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ABSTRACT

We propose a new algorithm for onset detection in hummed
queries for QBH applications. The algorithm uses a mod-
ified version of a popular loudness model for human hear-
ing to identify onsets in hums. We also propose the use of
a local minimum function to identify onsets better. A sub-
band based sone scale processing that is advantageous for a
simple implementation is used. On an annotated database
of syllabic and natural hums, the algorithm identifies onsets
correctly on an average 90% of the time with only 6% false
positives. The features used in this algorithm can be used in
conjunction with other feature / decision fusion based onset
detection systems.

1. INTRODUCTION

Onset detection in free singing or humming forms a very im-
portant stage in a query by humming ( QBH ) system[1].
Accurate note onset detection improves the melody transcrip-
tion stage and hence leads to better retrieval even with simple
string matching techniques. Note onset detection in hummed
queries is a challenge since human voice has a dynamic na-
ture and methods applied for instrumental audio do not seem
to be satisfactory for human hums[2]. Prechelt et al [3] ob-
serve that note segmentation forms the toughest part of the
transcription algorithm and suggest that notes should be sep-
arated with silences / breaks in humming. Since humans un-
trained in music have tremors in their hums leading to huge
variations in their note frequencies, robust note onset detec-
tion algorithms for QBH systems have to either consider such
tremors ( which may, at times, be interpreted as soft onsets)
or force users to hum using certain restricted syllables like
/ta/ [1]. Lessafre et al [4] in a survey show that users of QBH
systems sung using syllables /na/, /la/, /ta/ and /da/ in thede-
creasing order of preference with natural humming ( using
the syllable /hm/ ) being preferred by a very small percent-
age of users. The above study suggests that researchers must
concentrate on solving the note onset problem in sung sylla-
bles like the ones suggested above.

Toh et al[2] used multifeature fusion based learning algo-
rithm to model features from onset and non-onset sounds as
GMMs. Kumar et al[5] have used a fused detection function
based on loudness, sub-band energy, full band energy and
their derivatives using biphasic filters on sung syllables /da/,
/na/ and /la/. Kumar et al[6] further modified the algorithm
in [5] with improved heuristics to include even the natural
hum using the syllable /hm/. Both the above mentioned al-
gorithms involve a significant learning portion for choosing

thresholds at various levels and also heuristics to optimise
their performances.

We present here an algorithm that relies on a psychoa-
coustic model of loudness and a non-linear smoothing of the
sub-band loudness function to enable onset detection in syl-
labic and natural humming. We also motivate the correlation
of our thresholds to perceptual aspects of input audio that
enable us to manipulate them easily.

2. LOUDNESS MODEL BASED ONSET
DETECTION ALGORITHM

Onset detection for polyphonic audio using psychoacoustics
was first proposed by Klapuri[7]. Thoshkahna et al[8] pro-
posed an improved algorithm by using a different represen-
tational system of the audio input to the loudness model.

Onset detection in hummed queries poses a challenge due
to singer / hum imperfections which lead to spurious onsets
[2]. Humans have an innate ability to detect only real on-
sets and ignore trmeors and modulations while humming. To
simulate the same performance, we propose a modification
to the sub-band partial loudness function followed by a deci-
sion fusion across sub-bands to enable robust onset detection
as in [8]. The onset detection algorithm is shown in Fig.1.
The algorithm is explained in detail below.

2.1 Normalization of hum audio

This first step takes care of various recording and sam-
pling conditions. All audio are resampled to 8kHz and their
RMS(Root mean squared) SPL( sound pressure level) scaled
to 70dB to simulate a comfortable hearing level among hu-
mans.

2.2 ERB ( Equivalent Rectangular Bandwidth ) Filter-
bank

We follow a frame based processing to allow for the dy-
namic nature of hum signals. The normalized audio is split
into frames of 30ms with an overlap of 20ms to ensure a
smooth variation in signal characteristics. This signal is
passed through an ERB filterbank stretching from 50Hz to
4kHz. There are 51 uniform 0.5 ERB apart filters in the ERB
scale[9] in the frequency range of interest. Signal rectifica-
tion and energy integration within the 30ms window is per-
formed to simulate the workings of the inner ear. Each frame
of audio now has 51 excitation energy features that are fed
to the range adaptation block that simulates a time localised
dynamic range adaptation.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 939



Figure 1: Onset detector

2.3 Dynamic range adaptation

Over a long time window of say 5 secs, we perform a dy-
namic range adaptation. Within each 5 second window
we have 5000 frames of audio. Each frame of audio has
51 features. We call each of these features a T-F (time-
frequency) feature. To simulate the dynamic range adapta-
tion, we choose the T-F feature that has the maximum energy
over a 5s window. We retain only those T-F features that are
within 35dB of this maximum and neglect the rest. This en-
ables us to neglect puffs of breath in the input hum that can
be present before actually singing a new syllable ( this can
create spurious onsets ) .

