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ABSTRACT

In this paper we consider the problem of speech denoising
based on a greedy adaptive dictionary (GAD) algorithm. The
transform is orthogonal by construction, and is found to give
a sparse representation of the data being analysed, and to be
robust to additive Gaussian noise.
The performance of the algorithm is compared to that of the
principal component analysis (PCA) method, for a speech
denoising application. It is found that the GAD algorithm
offers a sparser solution than PCA, while having a similar
performance in the presence of noise.

1. INTRODUCTION

Speech signals are often degraded by the presence of noise,
arising for instance from the recording equipment or the
surrounding environment. In some applications it may be
desirable to reduce the noise level by applying some form of
pre-processing. As a result, several denoising algorithms ex-
ist, including general methods such as wavelet denoising [1],
and principal component analysis [2], and others dedicated
to audio signals, such as methods based on time-frequency
representations [3] or sparse linear regression [4].
Sparse methods, in particular, are well suited to the analysis
of speech and music signals, and have acquired great popu-
larity in recent years. Sparse representations, in which most
coefficients are close to zero, are used extensively because
they allow the information within a signal to be conveyed
with only a few elementary components, denoted as atoms,
which are obtained from the decomposition. Moreover,
they often help uncover hidden structure in the analysed
signal. Sparsification of a signal is often carried out using
overcomplete dictionaries, in which the number of atoms is
greater than the dimensionality of the signal space [5]. It is
generally accepted that overcomplete dictionaries allow the
achievement of higher sparsity than could be obtained with
orthogonal transforms, thanks to the range of waveforms
present in the dictionary to match the signal features [6]. The
aim is then to find, among the many possible representations
for the signal of interest, one with a small number of
significant coefficients. This is a non-trivial problem that has
been shown to be NP-hard [7].

Orthonormal linear transforms such as the wavelet and
short-time Fourier transform have also been used to sparsify
the signal, and have the advantage of being easily invertible,

since if the matrix T is orthonormal, then TTT = I.
Thus, the number of atoms within the dictionary equals the
dimension of the signal space, leading to a unique signal
representation.

In [8], we addressed the problem of representing a speech
signal using an orthogonal sparsifying transform. The
adaptive transform is based on a greedy algorithm, which
learns a dictionary from the observed data, re-arranged into
frames. The algorithm maximizes the L2-norm of the data,
while minimizing its L1-norm. The transform is forced to
be orthogonal by removing all the components lying in the
direction of a particular vector, corresponding to the selected
data frame, at each iteration.
There are two main advantages to this orthonormal greedy
adaptive dictionary (GAD) algorithm: firstly, the atoms are
extracted from the observed data, and therefore they are
directly relevant to the data being analysed; secondly, the
fact that the transform is orthogonal, implies that only direct
matrix multiplication will be needed to analyze the signal.
The algorithm in [8] was subsequently extended in [9] to
address the problem of source separation in echoic and
anechoic environments.

In this paper, we consider the application of the GAD
algorithm to the problem of speech denoising. We compare
the results for the GAD transform with those obtained with
dictionaries learned using principal component analysis,
which is chosen because the approach followed by the
two algorithms is somewhat similar. PCA is a statistical
technique that finds from the data the principal components
that maximise the variances. Then, the components corre-
sponding to the highest variances are retained to represent
the signal, while those corresponding to low variances relate
to the noise, and can be omitted in order to reduce the noise
level. Similarly, the GAD method extracts components one
at the time, by selecting the atoms with highest L2-norm
first, and those with lower L2-norm are found to correspond
to noise. Experimental results show that the GAD algorithm
performs denoising in a manner similar to PCA, generally
resulting in better noise reduction than the latter.

The structure of the paper is as follows: the problem
that we seek to address is outlined in section 2, the greedy
adaptive dictionary algorithm is summarised in section 3,
and the principal component analysis method is outlined in
section 4. Experimental results for the speech representation
and denoising applications are presented in section 5.
Finally, conclusions are drawn in section 6.

