focused in achieving as high

signal to noise ratio (SNR) as possible, we deal here with
the problem of lowering the complexity when using the
same principles for the overall quantization scheme.

For applications where the complexity should be
kept very low, an additional possibility to gradually ad-
just the complexity with none or very small performance
degradation would be very important. We will present
two sets of alternative methods for lowering the com-
plexity. The first will address reducing the complexity
of the search in one shell of the Golay code, while the
second will redefine the process of bit allocation so that
the search on a number of shells is restricted, depending
on the energy distribution among the subvectors.

In addition to speeding up the search process, the
presented approach lowers considerably the require-
ments of storage tables, by using the fact that the Golay
codes are cyclic codes. A binary cyclic code can be seen
as a union of cyclic leader classes, all defined compactly
by a small number of leader vectors. The definition al-
lows storing the codebook of the cyclic code with much
less memory than it would be required by direct storage.
This also allows the parametrization of the size of the
codebook which makes possible defining partial search,
with a various number of truncation points, and thus
with a parametrizable complexity.

1.1 Low bit rate vector quantization based on
Golay codes

The low bit rate quantizer described in detail in [3] is
briefly reviewed next, in order to make clear the context
of algorithmic extensions presented in this paper.

Long input vectors x = [x1 . . . xN ] with N = 280
real valued entries need to be encoded at a given low bit
rate, in the range of 0.3-0.7 bits per sample. The quanti-
zation is performed in two stages. In the first stage some
entries of the vector are identified as outliers and they
are quantized and transmitted together with their num-
ber, no, and their locations in the vector. In this paper
we are not concerned with this stage due to its relatively
low complexity, when compared to the second stage. In
the second stage the remaining entries of x are grouped
as nb = b(N − no)/Lc subvectors of length L. Some
of the subvectors are encoded as full zero vectors, while
the rest (e.g., a generic subvector z = [z1, . . . , zL]T ), are
encoded using the following elements: (1) a Golay code
word c ∈ G23 for conveying the significance information
(ci = 0 signaling that zi is quantized to zero); (2) the
signs for all significant entries (for all i for which ci = 1 a

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1269



bit encodes sign(zi)); and (3) an overall gain to be used
with all quantized values in x during the reconstruction
process. A mask {t1, . . . , tnb

} of nb bits specifies which
of the subvectors are encoded as full-zeros, and which of
them are vector quantized.

We describe now more formally the encoding of a
generic subvector z: we denote jk the sign and yk

the absolute value of the kth entry so that we have
z = [z1, . . . , zL] = [j1y1, . . . , jLyL]. The quantiza-
tion of this subvector is done by using a code word
c = [c1, . . . , cL] ∈ G23 to encode the significance infor-
mation of the entries of z. Thus, the reconstructed out-
put will be ẑ = g[j1c1, . . . , jLcL]T , where g is the gain
(which is scalar quantized and encoded by 7 bits). The
null code vector c ∈ G23 will not be transmitted by a 12
bit addressing in the Golay codebook, but instead it is
more efficiently specified by the single bit ti = 0, which
tells that the ith subvector is the full-zero vector. The
distortion of the reconstructed subvector is D(c, g) =
‖z − ẑ‖2 = ‖[z1, . . . , zL]T − g[j1c1, . . . , jLcL]T ‖2. The
bit rate rd used for encoding one subvector will contain
the na = 12 bits for addressing the Golay codebook and
the additional dH(c) bits for the signs of significant en-
tries of z, so that rd(dH(c)) = na + dH(c) if c 6= 0 and
rd = 0 when c = 0. The quantity dH(c) represents the
Hamming weight of the code word c.

Denote now z[1], . . . , z[nb] the nb subvectors of the
vector x (after the removal of possible outliers) and
use the same superscript for their associated quantities.
The goal of the optimization problem with fixed rate R,
stated formally as

min
nb∑
i=1

D(c[i], g∗) s.t.

nb∑
i=1

rd(d[i]) ≤ R, (1)

is to find the optimal Hamming weights d[1], . . . , d[nb],
the optimal codes c[1], . . . , c[nb] ∈ G23, and the gain g∗.

