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ABSTRACT

We propose a new approach for describing doubly dispersive
discrete-time channels based on concepts from Gabor analy-
sis. The channel input is mapped onto the output via time-
frequency signal representations based on tight Gabor frames.
The prototype functions constituting tight frames are adapt-
able to diverse signal types and channel conditions. For wide-
sense stationary uncorrelated scattering channels, optimized
prototypes minimizing an inherent model error are presented.
We obtain the optimized prototypes via convexr optimization
methods. Simulation results show that our prototypes per-
form very well unless the channel dispersions are severe in
both delay and Doppler domains.

1. INTRODUCTION

In wireless communications, the usually encountered chan-
nels are doubly dispersive (DD), that is, they exhibit non-
zero delay and Doppler spreads [1]. The time-frequency (TF)
dispersive nature of the channel suggests that TF analysis
techniques [2] are ideally suited tools for processing signals
transmitted over DD channels. Gabor analysis is viewed as
the branch of TF analysis which is concerned with the use of
discrete coherent families [3]. Such families are obtained by
applying a set of TF shifts to a given prototype (or window)
function. The TF representation of a discrete-time signal
can be obtained via a Gabor transform, which is defined as
the sampled version of a short-time Fourier transform, by
projecting the signal onto the set of TF shifted prototype
functions. Moreover, in [4] a valuable way for the approxi-
mation of linear operators in the TF domain has been pro-
posed, which is referred to as Gabor multipliers. In fact, the
operators that do not involve TF shifts of large magnitude
(i.e. an underspread channel operator) can be accurately ap-
proximated by Gabor multipliers. The accuracy of the ap-
proximation depends on the prototype functions in use and
the associated lattice constants.

We are interested in using the concept of Gabor multi-
plier to approximate an underspread channel operator. If
we multiply the coefficients of the transmitted signal in the
TF representation element-wisely with the respective chan-
nel gain, the result is an approximation of the channel out-
put in the TF domain [5]. This concept for representing DD
channels can also be seen as a generalization of the frequency
domain ”single-tap” channel description in orthogonal fre-
quency division multiplexing (OFDM) receivers. Further-
more, the aforementioned time and frequency shifts can be
chosen in line with the coherence time and coherence band-
width of the DD channel. In case of a fast varying channel
with a small coherence time or, equivalently, a large Doppler
spread, the time shift can be adjusted to small values accord-
ingly. The scalability of the TF domain channel description
in time and frequency enables the adaptation to DD chan-
nels with different delay and Doppler spreads. The proposed
channel description is independent of the particular signal
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types (e.g., single carrier, multi carrier, spread-spectrum sig-
nals), making it suitable for flezible radio systems which can
handle different air interfaces [6].

In [7, 8, 9] some related work on finding the optimal
prototype pair of transmit pulse and matched filter for
DD channels has been presented. The resulting TF well-
localized pulses minimize the intersymbol/intercarrier inter-
ference caused by the time/frequency dispersion of the chan-
nel, which is advantageous over conventional OFDM signal-
ing. A related optimization problem is addressed in this pa-
per, however, we employ Gabor analysis for parameterizing
the channel operator rather than for the signal design.

The rest of the paper is organized as follows. In Sect. 2
the TF domain channel description is discussed. An ob-
jective function for the prototype optimization is derived
for wide-sense stationary uncorrelated scattering (WSSUS)
channels in Sect. 3. Furthermore, a parameterization of tight
Gabor frames as described in Sect. 4 is required. In Sect. 5,
we discuss the optimization procedure based on semidefinite
programming (SDP), and numerically computed prototype
functions are presented in Sect. 6. Conclusions are drawn in
Sect. 7.

Notation: We let C™*™ denote the set of the complex
n X n matrices. The set of integers is denoted as Z, and
12(Z) represents the space of square-summable discrete-time
sequences. The paraconjugation of a function G(z) is defined
by G(z) = G*(z™'), where (-)* stands for complex conjuga-
tion. The imaginary unit is represented as 7. The inner
product of l3(Z) is denoted as (-,-). Vectors and matrices
are printed in boldface. We let tr(A) represent the trace of

a matrix A, ()H the conjugate transpose of a matrix, and
Il the Frobenius norm. We write A > 0 to indicate that A
is a Hermitian positive semidefinite matrix. The Kronecker
delta function is denoted as d[n].