2. PROBLEM STATEMENT

The problem addressed here is that of learning a dictionary
D consisting of L atoms ψl(n), that is D = {ψl(n)}L

l=1
,
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which provides a sparse representation of a real-valued noisy
observed signal x(n) = [x(1), . . . , x(N)]T

x(n) = s(n) + v(n) (1)

where L ≪ N , and v(n) represents the noise vector.

The GAD method does not operate upon all the signal
samples, but the observed data is divided into blocks, ob-
tained when overlapping data frames, with an overlap of T
samples, are taken from x(n). The new signal blocks are de-

noted as xk(n) = [xk(1), . . . , xk(L)]T . The result is a newly
constructed matrix X(n) = [x1(n),x2(n), . . . ,xK(n)],
whose k-th column is represented by the signal block xk(n).

The dictionary is learned from the signals in the columns
of X(n), so that the problem can now be stated as follows:

given a real valued signal xk(n) = [xk(1), . . . , xk(L)]T ,

and an orthogonal dictionary D = {ψl(τ)}L
l=1

, we seek a
decomposition of xk(n), such that [10]

xk(n) =

L
∑

l=1

αl
kψ

l(n), ∀k ∈ {1, . . . , K} (2)

where αl are the expansion coefficients which encode ex-
plicit information regarding the properties of the signal
xk(n), depending on the choice of dictionary D.

3. GREEDY ADAPTIVE DICTIONARY
ALGORITHM (GAD)

The GAD algorithm adaptively learns a data dependent dic-
tionary by sequentially extracting the columns of the matrix
X, where the time index has been dropped for the sake of
clarity. At each iteration, extraction of a new atom depends
on finding the column of X that satisfies:

max
k

||xk||2
||xk||1

(3)

where || · ||1 and || · ||2 denote the L1- and L2-norm
respectively. Thus at each iteration, the method reduces the
energy of the data by a maximum amount, across all frames,
while ensuring that the L1-norm is reduced by a minimum
amount.

The algorithm solves the maximization problem in equation
(3) according to the following steps:

1. Initialisation:

• ensure that the columns of X have unit L1-norm

x̃k =
xk

‖xk‖1

(4)

where xk the k-th column of X. This leads to a new
data matrix X̃, whose columns now have unit L1-
norm.

• Initialise the residual matrix

R0 = X̃ (5)

where Rj = [rj
1, . . . , r

j
K ], and r

j
k is a K-dimensional

residual column vector corresponding to the k-th col-
umn of Rj .

2. Compute the L2-norm of each frame

Ek = ||rj
k||2 =

L
∑

n=1

|rj
k(n)|2. (6)

3. Find the index k̂ corresponding to the signal block with

largest L2-norm, r
j

k̂

k̂ = argmax
k∈K(Ek) (7)

where K = {1, . . . , K} is the set of all indices pointing
to the columns of Rj .

At each iteration j ∈ {1, . . . , L}, the signal with highest L2-

norm, r
j

k̂
, becomes a dictionary element, and we iteratively

define a residual matrix Rj ∈ RL×K , which decreases by
the appropriate amount, determined by the selected atom ψj

and the coefficient of expansion αj
k.

4. Set the j-th dictionary element ψj to be equal to the sig-

nal block with largest L2-norm r
j

k̂

ψj =
r

j

k̂

||rj

k̂
||1

. (8)

5. Evaluate the coefficients of expansion, given by the inner

product between the residual vector r
j
k, and the atom ψj

αj
k = 〈rj

k,ψj〉. (9)

6. Compute the new residual, by removing the component

along the chosen atom, for each element k in r
j
k(n)

r
j+1

k = r
j
k −

αj
k

〈ψj ,ψj〉
ψj . (10)

The term in the denominator of
αj

k

〈ψj ,ψj〉 in equation (10), is

included to ensure that the coefficient of expansion αj
k corre-

sponding to the inner product between the selected atom ψj

and the frame of maximum L2-norm r
j

k̂
, is normalised to 1.