1.2 A review of the greedy optimization in [3]

In order to explain the computation of distortion we
introduce the scalar product, sij = y[i]T c∗(y[i], dj), be-
tween the subvector y[i] and its nearest neighbor code
word c∗(y[i], dj) on the jth shell of G23. A shell of G23 is
the set of Golay code words having the same Hamming
weight. If the optimization decision is to quantize the
subvector y[i] by its nearest neighbor code word on the
jth shell, we set the indicator variable wij = 1, while we
set wij′ = 0 for all j′ ∈ {1, . . . , nD} with j′ 6= j, where
nD is equal to 7, the total number of shells. Thus, the
solution of the optimization problem will be given in
terms of the indicator variables wij = 1. Denoting kb

the number of non-trivially quantized subvectors, the
exact solution in [3] is given as

max
w

1√
R− kbna

nb∑
i=1

nD∑
j=1

sijwij , (2)

where in each row of w there should be only one nonzero
entry. The possible values of kb are just a few and for
each kb we must solve a linear programming problem.

A simplified greedy algorithm was shown to provide
solutions very close to the optimal ones. We summarize
the algorithm for the Golay code G23, where the admis-
sible rates rd(dH(c)) = na + dH(c) belong to the set
Rd = {19, 20, 23, 24, 27, 28, 35}.

Algorithm 1
1. Generate iteratively all possible combinations (tu-
ples) di1 ≥ di2 ≥ . . . ≥ dikb

with rd(dij
) ∈ Rd such

that
∑kb

j=1 rd(dij
) = R.

2. For each such tuple, say V = (di1 , di2 . . . dikb
),

we first check which are the optimizing arguments
`∗, ij∗ = arg max`,ij{s`ij : ` = 1, . . . , nb, ij ∈
{i1, . . . , ikb

}} and we allocate to the subvector `∗ the
code word located on the ij∗

th shell.
3. We remove now the subvector `∗ from the list of
subvectors and dij∗ from the tuple V and continue
the process.

Generating the list in Step 1 is a simply recur-
sive routine. As an example, if the available bitrate
is R = 80 bits and the binary code is G23, with
Rd = {19, 20, 23, 24, 27, 28, 35}, there are 3 such tu-
ples, namely two for kb = 4: V1 = (8, 8, 8, 8), V2 =
(11, 7, 7, 7), and one for kb = 3, V3 = (16, 16, 12).

2. FAST SEARCH USING CYCLIC
LEADERS IN A SHELL OF A GOLAY CODE

We will exemplify the definition and use of the cyclic
leaders in the case of the Golay codes, but the prin-
ciple of the fast search method presented here applies
to any binary cyclic code. The binary Golay code of
dimension 23 can be seen as a union of several 23-
dimensional spheres, which we call shells, G23 =

⋃
i∈D Si

with D = {0, 7, 8, 11, 12, 15, 16, 23}. Each shell or sphere
has radius i ∈ D called weight of the shell (or Ham-
ming weight), representing the number of ones that are
in each code word from that shell. The shells having
weights 0 and 23 have only one code word each, corre-
sponding to the all zero and all ones vectors, respectively
and they are considered trivial (they require negligible
cost of search, when compared to the rest of 4094 code
words). The numbers of code words on the rest of the
shells are N7 = N16 = 253, N8 = N15 = 506, N11 =
N12 = 1288 . Each of the pairs of shells (7; 16), (8; 15),
and (11; 12) possesses the following complementarity
property: in each pair of shells, the vector obtained by
complementing the binary entries of any code word in
the first shell will be a valid code word belonging to
the second shell, e.g., 00010010101101001011011 ∈ S11

will be transformed by complementing the bits into
11101101010010110100100 ∈ S12 .

By the definition of the cyclic code [6], for any given
code word from one shell of the 23-dimensional Go-
lay code, 22 other code words from the same shell can
be obtained through cyclic shifts. Therefore, for each
shell having Ni code words, one can choose Ni/23 code
words, which can generate the entire shell by cyclic
shifts. These vectors are dubbed here cyclic leader vec-
tors and the set of code words obtained through all the

1270



cyclic shifts of one cyclic leader vector is referred to as
cyclic leader class of that vector. Each shell of a binary
Golay code can be defined as a union of cyclic leader
classes. As a consequence, the entire Golay code can be
represented as a union of cyclic leader classes.