Furthermore, for each frame in this 5s window, we
choose a maximum T-F feature and retain only those T-F fea-
tures that are within 25dB of this maximum and neglect the
rest of the T-F features. This step has the effect of neglecting
low energy sub-bands from contributing to the actual onset
detection process.

This dynamic range adaptation results in around 7%
improvement in onset detection for monophonic and poly-
phonic audio [10] and hence this step is retained for hum au-
dio even though the ear does not display such a phenomenon
that we know of.

2.4 Min function processing

This step performs a non-linear smoothing of the audio sig-
nal excitation energy to block out potential tremors in singing
and background recording noise from influencing the onset
decision process. This minimum function smoothing is per-
formed by choosing a small window of 2 frames around the
frame of interest and replacing the excitation energy in the

Figure 2: Comparison of various functions of excitation en-
ergy ( after passing through the loudness model )

frame by the minimum in the whole of the window. The min-
imum function smoothed excitation energy functionEsigmin is
given by:

Esigmin(i, j) =
k= j+2
min

k= j−2
Esig(i,k) (1)

whereEsig(i,k) is the excitation energy for theith sub-
band at thekth frame. Similarly the excitation energy was
processed with various other functions such as the local max-
imum, mean and median. As shown in Fig.2, the minimum
function preserves the onsets best while suppressing spurious
noise that can be caused either due to recording conditions or
tremors in the singer’s voice. The min-function processed ex-
citation energy is fed to Moore’s loudness model to calculate
the loudness in sones.

2.5 Moore’s loudness model

Moore’s model of loudness has been one of the popular mod-
els to explain human perception of loudness[9] and can be
easily implemented. We use the same model of implementa-
tion as proposed by Timoney et al [11]. For each frame, sub-
band excitation energies (T-F features) are fed to the loud-
ness model to be compared to the threshold of hearing at the
corresponding sub-band center frequencies. Only sub-bands
with the excitation energy greater than the threshold of hear-
ing contribute to the partial loudness ( measured in sones ).
The partial loudness in sub-bandi for thekth frame,Li(k) is
given by:

Li(k) = C.(Esigmin(i,k)
α
−Eth(i)

α ) (2)

whereEsigmin(i,k) is the smoothed excitation energy of thekth

frame in theith sub-band andEth(i) is the excitation due to
the threshold of hearing at theith sub-band. We get theEth(i)
by passing pure sinusoids ( of rms MAF ( Minimum Audible
Field ) values at the filter centers ) through the ERB filter-
bank. The constantα does the audibility range compression
that occurs in the human auditory system and has a value of
0.24 and the constantC is used to calibrate the model and
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Figure 3: SLR functions for all 51 sub-bands.The peaks show
significant subband loudness changes

has a value of 0.04. The total loudness is the weighted sum
of sub-band loudness for a frame with the weight being the
ERB distance between the sub-band filters ( 0.5 in our case ).

2.6 Loudness change detection function

Since the sone scale is used, loudness change across frames
is calculated by taking the ratio of partial loudness in theith

frame to the(i−1)th frame. A ratio of 2 between framei +1
andi means that loudness has doubled from framei to i +1.
This can be used as a cue to locate onsets because during on-
sets some sub-bands shall display significant change in loud-
ness even if the total loudness has not changed. This phe-
nomenon is due to tonal discontinuity [6]. If there has been
a significant change in total loudness then due to clear dis-
continuity or partial discontinuity or mixed discontinuity[6],
we can observe a good change in loudness at certain sub-
bands. To detect loudness change, we use the loudness ra-
tio between current frame loudness and the average loudness
over the previousk frames as the detection function. This av-
eraging has the effect of smoothing out spurious peaks in the
loudness ratio function while preserving onsets. LetLimean be
the mean loudness of theith frame, then

Limean( j) =
∑ j−1

m= j−k Li(m)

k
(3)

SLRi( j) =
Li( j)

Limean( j)
(4)

SLRi( j) > Thrloud (5)

whereSLRi is the sub-band loudness ratio ( SLR ) for the
ith sub-band. We tried withk= 2 tok= 7 in Eqn.3 and found
thatk = 5 gave us optimal results . For each sub-band, only
those frames where a loudness change greater thanThrloud =
1.5 are retained while other frames are made 0. The SLR for
all the 51 sub-bands are plotted in Fig.3.