Then, the corresponding column of the residual matrix Rj is
set to zero, since the whole atom is removed. This ensures
that the transform is orthogonal. Finally, the signal matrix is
updated by the residual, and the whole process is repeated:

7. Repeat from step 2.

A clear advantage of the GAD algorithm is that it results in
an orthogonal transform, and therefore the inverse transform
of Yis evaluated straightforwardly from XL = DY, where
XL is the L term approximation of the signal X, and D =
[(ψ1)T , . . . , (ψkmax)T ] is the dictionary matrix.

4. PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal component analysis seeks to remove the correla-
tion from the observed signals by finding the projections of
the data in the directions of maximum variances [11]. It cor-
responds to the eigenvalue decomposition of the correlation
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GAD

l = 1 l = 59 l = 109 

PCA

l = 1 l = 20 l = 50 

Figure 1: Examples of the atoms learned with the GAD and
PCA algorithms. The letter ’l’ in the plots denotes the posi-
tion of the atom within the dictionary.

matrix Rxx=E
{

xkx
T
k

}

of the L-dimensional data vector
xk:

Rxx= QΛQ−1 (11)

where Λ=diag {λ1, . . . , λL} is a diagonal matrix whose en-
tries are the eigenvalues of Rxx, arranged in decreasing or-
der: λ1 > λ2 > . . . > λL, such that λ1 = λL, and
Q = [q1, . . . ,qL] is the matrix whose columns are the as-
sociated eigenvectors [2]. PCA seeks a linear transform

WPCA = Λ1/2QT , such that the transformed signals are
uncorrelated, the basis vectors are orthogonal to each other,
and the eigenvalues are ordered. The resulting eigenvectors
represent the principal directions along which the variances
are maximised, and the eigenvalues define the values of the
variances. The basis vectors for PCA, therefore, vary from
signal to signal. The vector zk , representing the projections
of the column vector xk onto the principal directions, is given
by

zk = WPCAxk (12)

The elements of the output vector zk are now uncorrelated,
and are referred to as the principal components. The main
purpose of PCA is to reduce the dimension of the data, that
is, only the components that have large variances are re-
tained [2]. This decreases the computational cost of subse-
quent processing steps, and leads to noise reduction, because
PCA decomposes mixed signals into two subspaces: the sig-
nal subspace spanned by those components associated with
the largest eigenvalues, and the noise subspace formed by the
components corresponding to the smallest eigenvalues [12].

5. APPLICATIONS

5.1 Speech Representation

In this section we compare the GAD and PCA algorithms,
for the analysis of a male speech signal, and in both cases
we look for a dictionary containing 512 atoms.
Figure 1 shows examples of the atoms learned with GAD
and PCA, respectively. It was observed that the atoms
extracted with PCA are not particularly localized, and do
not appear to be capturing any specific features of the
speech signal, but perhaps more general characteristics. The
GAD algorithm yields atoms that appear to capture more
information about the signal, and which are fairly localized.
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Figure 2: Sparsity index for the GAD algorithm, compared
to the original signal and PCA.

Method Number of Atoms

512 400 300 200 100 50

GAD 0.0 0.7 1.7 2.8 5.3 6.8

PCA 0.0 0.2 0.6 1.3 2.5 4.0

Table 1: Approximation error ǫ×10−3 for the GAD and PCA
algorithms. All values are expressed in decibels (dB).

To determine how sparse the representation obtained
with the proposed approach is, we plot the sparsity index for
the transform coefficients obtained with the two methods.
The sparsity index of a signal y as

ξ = ||y||1/||y||2 (13)

generally, the lower the sparsity index is, the sparser the sig-
nal y. Figure 2 shows a plot of the sparsity index for the
original signal blocks in X, and for the coefficients of ex-
pansion obtained with the GAD and PCA algorithms. We
can see that the signal transformed with the GAD algorithm
is sparser than in the time domain, and than the coefficients
obtained with PCA. Next, we consider the accuracy of the
approximation by looking at the approximation error ǫ ob-

tained when the function f is approximated by f̃ ,

ǫ = ||f̃ − f ||2 (14)