The Golay code is not unique and there are several
generator matrices for it. Thus, the set of cyclic leader
vectors used to define a Golay codebook is not unique.
Moreover, even for a given generator matrix, every code
vector from a cyclic leader class can be considered a
cyclic leader vector. The principle we use in the follow-
ing can be applied no matter the particular implemen-
tation of the codebook and cyclic vector selection.

We are storing for each shell of the Golay code a
bi-dimensional array of integers, where the integers on
each line of the array represent the position of the units
in one of the cyclic leader vector. There are only three
arrays defining the six non-trivial shells, because we use
the complementarity property, such that the array which
indicates the positions of ones for the shell of weight 7
will also indicate the positions of zeros for the shell of
weight 16 (the same applies for the other two arrays, for
the pair 8-15 and for the pair 11-12).

The nearest neighbor search in a shell can be per-
formed as exemplified in the following. For the search
in a given shell, the distortion minimization can be re-
placed by the maximization of the scalar product be-
tween the input vector and the code words, given the
fact that within the same shell all code vectors have the
same Hamming weight. The search is done simultane-
ously in the two shells, based on the property of com-
plementarity, such that the scalar product for the com-
plementary shell is obtained by subtracting the scalar
product computed for the first shell of the pair, from
the sum of the components of the input vector. The
two search procedures can be separated if the nearest
neighbor is needed only for one of the shells.

There are two main loops in the search procedure,
one over all the cyclic leader vectors defining the shell
and the second one over all the cyclic shifts for a given
leader. The result of the search procedure is represented
by the optimal leader vector indexes, for each of the two
shells, and the indexes of the optimal cyclic shifts for
the corresponding leader vectors. The shells with the
highest complexity are those of weight 11 and 12 and
the complexity of search in weighted million operations
per second (WMOPS) for these shells is relatively the
same as for a fast method based on the hexacode [4]
devised along the lines of [5].

The method presented here allows further reducing
the complexity by adjusting the number of cyclic lead-
ers or the number of cyclic shifts on which the search is
performed. In the context of the quantization tool pre-
sented in [3], the performance drop due to the reduction
of the codebook can be compensated by the fact that
there are actually less bits needed to encode a Golay
code word and potentially more sub vectors can be rep-
resented by Golay code words. The overall complexity
of this method compared to that of a direct search on
each shell is more than halved.

In view of the fact that not all the cyclic shifts are
considered in the search, the arrays defining the code-
book can be optimized such that the ones in the code

words are evenly covering the 23-dimensional space.

3. RESTRICTING THE NUMBER OF
SHELLS BASED ON SUBVECTOR NORMS

Prior to the evaluations for each tuple V in step 2 of
Algorithm 1, the scalar products sij = y[i]T c∗(y[i], dj)
should be estimated for each subvector and each shell of
the Golay code, procedure which demands a relatively
large computational effort. There are several heuristic
observations which help to reduce the complexity by re-
stricting the number of scalar product calculations.

First of all, the small number of available bits practi-
cally restricts the maximum number of subvectors which
are coded by Golay code words to a value lower than nb.
In the optimization process, the most likely subvectors
to be quantized by Golay code words are those having
higher energy, therefore we can reduce the number of
subvectors for which the scalar product is evaluated.

Secondly, it is less likely that a subvector with high
energy will be coded by a Golay code word from a lower
Hamming weight shell, and similarly there is smaller
probability that a subvector with low energy will be
quantized by a Golay code word from a higher Ham-
ming weight shell.

In the nearest neighbor search algorithm on Golay
code shells, the shells with the highest complexity re-
quirements are the shells of Hamming weights 11 and
12. Therefore we try to find ways in which we can re-
duce the usage of shells 11 and 12.

With the help of these heuristics we can devise
several lower complexity variants of the quantization
method, that will be detailed in the experimental sec-
tion. The resulting methods will have significantly lower
complexity, but they will entail also a reduction in com-
pression performance.

