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ABSTRACT 

In this paper, we comparatively evaluate several single-
frame interpolation methods with respect to a reference 
multi-frame superresolution algorithm. The objective 
performance was measured using Peak Signal to Noise 
Ratio (PSNR) and Structural Similarity Index Measure 
(SSIM), while subjective evaluation was based on two-
alternative forced choice scores. Rank correlation was 
used to assess the degree of agreement between subjective 
and objective measures, and to determine the best 
performing single-frame interpolation method to be used 
in video industry.   

1. INTRODUCTION 

Superresolution (SR) techniques aim to augment the 

resolution level of an image or a video with post-

processing. While there is a plethora of SR algorithms, the 

video industry is still grappling with a viable method 

which is also feasible with the present technology. 

There are two paradigms in superresolution: The first 

paradigm creates a high-resolution (HR) image using more 

than one low-resolution (LR) image. These multiframe SR 

image reconstruction methods fuse data coming from 

different LR images of the same scene, which however 

must differ at sub-pixel shifts. The second paradigm uses a 

single LR image to create a high-resolution (HR) version. 

These methods exploit various image models.   

In [10], Ouwerkerk compared the subjective and objective 

performance of seven image interpolation methods. The 

characterizing property of these methods are as follows:  

interpolation kernel, sum of interpolation kernels with 

fuzzy weights; feedforward neural network using spatial 

error terms which consist of pixel averages, of edges and of 

line structures; local correlation-based interpolation; 

anisotropic diffusion; super resolution exploiting the sparse 

derivative prior; edge-directed interpolation; and finally, 

locally adaptive zooming algorithm. His objective tests 

based on PSNR, SSIM and edge stability metrics indicate 

that resolution synthesis algorithm performed best.  

Subjective tests, using edge blurring, edge blocking and 

generation of detail, both resolution synthesis and local 

correlation super resolution showed good results. 

Video SR from a single frame is attractive due to its 

reduced complexity in video industry. We conjecture that 

single-frame interpolation methods have a niche role in 

video industry in that the viewer satisfaction would be on a 

par with respect to that obtained with more complicated 

spatio-temporal algorithms. With this purpose in mind, we 

evaluate both the objective and subjective performance of 

several single-frame interpolation methods vis-à-vis a well-

known multiframe algorithm.  

The single-frame interpolation methods list as follows: 1) 

Bicubic interpolation [5]; 2) Wavelet-based interpolation 

[6]; 3) Edge-adaptive interpolation [7]; 4) Markov-model 

interpolation [8]. These single-frame methods are 

compared with a multiframe method by Elad and Feuer 

[2]. The rationales for the choice of these methods were: i) 

Enable implementation at video rates; ii) Experiment with 

different methods. In fact, while the first three of the 

methods belong to the paradigms already used in 

Ouderwerk [10] (though the methods themselves are 

different), the last method is a new one.  

The contribution of our paper vis-à-vis previous 

comparative survey papers is twofold: 1) We extend the 

comparisons to video data; 2) Subjective tests address 

issues frame-based versus video-based preferences in 

addition to correlations between objective and subjective 

scores.  In Section 2 of the paper we present briefly the 

super-resolution (SR) algorithm, and in Section 3 the four 

image interpolation algorithms. Section 4 discusses the 

outcome of subjective and objective performance 

measurements, and conclusions are drawn in Section 5.   

2. SR IMAGE RECONSTRUCTION USING LMS 

ALGORITHM 

In [2], [3] and [4] the Least Mean Square (LMS) filtering 

method is developed for SR reconstruction. Elad and Feuer  

[2] formulated the super-resolution reconstruction 

algorithm for continuous image sequences. Let ideal image 

sequence be related to degraded image sequence via the 

relationship 

 ( ) ( ) ( ) ( ) ( ), ,Y t k DH t k F t k X t E t k− = − +  (1) 

where Y(t-k) is degraded image vector at time 

t k t−∞ ≤ − ≤ while X(t) is the ideal SR image vector, all in 

lexicographical notation. D, H(t-k) and F(t,k) denote 

decimation operator, linear-space-variant blur operator, 

and backward geometric warp operator, respectively.  
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We have the warp operator F using full-search block-

matching algorithm (block size 16x16). Finally, E(t,k) is 

the additive Gaussian noise vector with autocorrelation 

matrix ( )1 ,W t k− . Under the assumption that all these 

matrices are known [2] the LMS error is defined as  

 ( ) ( ) ( ) ( ) ( )
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Estimation of ideal image vector ˆ ( )X t  minimizing above 

error term can be found using iterative techniques. Using 

the steepest descent rule [1]: 
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where X̂ is the estimated SR image and ( ),1F t+  is the 

forward geometric warp operator, that is, the pseudo-

inverse of F(t,1). The recursive implementation of the LMS 

SR method is convenient for real-time video applications 

since only the previous frame need to be stored.  