2. SYSTEM MODEL

Let us consider a Gabor family of elementary functions
(g1,m)(1,m)ea with the index set A =Zx {0,...,M —1}. An
elementary function g; ., is obtained by shifting a prototype
function g € l2(Z) in time and frequency, i.e.,

gi.m[n] = g[n — IN]exp(s27(n — LN)m/M) (1)

with N, M positive integer constants. The Gabor family
(91,m)@,m)yen is a Gabor frame for 12(Z), if there exist two
constants A, B > 0 such that

AllfIP< > Kfogm)l < BIIFI®
(I,m)eA

holds for all f € l3(Z), and the frame is tight [10] if A = B.
A discrete-time signal s € [2(Z) can be transformed to the
TF domain by the analysis operator

Q LS = (<S7glym>)(l,m)€1\’ (2)
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where ((s, g1,m)) ;,m)ea are the TF coefficients of the signal.
Conversely, the synthesis operator G* is given by

G": (bim)tmyen — Z bi,mgi,m[n]. (3)

(I,m)eA

Note that the following discussion is based on an element
density fulfilling N/M < 1, which is a necessary condition
for a Gabor frame. If (gi,m)@,m)ea generates a normalized
tight Gabor frame (A = B = 1), the signal can be perfectly
reconstructed as (G*(Gs))[n] = s[n] Vs € l2(Z). In this pa-
per, we will only consider tight Gabor frames since tight
fames can be properly parameterized which allows the pro-
totype optimization problem to be formulated in SDP form
as in Sect. 5.

To analyze the signal transformation over a dispersive
channel, we first define the channel operator as

H:xn] - yn] = ealglzln — g, (4)
q=0

where ¢, [g] denotes the time-variant impulse response with
n and q representing the time and delay dimensions, respec-
tively. The channel gain over time and frequency is given by

the time-variant transfer function C,(w) = ch [qle™""1.
q=0

In the following we represent a channel as (hi,m)q,m)ea,
where
him = Cin(27m/M). (5)

Hence, given the channel input signal z[n], it is straightfor-
ward to approximate the channel output signal y[n| as

il = > hm (@, 9,m) gm0 (6)

(I,m)eA

In (6), the channel mapping is approximated by the concate-
nation of a Gabor analysis operator, an element-wise multi-
plication by a sequence of channel coefficients, and a Gabor
synthesis operator. A linear operator of the same form as
(6) is known as a Gabor multiplier [11]. The performance
of the Gabor multiplier approximating the channel opera-
tor depends on the prototype function g[n] and the lattice
constants N and M.

The channel description (6) is similar to the frequency
domain ”single-tap” channel representation in OFDM re-
ceivers. In OFDM systems, the channel is viewed as a set
of "flat-fading” subchannels. If we think of the DD chan-
nel having a ”time-varying” frequency response, the channel
coefficient h; ., is chosen as the channel gain at the mth
subband and the lth time instant ((IN,27m/M) in the TF
plane). It is possible to define a TF concentrated proto-
type function g[n] such that the energy of g,[n] is essen-
tially confined within an area around (IN, 2rm/M) in the TF
plane. Hence, in the area around (IN,27m/M) the channel
can be viewed as flat, i.e., narrow-band time-invariant. This
can be seen as an extension of the channel description in
OFDM. Moreover, the lattice constants N and M can be
chosen in line with the coherence time and frequency, re-
spectively, of the channel.

Fig.1 illustrates the TF domain channel description
of DD channels using related filter bank theoretical nota-
tion [12]. The z-transform of the prototype function g[n]
is denoted as G(z) = > .. ___g[n]z"". In the figure,
({@,91.m)) (1, myen is obtained at the output of a M chan-
nel filter bank with down-sampling factor N. The trans-
fer function of the analysis filter bank is given by Gm(z) =

G(zexp(s2mm/M)),m =0,...,M — 1. The TF coeflicients
({x, 91,;m)) (1, myen Of the signal z[n] are multiplied element-

wisely by (hi;m)@,m)ea. Finally, the signal is transformed
back to the time domain by the synthesis filter bank.

(h1)iez

g TR TS e

analysis filter bank synthesis filter bank

(hipr-1)iez

Figure 1: TF domain channel description.

The "single-tap” approximation in (6) represents the dis-
tortions of DD channels in a simple way, however, at the cost
of a certain degradation in accuracy. Usually, the accuracy
of the channel description directly influences the bit-error
rate performance of the receiver.