In addition, there are two bit-exact modifications
that help reduce the complexity, but by a lower amount.
They relate to the generation of the tuples V , which
we decide to pre-store for the most frequent number of
available bits (which depends on the most frequent num-
ber of outliers). Apart of these intra-frame savings we
can achieve inter-frame savings by checking from a long
input vector to the next if the number of outliers is the
same, allowing to use the same array of tuples.

4. EXPERIMENTAL RESULTS

Throughout the experimental section we consider two
data sets. The first contains 14167 long vectors (frames)
with 280 components each derived from a wide range of
speech and music material. The entries in the vectors
are differential MDCT coefficients in a layer of an em-
bedded scalable experimental audio codec. The second
set is similarly derived from the speech and music files
from Table 3.

The performance is evaluated in terms of distortion
by segmental SNR (average of SNR over all the frames)
and complexity evaluated in WMOPS.

The original method [3] had, on the first test set, a
segmental SNR of 2.59 dB for a bit rate of 144 bits per
frame, whereas the Voronoi extension to the RE8 lattice
[7] benchmark method had a segmental SNR of 2.36.
The experimental results of this paper are compared to

1271



those of the original method and further benchmark re-
sults can be found in [3].

The complexity of the method implemented prior to
any proposed complexity reduction techniques has been
evaluated to 24 WMOPS.

By using the proposed limitation at 6 for the num-
ber of blocks to be coded by Golay code words, the
complexity has been brought down to 12 WMOPS, and
the performance has remained unchanged.

We consider next the complexity reductions by re-
stricting the number of shells. For the case of 144 avail-
able bits (without the 7 bits needed for the quantization
of the overall gain), there are at most 6 subvectors from
the 280-dimensional vector that are coded by Golay code
words. The considered variants are described next. For
all the variants the subvectors are decreasingly sorted
with respect to energy.

Variant A1: assuming that the first 3 out of the 6
subvectors have significantly higher energy, we compute
the scalar product for subvectors 1-3 only for shells 8,
11, 12, 15. For the subvectors 4-6 which have smaller
contribution to the overall distortion, we decide to skip
the very expensive search on the shells 11 and 12.

Variant A2: we compute the scalar product for sub-
vectors 1-4 only for the shells 8, 11, 12, 15. For the
subvectors 5-6 we skip the very expensive search on the
shells 11 and 12.

Variant Nr. of Shells SNR Cplx.
subvect. (7,8,11,12,15,16) (WMOPS)

A1. 1-3 (8,11,12,15) 2.54 7.3
4-6 (7,8,15,16)

A2. 1-4 (8,11,12,15) 2.55 8.3
5-6 (7,8,15,16)

A3. 1-3 (7,8,11,12,15,16) 2.55 7.9
4-6 (7,8,15,16)

A4. 1-4 (7,8,11,12,15,16) 2.56 9.2
5-6 (7,8,15,16)

A5. 1-3 (11,12) 2.51 5.9
4-6 (7,8,15,16)

Table 1: Segmental SNR and complexity evaluation for
the methods based on the reduction of the number of
shells.

For the remaining variants the restrictions on shells
are listed in Table 1. All variants include the previously
presented methods for bit exact complexity reduction.

The complexity values, in terms of WMOPS, and the
corresponding segmental SNR values are presented for
each of the five variants in Table 1. The difference be-
tween variant A1 and A2 is that an additional subvector
is encoded using shells 8, 11, 12, 15, which leads to an
increase of 1 WMOPS in complexity and an insignificant
increase in performance, due to the fact that the fourth
subvector has less energy than the first three subvectors
and, thus, does not bring a significant contribution to
the overall performance. Therefore, the usage of shells
11 and 12 for subvectors with lower energy is unjusti-
fied if we want to drastically reduce the complexity of
the schemes. The same principle applies to the next set
of variants, A3 and A4.

Since the variant A1 has reasonable complexity re-
duction and just a slight performance degradation, we
select it for the rest of the experiments, performed with
the second data set.