3. IMAGE INTERPOLATION ALGORITHMS 

3.1. Bicubic Interpolation 

Given a sampled signal, its continuous counterpart can be 

approximated using some suitable interpolation kernel. 2D 

interpolation is usually accomplished by applying 

successively 1D kernel interpolation on horizontal and 

vertical directions. For uniformly spaced data, the 

continuous-domain signal Y(u,v) can be written as 

 ( ), ( , )
∆ ∆

k k

k l

u u v v
Y u v y k l h h

u v

− −   
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In this expression, ( )∆ ,∆u v are sampling intervals, h() is 

the interpolation kernel and {y(k,l)} represent the pixel 

array in the LR grid. The SR signal is obtained by 

resampling (4) on a finer grid.  In [5], the cubic 

convolution kernel is given as 
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3.2 Wavelet-Based Image Interpolation 

Wavelet-based image interpolation methods assume that 

the available image is the coarse approximation 0( )LL , 

that is, low-pass filtered subband of an HR image. The 

interpolation methods then first try to recover the missing 

horizontal 0( )LH , vertical 0( )HL  and diagonal 0( )HH  

detail subbands, and  then obtain the HR image by taking 

the inverse Discrete Wavelet Transform (DWT) of the 

expanded image. An important property of DWT is the 

persistence property. In fact several wavelet-based 

compression schemes, such as embedded zero tree 

wavelets, employ this property. Temizel and Vlachos [6] 

proposed a wavelet based image interpolation method. 

They used the idea of “persistence”, which implies that the 

magnitudes of wavelet coefficients corresponding to the 

same spatial location tend to propagate from lower scales 

to higher resolution scales. They extended the 

“persistence” idea to correlation coefficients. First, one 

goes one scale down, and estimates 1HL  by high pass 

filtering 1LL  horizontally. Then, correlation coefficients 

between 1HL  and its estimate are computed. Using these 

correlation coefficients and estimate of 0HL , exact value of 

0HL  is computed. All these horizontal and vertical 

filtering operations are, however, implemented without 

decimation, in other words one stays at the resolution level 

of 0LL . The 0HH  is not predicted since it is judged 

visually less informative, so that the corresponding 

coefficients in the inverse DWT are filled with zeros.  

3.3 Edge Adaptive Image Interpolation 

The imaging process and the concomitant loss of 

resolution are modeled as low-pass filtering and 

decimation stages in [7]. The low-pass filtering operation 

modifies the values of the pixels near the edges 

proportionally to the distance between pixels and the edge. 

Therefore the analysis of the low resolution pixels should 

give an idea about the position of the edge at sub-pixel 

level. The one-dimensional case is illustrated in Fig. 1. 

 

 

 

 

 

 

 

 
Figure 1 – The x pixel, astride an edge, is to be interpolated. 

The interpolated value x between the given a, b, c, d 

neighbors become  [7]: 
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where k is an input parameter and affects the edge 

sensitivity. When edge is in midway between b and c, a-
b=c-d and x=(b+c)/2. When edge is closer to c, then a-
b<c-d and x takes a value closer to b.  In 2D, first the 

missing pixels along the rows and the missing pixels along 

the columns are estimated, separately. Then the diagonal 

pixels are estimated using the results of the previous steps 

and the mean value of the two results is taken.  

3.4 Deterministic-Stochastic Interpolation 

Nemirovsky and Porat [8] have proposed an image 

interpolation method where texture is assumed to be 

composed of two orthogonal components: a purely non-

deterministic component and a deterministic component. 

The deterministic part of the HR image is computed by 

calculating the periodogram of the LR image, finding the 

peaks of the periodogram, masking out the rest and using 

inverse DFT with zero padding. The non-deterministic 

part starts with the LR image whose deterministic part has 

a 
b 

c d 
x 
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been removed. After zero padding the LR non-

deterministic part of the image, the missing pixels are 

filled as described below. For a discrete random field Y, the 

linear least square estimate of Y(m,n) can be found as the 

linear combination of the values in the causal 

neighborhood of (m,n).  
 ( ) ( )

( ) ,

,

,

,

ˆ , ,

m n

i j
i j

m i n j D

y m n c y m i n j

− − ∈

= − −∑  (7) 

where the coefficients are found via minimum mean square 

approach.  In [8], 3 nearest neighbors are considered, 

namely ( ) ( ) ( ){ }0,1 , 1,1 , 1,0D = . The HR image is simply 

the sum of the HR deterministic and non-deterministic 

parts. 