3. MEAN-SQUARED ERROR ANALYSIS

To analyze how well the TF domain channel description (6)
approximates the signal mapping by actual dispersive chan-
nels, we assume a WSSUS channel. The delay power spec-
trum is denoted as Sr[q], where S-[¢g] = 0 for ¢ < 0, and
the time correlation function, defined as the Fourier trans-
form of the Doppler power spectrum, is represented as ¢;[n].
The two of them are normalized such that 27 S-[q] =

1,¢¢[0] =1 . The second-order statistics of the channel can
be represented by

E[cu[menlql] = ¢e[n — u]Sy[m]é[m — q]. (7)

Assuming the random input signal z[n] with E[z*[n]z[m]] =
d[n — m], we formulate the error from the channel descrip-
tion (6) as the difference between the output of the random
channel y[n] = Hz[n] and §[n] in the TF domain. The mean-
squared error (MSE) per TF coefficient can be expressed as
a function of the prototype g € l2(Z),i.e.,

ense, ., (9) = E [|(H2, gim) — him (. 90m)?] - (8)

Since the channel is wide-sense stationary in both [ and m,
€MSE, ,, (9) is independent of (I,m) € A. We further rewrite

(8) as
|<H$’7 gl,m> ‘2

emse(g) = FE +E

hhm<$»mnnﬂ2}

—2F §R(<Hmvgl,m>h;,m <$7gl,m>*) ) (9)

where R () denotes the real part operator. Both the
input signal power and the gain of the channel are
normalized to unity, and therefore E [|(Hz, gl,m)|2] and
E [|hi,m <I791,m>‘2} equals the energy ||g||®> of the proto-
type, where ||-|| is the L? norm. By applying (1) and (7)
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E [R ((Hz, gi,m) hi m (x,91.m)")] can be rewritten as

E

R ((Hz, grm) b (2, g1.m) ") }

= E[éR( > > calalaln — dlgimln]

n=-—00 qg=—00

oo

Y cn[k]eTMN f*[p]gz,m[p])]

k=—o0 p=—o00

g?< S0 D enldlgimlnlcin ke Mgl,m[n—qD]

n=—ocog=—ook=—00

=F

=R

S 3 duln — VIS algi gl — q]eﬂmqw}

= §R[<¢t(sr*g)7g>]7

where * denotes the convolution. It follows that

emse(9) = 2 (lgl* = R [(¢:(S- * 9),9)]) -

We notice that the emsg depends on the shape of the
prototype and the second-order channel statistics. Assuming
the prototype g[n] has T samples and its energy equals Ey,
(10) can be expressed in matrix form as

(10)

esn(g) =2 (B, — % [¢"Bg] ) (1)
where g = [g[1],...,¢[T]]", and B € CT*7T is the matrix
describing the delay and Doppler domain distortions of the
channel. Neglecting the constant term, we use —2§ [gHBg]
as the objective function for the protogfpe optimization
later. Note that —2R [gHBg] equals —g" (B + BH)g7 and

the objective function can be rewritten as g"Ag, where
A = —(B + B") is a Hermitian matrix.

Since emsk crucially depends on the chosen Gabor frame,
searching for optimized prototypes minimizing ensg adapted
to the different channel characteristics is the next step. In
[13], a general frame work is presented for parameterization
of tight Gabor frames. In the following, our objective is to
find a prototype function minimizing emse, which constitutes
a tight Gabor frame. The optimization problem is given by

g =argming Ag, s.t. g defining a tight frame. (12)

4. PARAMETERIZATION OF TIGHT FRAMES

In this section we briefly summarize the parameterization of
tight Gabor frames presented in [13]. Let K be the least com-
mon multiple of M and N, and J and L be the two integers
satisfying JM = LN = K. The K-component polyphase
representation of G(z) has the form [12]

G2) = 3 27Gy(), (13)
where
Gi(z)= > gli+nK]z™"j€{0,....K -1} (14)

is the j-th polyphase component of G(z). Let Hp(z) denote
the M x N polyphase matrix of an analysis filter bank, the
jth element of the ith row of which is defined as

L—1
Hij(z) = Z Wi VTG (1),
1=0

(15)

where Wy = e2™/M A filter bank is associated with a tight
frame if and only if its polyphase matrix is paraunitary, i.e.,
Hp(2)Hp(2) = cly, where ¢ = & represents the redun-
dancy of the frame and Iy stands for the N x N identity
matrix. As follows from (15), the polyphase matrix can be
factored as

Hp(z) = WuD(2), (16)
where Wi, denotes the M x M DFT matrix, and
Iy
-1
. I
D (=)=l -+ Tar] ding( [Go(=") -+ Greoa (1)) 7Y
Z—(L—I)IN
(17)

with diag(a) denoting the diagonal matrix whose entries of
the main diagonal are the elements of the vector a.

