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ABSTRACT 

 In this paper a novel solution of a self-tuning time delay 
estimator operating in the discrete time domain on a 
sinusoidal signal is presented. The proposed solution is 
based on a concept of series connection of a  fractional 
delay filter and linear-phase Hilbert transform filter. The 
novelty of this solution lies in a very low numerical 
complexity, smaller than presented in hitherto published 
results. The performance of our self-tuning time delay 
estimator is analysed and illustrated by the results of its 
operation in presence of noise. 
  

1.   INTRODUCTION 

   Estimation of propagation delay between signals received 
at two separate sensors is a problem of considerable interest 
in areas such diverse as GPS, radar, sonar, biomedicine, 
ultrasonic, geophysics and others. In classical time domain 
estimators, the resolution is limited to the sampling period. 
However, now, sub-sample resolution is possible using 
interpolation by means of fractional delay (FD) filtering in 
discrete time domain [1] – [5] although other possibilities 
also exist, e.g., in [6], by using the FFT for this aim.  

Here we achieve the delay estimation in discrete time 
domain via Hilbert transform filtering together with FD 
filtering. The performance of our self-tuning time delay 
estimator is analysed and illustrated in presence of noise. 

Novelty of the proposed solution lies in low numerical 
complexity. It is economical and efficient due to reduced 
load of processing in comparison with, e.g., [3]. 

 
2.   PROBLEM STATEMENT 

   We assume that the received signal has the form  

            ),0(],[)cos(][ 00 πωϕω ∈++= ngnAnx  (1) 

where the amplitude A>0, 0ω  is the angular frequency in 
radians per sample whose value is known, ϕ  is the 
unknown initial phase whose value we want to 
estimate/measure, g[n] stands for a white Gaussian noise 
realisation and n stands for the time index (number) of 
sample; .  We estimate the value of L,1,0 ±=n ϕ  by 
comparison of  (1) with the reference cosine signal (chrono-
signal  otherwise called the timing waveform) 
 

               

 
 )cos(][ 01 nAnxr ω=  (2) 

whose initial phase is, by assumption, of zero value and  
may differ from A. For solution we apply a fractional delay 
FD filter with a fractional delay value d restricted to the 
interval 

1A

]2/1,2/1[−∈d  and a complex linear-phase Hilbert 
filter HTF. 
 

3.  THE PROPOSED SOLUTION 

   The block scheme of the proposed solution is shown in 
Figure 1. 
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Figure 1 – Block scheme of the proposed solution of self-tuning 
time delay estimator. MA stands for moving averager and ACC 
stands for accumulator. 
 

In Figure 1, in the upper part of the scheme, the received 
real-valued signal x[n] passes through the linear-phase HTF 
giving a complex-valued output with Hilbertian noise term 

  ][ng H

 ][)](exp[][ 0 ngnjAny H++= ϕω  (3) 

whose spectrum is  periodical, Hilbertian, thus right-hand 
sided, in other words equal to zero for )0,(0 πω −∈

[y

[nxr

. This 
complex-valued signal  is pointed out in the scheme by 
using a bold line. Then in Figure 1 the same signal  is 

multiplied by another complex-valued signal  
obtained from the reference real-valued signal  by 
passing it through a series connection of FD with d of, 
generally, nonzero value, and the linear-phase HTF [7], [8], 
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and taking the complex conjugate value (denoted by ) 
of the result. Therefore, at the multiplier output we have 
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][)exp( 01 ngjAA += ϕ   (4)     

with noise term denoted by , assuming that both 
filters are ideal. Thus for given n we obtain a complex 
number 

][0 ng

)exp(1 ϕjAA  depending on unknown ϕ  
plus a noise component. If 2/0 πω =  as common in 
telecommunications, then the value of ϕ  has to be restricted 
to the interval ]4/,4/[ ππϕ −∈  in order to have  
 

 ]2/1,2/1[
0

−∈=
ω
ϕd  (5)    

 
as desired.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Detailed block scheme of the proposed self-tuning sub-
sample time delay estimator from Figure 1. 
 