4. EXPERIMENTAL RESULTS 

The original RGB video material had 704x480 pixel 

resolution; they were  decimated by factor of 2 using 

bilinear interpolation to CIF resolution and converted to 

grayscale Y using the equation below  

0.299 0.587 0.114Y R G B= + + . Then, the decimated 

sequences were resized to their original resolution 

(704x480) by using the methods described above. We used 

3 video sequences (Calendar, Susi, Tennis), each 

containing 250 frames. Error images for the 100
th

 frames 

of Susi sequence are given in Fig. 2. The error images 

were found by subtracting the processed image from the 

original image, taking the absolute value of the result and 

scaling by 10. We also extracted two frames from each 

video for still frame evaluation. PSNR and SSIM metrics 

were used to evaluate the results quantitatively [9]. PSNR 

was calculated directly for still frames. For video PSNR 

calculation, first mean square error (MSE) of each frame 

in the video was calculated and these MSE values were 

averaged to find the average MSE value of the video. 

Finally average MSE value was used to find the video 

PSNR. Video SSIM values were calculated as described in 

[9]. Measurements are given in Table 1. According to 

PSNR criteria, LMS and bicubic methods have the same 

scores in video and still frame cases. According to SSIM, 

the winner is LMS method, which, performs better than 

single-frame methods.  

4.1 Subjective Preferences  

Subjectively perceived quality of the videos and single 

frames produced by various superresolution methods were 

evaluated based on the two-alternative forced choice 

(2AFC) paradigm. A total of 28 people took part in the 

experiment. Subjects had normal or corrected-to-normal 

vision and their ages varied between 22 and 30. The 

experiments were performed in a lit room using a 60 Hz, 

1280x720 LCD display from a viewing distance of 30 cm. 

Each observer completed a total of 10 2AFC comparisons 

for each of the three sequences, 10 2AFC comparisons for 

each of the six frames, in total 90 2AFC comparisons 

during the experiment.  

  
Video 

PSNR 

Still Frame 

PSNR 

Video 

SSIM 

Still Frame 

SSIM 

LMS 24.9 24.9 0.85 0.86 

Bicubic 24.9 24.9 0.85 0.85 

Edge 

Adap. 
23.7 23.8 0.81 0.82 

Wavelet 22.9 23.0 0.77 0.78 

MRF Pre. 24.4 24.4 0.77 0.77 

Table 1 – Average PSNR (dB) and SSIM values. 

The ten comparisons are due to the two-combinations of 

the 5 methods. There was no time pressure on the subjects 

and they could toggle back and forth between test pairs as 

much as they wanted. Subject votes were screened for 

outlier behavior and only one was eliminated.  

4.2 Correlation of video and frame scores 

The percentages of subjective preferences are shown in 

Table 2. In each cell, the upper number is the video score 

and lower one is the frame score. For example, the second 

cell in the first row of Table 2 indicates that SR method is 

preferred over the bicubic 75.3% (in video tests) of the 

time, while the third cell indicates that it is 

overwhelmingly preferred over the edge-adaptive method, 

and so on. Note that the scores are normalized, so 

maximum is 100 for each comparison. We wanted to check 

if the subjective preferences for the methods were in 

agreement between the frame tests and video tests, and this 

agreement was measured with Spearman’s rank correlation 

coefficient. If the number of comparisons is K (which is 

given by combinatorial two of the number of methods), 

each subject form a K dimensional vector for each frame 

and video. Each element of this K dimensional vector is 

related to “method A vs. method B” comparison. 

Combining the decisions of all subjects for this 

comparison, we get 3 vectors in sequence case and 6 

vectors in frame case. Then, 3 sequence vectors are 

averaged and the resultant vector represents the decisions 

related to “method A vs. method B” comparison in 

sequence case. Also, 6 sequence vectors are averaged and 

the resultant vector represents the decisions related to 

“method A vs. method B” comparison in still frame case. 

The average sequence and the average still frame vectors 

are used to compute Spearman’s rho coefficients which are 

given in Table 3. The correlation coefficients, except for 

those of edge adaptive – MRF prediction and bicubic – 

wavelet pairs, are high. This proves that in most cases 

frames or sequences can be used alternatively for judging 

superresolution methods.  

4.3 Correlation of objective and subjective 

preferences 

The ranking of methods according to both subjective and 

objective preferences (PREF) is given in Table 4.
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Figure 2 –  Error images of all methods for 100th frame of 1st video. 