From the factorization in (16), the paraunitary condition
of the polyphase matrix Hp(z) is fulfilled when D(z) is pa-

raunitary, that is, D(z)D(z) = +Ix. Consider an example

of M =6, N =4 and K = 12. According to (17),

Go(2®) 0 271G (%) 0
0 G1(2%) 0 271G (2%)
272Gs(2?) 0 G2(2) 0
D()=1" 7 22G(2%) 0 (%)
27 Ga(2?) 0 272G10(2%) 0
0 27 G5 (%) 0 272G 11 (%)

D(z) is paraunitary if and only if the L x J matrices

Go(z) GG(Z) Gl(z) G7(Z)
Do(2)=|2""'Gs(2) Ga(z)| and D1(2)=|2""Go(2) G3(2)
G4(2) Glo(z) G5(Z) G11(2)

are paraunitary [13].

Note that the coefficients of the polynomials in the ma-
trices Do(z) and D (z) correspond to the samples of the
prototype function g[n]. Given the lattice constants N, M,
the prototype g[n| defines a tight frame if Do(z) and D1(z)
are both paraunitary.

5. PROTOTYPE OPTIMIZATION

With the parameterization of tight Gabor frames, the tight
frame constraint in (12) is equivalent to K/LJ polynomial
matrices being paraunitary. In our example, Do(z)Do(z) =
%IJ can be expressed as

@O(Z)Go(z) + {ég(z)z_ng(z) + Ga(2)Ga(z) = i
G6(2)Gs(2) + Ga(2)G2(2) + Gro(2)Gro(2) = §
Go(Z)GG(Z) + ZGg(Z)GQ(Z) —+ G4(Z)G10(Z) = 0.
(18)
Assume the prototype function g[n] has T = K = 12
samples. Using (14), the first equation in (18) is rewritten as
190] +|g[8]|* +|g[4]|> = 1. This can be reformulated in ma-
trix form as g"Bog = 1, where Bo = diag([100010001000]).
Similarly, all the remaining equations can be written in ma-
trix form, and therefore (12) is expressed as

g =argming”Ag, st. g"Big=di,i=1,...,I, (19)
g

where A reflects the second-order channel statistics and
di,i = 1,...,1 are non-negative constants. The number [
of the constraints in (19) depends on the order of the poly-
nomial matrix D¢(z),t = 0,...,K/(LJ) — 1. For the case
where the order of D¢(z) is zero (as in the example), the
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J
2

the order of the polynomial matrices increases, the number of

constraints will increase substantially. Note that if X = gg',
g'"Ag = tr(AX). The SDP relaxation of (19) is given by

number of the constraints is K/(LJ)- | J + ( . When

X = argrr;éntr(AX), s.t. { ﬁ(%g() —dii=1,. .1
(20)
It is clear that if X = gg" is a rank-1 solution to (20),
then g is a solution to (19). Via the iterative interior-point

(
algorithm [14], X in (20) can be computed numerically. From

now on, we use emse(X) = [QEQ + tr(AX)] to represent the

MSE of X. The rank of the resulting X is larger or equal
than 1 depending on A. To obtain a rank-1 solution to (20),
in the following we present a two-step procedure.
Step 1:

We first find the rank-1 matrix X, which has the least
Fuclidian distance to X. The rank-1 approximation problem
can be represented as

X = arg m)én HX — XH s.t. rank(X) = 1. (21)
F

Let the singular value decomposition (SVD) of matrix X €
CT™*T pe X = USVY with diagonal matrix S, and U, V
unitary. Then the minimum of (21) is achieved with X, =
USOVH, where So is the matrix resulting from S by setting
all except for the largest singular value to zero. Since Xo is
rank-1, a pulse go is obtainable from Xo = gogtl. However,
after the rank reduction Xo in general does not fulfill the
constraints in (20) any more. Consequently, the resulting go
cannot construct a tight frame.