We proceed to testing the variants provided by the
reduction of the number of cyclic shifts and the reduc-
tion of the number of leaders considered for each shell.
In these experiments the total number of available bits
is 153 (without the 7 bits for the quantization of the
overall gain).

In the first approach (A11) we perform only half of
the cyclic shifts of each of the leader vectors and, as ex-
pected, the complexity is halved with respect to variant
A1, but the SNR value is diminished. It should be noted
that when only half of the cyclic shifts are considered
for each leader vector, 11 bits are enough to encode the
resulting Golay code words. Results in terms of com-
pression performance and complexity are presented in
Table 3. The compression and complexity values are
presented also for the encoding based on the Voronoi
extension (RE8).

Shell Number of Number of
cyclic shifts leader vectors

7, 16 23 11
8, 15 20 22
11, 12 1 56
23 1 1

Table 2: Number of cyclic shifts for the leader vectors
from each shell.

The second approach (A12) considers a more drastic
reduction of the number of cyclic shifts presented for the
leader vectors in each shell in Table 2.

The resulting Golay code based codebook can be di-
vided in two parts. The first part contains the code
vectors generated by the leaders in shells of Hamming
weight 7, 16, and 23 (i.e. 11 · 23 + 11 · 23 + 1 = 507 code
vectors) and the second part contains the code vectors
generated by the leader vectors from shells 8, 11, 12,
and 15 (i.e. 22 · 20 + 56 · 1 + 56 · 1 + 22 · 20 = 992 code
vectors). The first set can be addressed using 9 bits and
the second one using 10 bits; one additional bit is used
per subvector to specify the set.

A third variant (A13) consists in halving the number
of leader vectors for each shell, thus reducing to 11 the
number of bits used to represent the Golay code words
obtained by all cyclic shifts of the selected leader vectors.
The results for variants A12 and A13 are presented in
Table 3.

It can be observed that both variants A11 and A13
reduce the complexity to half with respect to A1, but
there is also a significant degradation in SNR.

With the exception of three files that are character-
ized by very energetic outliers, the Golay based meth-
ods have better compression performance. The encod-
ing complexity is higher than for the Voronoi exten-
sion based method. However, the decoding for the pro-
posed methods based on Golay codes is faster than the
decoding for the Voronoi extension based method (0.1
WMOPS compared to 0.28 WMOPS).

1272



File Description A1 A11 A12 A13 RE8 [7]
SNR Cx. SNR Cx. SNR Cx. SNR Cx. SNR Cx.
(dB) (dB) (dB) (dB) (dB)

es01 Vocal (S. Vega) 2.86 7.4 2.83 4.4 2.85 4.1 2.82 4.4 2.82 1.3
es02 German male speech 2.84 7.4 2.80 4.4 2.84 4.1 2.80 4.4 2.63 1.3
es03 English female speech 3.03 7.4 2.99 4.4 3.02 4.1 2.98 4.4 2.85 1.3
sc01 Trumpet solo and orch. 3.88 7.4 3.82 4.4 3.88 4.1 3.82 4.4 3.82 1.3
sc02 Classical orch. music 3.12 7.4 3.08 4.5 3.12 4.1 3.08 4.4 2.97 1.3
sc03 Contemp. pop music 2.69 7.5 2.66 4.5 2.70 4.1 2.66 4.4 2.51 1.3
si01 Harpsichord 3.00 7.4 2.97 4.4 3.00 4.1 2.96 4.4 2.93 1.3
si02 Castanets 3.00 7.4 2.97 4.4 2.99 4.1 2.95 4.4 3.18 1.3
si03 Pitch pipe 3.40 7.4 3.36 4.4 3.40 4.1 3.35 4.4 3.42 1.3
sm01 Bagpipes 3.72 7.4 3.70 4.4 3.72 4.1 3.67 4.4 3.84 1.3
sm02 Glockenspiel 4.61 7.2 4.51 4.2 4.52 3.9 4.44 4.2 6.10 1.2
sm03 Plucked strings 3.08 7.5 3.04 4.5 3.09 4.1 3.04 4.4 2.87 1.3

Table 3: Segmental SNR and complexity evaluation for the methods based on the shells number reduction (A1),
based on the cyclic shifts number reduction (A11, A12), and based on the leader vector number reduction (A13).