 

 LMS Bicubic 
Edge 

Adap. 
Wavelet 

MRF 

Pre.  

LMS   
75.3 

97.5 

96.3 

96.3 

87.7 

90.1 

98.8 

98.8 

Bicubic 
24.7 

2.5 
  

92.6 

85.2 

67.9 

46.3 

92.6 

88.9 

Edge 

Adap. 

3.7 

3.7 

7.4 

14.8 
  

11.1 

19.1 

58.0 

56.2 

Wavelet 
12.3 

9.9 

32.1 

53.7 

88.9 

80.9 
  

91.4 

85.8 

MRF Pre. 
1.2 

1.2 

7.4 

11.1 

42.0 

43.8 

8.6 

14.2 
  

Table 2 – Subjective preferences in percentage for both videos 

and frames. 

 

 

 LMS Bicubic 
Edge 

Adap. 
Wavelet 

MRF 

Pre.  

LMS   1.0 1.0 1.0 1.0 

Bicubic 1.0   0.99 0.54 1.0 

Edge 

Adap. 
1.0 0.99   0.66 0.48 

Wavelet 1.0 0.54 0.66   0.62 

MRF Pre. 1.0 1.0 0.48 0.62   

Table 3 – Spearman’s rank correlation between subjective 

video and frame preferences.   
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Video 

PSNR 

Frame 

PSNR 

Video 

SSIM 

Frame 

SSIM 

Video 

Subj. 

Frame 

Subj. 

LMS 2 2 1 1 1 1 

Bicubic 1 1 2 2 2 3 

Edge 

Adap. 
4 4 3 3 4 4 

Wavelet 5 5 5 4 3 2 

MRF 

Pre. 
3 3 4 5 5 5 

Table 4 – Rankings of methods according to subjective and 

objective scores. 

Rankings for PSNR and SSIM measures were obtained 

simply by converting these figures (Table 1) to ranks. 

Rankings for PREF scores were obtained by summing the 

scores along rows of Table 2 and converting the resulting 

totals to ranks. Note the high degree of parallelism 

between these rank results. Spearman’s rank correlation 

coefficients for PREF-vs-PSNR and PREF-vs-SSIM 

scores were computed. To this effect three 90-element 

vectors were created for PSNR, SSIM and PREF 

measurements, since there are over all 90 instances of 

comparisons. For example, the first element of this vector 

can correspond to the comparison of LMS-vs-Bicubic 

method as tested on Susi video; and so on for other vector 

elements. Each element results from the rounded average 

of all 28 subjects.  Similarly, 90-long SSIM and PSNR 

vectors were created.  If method A had a higher PSNR 

(SSIM) value as compared that of method B, the 

corresponding cell was assigned the value 1, and 

otherwise 0. These three vectors were used to compute 

Spearman’s rank correlation coefficients between 

subjective and objective measurements. These rank 

correlations were found as 0.8676 between PREF and 

PSNR and as 0.8875 between PREF and SSIM 

measurements. Method to method comparisons are given 

in Table 5. In each cell, the upper number is PSNR 

related coefficient and lower one is SSIM related 

coefficient. The correlation between subjective 

preferences and both SSIM and PSNR measurements is 

quite high. This implies that tedious subjective tests can 

be replaced by objective SSIM measurements. Notice that 

the smallest correlation occurs in the LMS – Bicubic cell 

of Table 5. The result of bicubic method resembles the 

original input. So, bicubic method gets high objective 

measurements (PSNR and SSIM results).  On the other 

hand, the result of the LMS method is better than the 

original inputs, because of the fact that LMS is a multi-

frame method and LR samples coming from neighboring 

frames increases the quality of the SR estimate. For this 

reason, LMS gets high subjective scores.      

5. CONCLUSIONS 

Experiments have indicated that the best-performing 

single-frame SR method was the bicubic method. This is  

 LMS Bicubic 
Edge 

Adap. 

Wavele

t 

MRF 

Pre.  

LMS  
0.30 

-0.15 

0.75 

1.0 

1.0 

1.0 

0.67 

1.0 

Bicubic 
0.30 

-0.15 
 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

Edge 

Adap. 

0.75 

1.0 

1.0 

1.0 
 

1.0 

1.0 

0.9 

1.0 

Wavelet 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
 

0.87 

0.87 

MRF Pre. 
0.67 

1.0 

1.0 

1.0 

0.9 

1.0 

0.87 

0.87 
 

Table 5 – Correlation coefficients between PREF, SSIM and 

PSNR scores. 

also a good candidate to be employed in video industry 

given its implementation simplicity. 
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