Step 2:

We then find a prototype g: € l2(Z) constituting a tight
Gabor frame based on the resulting go € l2(Z) from step 1.
The Gabor frame operator is defined by S = G*G, and the
canonical tight window can be computed as

g = (57%40). (22)

Based on a factorization of the Gabor analysis/synthesis
operator, iterative algorithms to compute canonical tight
frames are presented in [15]. The resulting prototype g
constitutes a canonical tight frame that minimizes ||gs — go|
among all the prototypes ¢t constituting a tight Gabor
frame.

6. NUMERICAL RESULTS

We assume a WSSUS channel with an exponentially decay-
ing delay power spectrum, i.e.,

ST [q} = (liexp(il/’rd)) eXp(iq/Td% q € {Oa 17 25 H (}a )

23

with 74 representing the root mean-squared (RMS) delay
spread in samples. As for the Doppler power spectrum, a
Laplacian function with a two-sided exponential decay is as-
sumed. The time correlation function, defined as the Fourier
transform of the Doppler power profile, can be expressed as

1

= — Z 24
¢t [p] 1 + 2772U%|p|27 p € ( )

with the RMS Doppler spread vp relative to the sampling
rate.

In the following, a sampling rate of 7.68 Msps is used
(e.g. Universal Mobile Telecommunication System (UMTS)

Ge[n]

—8N —6N —4N 2N 0 2N AN 6N 8N

Figure 2: Optimized prototype for 74 = 1.3, vp = 1.3-107°.

ge[n]

—8N —6N —4N 2N 0 2N AN 6N 8N

Figure 3: Optimized prototype for 74 = 2, vp = 0.001.

with double rate over-sampling). The lattice constants are
chosen as N = 96 and the ratio N/M = 3/4. Since both
the delay power spectrum and the time correlation function
are real-valued, optimized prototypes with real values are
obtained. Fig.2 and Fig.3 show examples of the optimized
prototypes g;. For the UMTS suburban macro cell scenario,
the RMS delay spread is 170ns (74 ~ 1.3) and the RMS
Doppler spread is 100Hz (vp ~ 1.3 -107%) [16]. The opti-
mized prototype obtained by SDP is shown in Fig.2. Fig.3
shows the optimized prototype under assumptions of larger
RMS delay and Doppler spreads, that is 74 = 2,vp = 0.001
(T4 corresponds to approximately 260ns, and vp 7.69kHz).
The waveform is more concentrated in time domain than in
Fig. 2 because of the increased Doppler spread.

Fig.4 shows the achievable coefficient error per-
formance by employing the optimized Gabor sys-
tems. The relative MSE per TF coefficient, given as
emse(9)/E [|(Hz, gim)?] = euse(g)/Ey, are shown in
dB. For increasing delay and Doppler spreads the error
performance decreases as expected. In case of 74 = 2 and
vp = 0.001, the relative MSE equals -15.8 dB using the
optimized prototype in Fig.3, which indicates the MSE is
approximately 2.6 percent of the signal power. The error
from the channel parameterization is tolerable unless the
channel dispersion is very severe.

Fig.5 depicts a comparison of ense(X)/tr(X),

evse(Jo)/Eao,  emsu(gi)/Eg,  and  emsu(grect)/Egrec
where grect representing the rectangular pulse, with a
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constant RMS Doppler spread vp = 0.0001. From the
figure, we see that when 74 < 2.6, the red, green and blue
curves overlap perfectly, which implies the resulting X of
(20) is already a rank-1 matrix. The green curve shows
the lowest relative MSE with 74 > 2.6, since after the rank
reduction go does not constitute a tight frame any more,
which relaxes the constraint of the optimization. The cyan
curve with crosses in the figure represents the relative MSE
results with g representing a rectangular window of width
N, which corresponds to a block DFT processing. The
optimized prototype is obviously better than the rectangular
one in term of the MSE performance.

7. CONCLUSIONS

We present a TF domain channel description approach,
which models the behavior of DD channels via TF signal
processing. By choosing TF well-localized prototypes, the
proposed approach is adaptable to different channel char-
acteristics and attains good performance for approximating
signals at the output of DD channels. The optimized pro-
totypes constituting tight Gabor frames are obtained effi-
ciently using the SDP method. In particular, the channel
description can be extended to develop techniques for chan-
nel estimation, synchronization, and signal detection. Our
approach has no limitations on the signal format, making it

suitable for applications in multi-mode receivers.
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