The best performer is the method A12, where the
number of cyclic shifts is drastically reduced for the
shells 11 and 12 (which have the highest complexity re-
quirements). The reduction in complexity is substantial,
and the segmental SNR is even increased due to different
bit consumption by the Golay code vectors.

5. CONCLUSION

In this work we have presented several approaches of
reducing the complexity of a low bit rate quantiza-
tion scheme based on shells of Golay codes. The most
time consuming procedures, namely the search on Golay
shells and the process of bit allocation are made faster by
using properties of the Golay codes represented as union
of cyclic leader classes and by restricting the bit allo-
cation search process based on the energy distribution
among subvectors. The complexity is 5 times reduced,
while preserving the very good compression efficiency of
the original method.

REFERENCES

[1] T. Vaillancourt, M. Jeĺınek, A. E. Ertan, J.
Stachurski, A. Rämö, L. Laaksonen, J. Gibbs, U.
Mittal, S. Bruhn, V. Grancharov, M. Oshikiri, H.
Ehara, D. Zhan, F. Ma, D. Virette, S. Ragot “ITU-
T EV-VBR: A robust 8-32 kbit/s scalable coder for
error prone telecommunications channels” in Pro-
ceedings of EUSIPCO 2008, Lausanne, Switzerland,
August, 25-29, 2008.

[2] S. Ragot, B. Kövesi, R. Trilling, D. Virette, N. Duc,
D. Massaloux, S. Proust, B. Geiser, M. Gartner, S.
Schandl, H. Taddei, Y. Gao, E. Shlomot, H. Ehara,
K. Yoshida, T. Vaillancourt, R. Salami, M. S. Lee,
and D. Y. Kim “ITU-T G.729.1: An 8-32 kbits/s
scalable coder interoperable with G.729 for wide-
band telephony and voice over IP” in Proceedings of
ICASSP 2007, Honolulu, Hawaii, USA, April, 15-20,
2007.

[3] I. Tabus and A. Vasilache “Low bit rate vector quan-
tization of outlier contaminated data based on shells

of Golay codes” in Proceedings of DCC 2009, pp.
302-311, Snowbird, USA, March 15-18, 2009.

[4] V. Pless “Decoding the Golay codes”, IEEE Trans-
actions on Information Theory, vol. 32, no. 4, pp.
561-567, 1986.

[5] A. Vardy and Y. Be’ery “More efficient soft decoding
of the Golay codes”, IEEE Transactions on Informa-
tion Theory, vol. 37, no. 3, pp. 667-672, 1991.

[6] F.J. MacWilliams and N.J.A. Sloane “The theory of
error-correcting codes” Amsterdam, North-Holland,
762 p., 1977.

[7] S. Ragot, B. Bessette and R. Lefebvre “Low-
complexity multi-rate lattice vector quantization
with application to wideband TCX speech coding
at 32 kbit/s” in Proceedings of ICASSP 2004, vol. 1,
Montreal, Canada, May 17-21, 2004.

[8] J.H. Conway and N.J.A. Sloane “Soft decoding tech-
niques for codes and lattices, including the Golay
code and the Leech lattice”in IEEE Transactions
on Information Theory, vol. IT-32, no. 1, pp. 41-50,
January 1986.

[9] S. Ragot, J.-P. Adoul, and R. Lefebvre “Hexacode-
based quantization of the Gaussian source at 1/2
bit per sample”, IEEE Transactions on Communi-
cations, vol. 49, no. 12, pp. 2056-2058, December
2001.

[10] J.-P. Adoul and C. Lamblin “A comparison of some
algebraic structures for CELP coding of speech”in
Proceedings of ICASSP 1987, vol. 12, pp. 1953-1956,
Dallas, Texas, USA, April 06-09, 1987.

[11] Z. Ben-Néticha, P.Mabileau and J.-P. Adoul “The
”Streched”-Golay and other codes for high-SNR
finite-delay quantization of the Gaussian source at
1/2 bit per sample”, IEEE Transactions on Commu-
nications, vol. 38, no. 12, pp. 2089-2093, December
1990.

1273