Table 1 shows the error, ǫ × 10−3, for both algorithms
describing the accuracy of the approximation as the number
of atoms used in the signal reconstruction decreases from
512 to 50. The results indicate that PCA performs best,
because the transform arranges the signal components so
that most energy is concentrated in a small number of
components, typically corresponding to those extracted
earlier. The approach followed by the GAD transform is
somewhat similar, since the atoms with highest L2-norm
are extracted first, and therefore the algorithm also results
in good signal approximations as the number of atoms is
reduced.
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SNR Method Number of Atoms

512 400 300 200 100 50

20 dB GAD 0.0 1.0 1.7 1.3 -1.9 -6.4

PCA 0.0 0.6 1.3 1.8 -0.4 -4.9

10 dB GAD 0.0 1.3 2.5 3.9 4.5 2.4

PCA 0.0 0.5 1.3 2.8 4.9 3.8

5 dB GAD 0.0 1.3 2.4 4.1 5.8 5.6

PCA 0.0 0.5 1.3 2.6 5.1 6.6

0 dB GAD 0.0 1.3 2.6 4.4 7.0 8.1

PCA 0.0 0.5 1.3 2.7 5.4 7.9

-5 dB GAD 0.0 1.4 2.8 4.9 7.9 9.9

PCA 0.0 0.5 1.3 2.7 5.4 8.3

-10 dB GAD 0.0 1.3 2.9 4.9 7.9 10.5

PCA 0.0 0.5 1.3 2.7 5.3 8.0

Table 2: ISNR for the GAD and PCA algorithms. All values
are expressed in decibels (dB).

5.2 Speech Denoising

To evaluate the effect of the algorithms over the observed
noisy data, we consider the ISNR:

ISNR = 10log
E{(s− x)2}

E{(s− ŝ)2}
(15)

where s is the original signal, x is the observed distorted
(noisy) signal, and ŝ is the source approximated by the trans-
form. As the signal approximation becomes closer to the
original source, ISNR increases.
The ISNR for the GAD and PCA methods is shown in Ta-
ble 2, for a noise level changing from 20 dB to -10 dB, as the
number of atoms in the reconstruction is reduced from 512 to
50. The noise levels and number of atoms used in the recon-
struction were selected via an informal listening test, which
indicated that a lower signal to noise ratio or fewer atoms
resulted in very poor signal quality. The underlined values
correspond to the highest ISNR achieved by the algorithm
for a particular noise level.
When all atoms are used in the reconstruction, both the GAD
and PCA transforms yield an ISNR of 0 dB. When the noise
is low (20 dB), reducing the number of atoms in the re-
construction leads to distortion in the signal approximation,
yielding negative results in ISNR. As the level of noise in-
creases, the high ISNR values for PCA and GAD indicate
that there are benefits in reducing the number of atoms used
in the signal approximation. It is well-known that PCA can
reduce the level of noise present, because it decomposes the
space into signal and noise subspaces. The results in table
2 show that, similarly, GAD achieve a reduction in the noise
level. It is also evident that the GAD method generally yields
a higher improvement in SNR than PCA, especially as the
noise level increases, and fewer atoms are used in the ap-
proximation.

6. CONCLUSIONS

In this paper we have presented a speech denoising method
based on a greedy orthogonal adaptive dictionary learning

algorithm, which we have shown to result in sparse rep-
resentations for speech signals. The algorithm constructs
a user-defined complete dictionary, whose atoms clearly
encode local properties of the signal.

The performance of the algorithm was compared to
that of the PCA method, and it was found to give good
signal approximations, even as the number of atoms in the
reconstructions decreases considerably; it was also observed
that the algorithm has good tolerance to noise, comparable
to that afforded by PCA.

In future work, we will be benchmarking the perfor-
mance of the GAD algorithm against other denoising
algorithms. We will also be considering artefacts and signal
distortion.
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