2.7 Binary thresholding and onset grouping

An onset produces spectral / timbral changes across sub-
bands [5, 6, 12] and hence the SLR function must display
significant loudness changes in several sub-bands for a valid
onset. To simulate this we use a second thresholdThrf ilt = 6
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Figure 4: Plot of the Number of sub-bands experiencing a
significant SLR vs Time
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Figure 5: Detected onsets superimposed on hum signal

to choose onsets that are significant in at least 6 sub-bands as
shown in Fig.4. The figure shows a plot of number of sub-
bands that experience significant loudness change against
time. Finally, the group of onsets that are close ( less than
60ms apart ) are grouped together and represented by the
strongest onset in the group[7, 13]. Fig.5 shows the onsets
detected superimposed on the original hum signal.

2.8 Experiments and Results

We have tested our algorithm on an annotated database of
syllabic and natural hums. The database has hums using the
syllable /da/, /la/, /na/ and /hm/. There are 47 hums corre-
sponding to each of the syllables hummed by 5 singers. All
the hums have been recorded in a noise free environment at
22kHz sampling rate. Onsets were manually labelled using
the gating method[14]. More details about the database and
it’s annotation can be found in [5, 6]. The parameters used
for our simulations were obtained by optimizing the algo-
rithm’s performance over a set of 10 hums, disjoint from the
test set.

Onsets found using the algorithm are compared with the
annotated database and an onset is considered valid (Correct
Detection (CD) ) if it is closer than±70ms to the reference
onset, otherwise it is marked as a false positive (FP). The
database has a total 2994 onsets when we consider only the
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Table 1: Accuracy of the onset detection algorithm for each
syllabic class of hums

Hum class Actual C.D F.P %C.D %F.P
/da/ 756 737 18 97.5 2.4
/la/ 735 686 46 93.2 6.2
/na/ 765 710 32 92.8 4.2
/hm/ 738 544 82 73.6 11

/da/+/la/+/na/ 2256 2133 96 94.5 4.2
Total 2994 2677 178 89.4 5.9

first 10 seconds of each file for our tests. The performance
of the algorithm is shown in Table.1. For the 3 classes con-
sidered ( only /da/,/la/ and /na/) our algorithm matches the
system in [5]. The advantage of our algorithm compared to
[5, 6] is in the reduced processing, simplicity of implementa-
tion and very little post-processing. We achieve comparable
results with just one feature with very little use of heuristics
while [5, 6] use heuristics based on nature of speech, aspira-
tion etc to achieve optimal results.

As can be seen, compared to the existing algorithms that
require heuristics to choose the multiple thresholds, our al-
gorithm gives a good performance and it is simple to choose
the thresholds. Both the thresholdsThrloud andThrf ilt have
a physical correspondence to the audio signal. A higher value
of Thrloud would suggest that we consider detecting only
hard onsets while a lower value would suggest even soft on-
sets would be considered. Similarly, a higher value ofThrf ilt
suggests that we detect only sounds that have greater timbral
texture while a lower value suggests that we can detect even
soft onsets or sounds concentrated in narrow frequency bands
( Ex: bass drums).

3. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a simple algorithm us-
ing psychoacoustics to detect perceptually relevant onsets in
hum/syllabic query audio. Though some optimization needs
to be done for natural hums ( using /hm/ ), it’s performance
for syllabic humming matches that of current state of the
art systems. Another advantage is the perceptual perspec-
tive to the choices of thresholds which allows us to choose
only strong onsets or even weak onsets depending upon their
strength. This algorithm is currently acting as a front end for
a QBH system currently under development. The algorithm’s
performance is being optimized to work for real recording
conditions in various noisy environments and initial results
in this direction are promising.
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