Next, in Figure 1, the estimated value ][ˆˆ nϕϕ =  is computed 
at the output of the multiplier by using the block  –  
the four quadrant arctangent referred to as angle.m in 
MATLAB.  Further on, 

Arg

][ˆ nϕ  is divided by the angular 
frequency 00 2 fπω = , )2/1,f 0(0 ∈  to give an estimate 

][
~

nd  of the delay between the signals:  (1) and  
(2).  This estimate is accumulated in the ACC block as 
indicated in Figure 1 and the result is averaged over two 
neighbouring samples in a MA – moving average block to 
give the value  responsible for tuning the fractional 
delay in FD block operating in the self-tuning sub-sample 
time delay synthesis by analysis loop in Figure 1.  
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The general rule is that the lower the loop delay, the faster 
is the reaction of the loop to phase jumps in the received 

signal . That is why the MA block in Figure 1 is the 
simple first order finite impulse response (FIR) filter in 
Figure 2, with the following transfer function:  
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This averaging is preceded by an accumulator 
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The transfer function of the ACC and MA cascade is 
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and the corresponding frequency response of ACC-MA is 
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whose values are:  for 2/jm 2/πω ±= , 0 for πω ±=  and 
∞jm  for 0=ω . 

Below we present the algorithm of the proposed self-
adjusting sub-sample time delay estimator from Figure 2 
based on the possibly shortest maximally flat FD and HTF 
and the recursive accumulator followed by a simple FIR 
averager in the last line of the loop.  
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For small Arg  values – in the frame shown above 
and also in Figures 1 and 2 – one can efficiently use an 
approximation  

)][( np

( ) ][/][imag)][(Arg npnpnp ≅ . 
 

The phase delay of  the  cascade (8) is )()( MAACC zHzH
)2/( ωπ  which is not astonishing. However, the group delay 

introduced is desirably of zero value. Thus we deal with a 
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zero-group-delaying accumulator followed by the MA just 
tailored to our application in a feedback loop. 

 
 

 

 

 
Figure 3 – The performance of a cascade of FD filter and HTF, 
maximally flat at 2/0 πω = , thus =0.25. For  better visibility 
the fractional part of the group delay response is presented only in 
the region of interest, i.e. for nonnegative frequency f. 

0f

 
Finally, the transfer function  between  and  

of the HTF of length N=2 implemented in the upper part of 
Figure 2 is 

0H ][nx ][ny

 12
0 )1(

2
1)( −− +−= jzzzH  (10) 

and the transfer function  in the lower part of the 
scheme between  and , in steady state, when we 

can assume that d  

dH
[nyr][nxr
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The amplitude response corresponding to  (11) achieves the 
desired values: 2 for 2/0 πωω ==  and 0 for 

2/0 πωω −== . Of course, (11) resolves to (10) for d=0.  
 

4.   PERFORMANCE 

The performance of the proposed self-tuning sub-sample 
time delay estimator is illustrated in Figures 3, 4, 5, 6 and 7.  

The magnitude of the Complex Approximation Error 
(CAE) curves  between the ideal (desired) frequency 
response of FD in series with HTF and that corresponding 
to (11) are presented in Figure 4. The best performance is 
observed in the vicinity of the frequency of the sine signal 
(1) in the upper part of Figure 1. 

 
 
 

 
 
 
Figure 4 – The CAE for the cascade of FD filter and HTF from 
Figures 2 and 3. 

 
 
Figure 5 shows the characteristics of the fractional delay 

introduced to (2) in order to compensate for the delay in the 
signal (1) having 2/0 πω =  and with 0][ =ng , thus 
without noise. We see that the convergence of the algorithm 
from Figure 2 applied here without averaging and 
accumulation is very fast. The speed of convergence does 
not depend on the value of  d. Further drawings allow us to 
track the influence of averaging in MA – Figure 5b and 
accumulation in ACC – Figure 5c independently as well as 
applied together – Figure 5d for the input signal not 
corrupted by noise.  

The same experiment as in Figure 5, where we had  
0][ =ng
0][

, was repeated in Figure 6 with noise, thus with 
≠ng . The additive white Gaussian noise – AWGN was 

used such that the signal power to noise power ratio – SNR 
– was 30 dB. The presence of noise is clearly seen in Figure 
6a. Simple averaging reduces in Figure 6b the influence of 
noise to some extend, but the main work for this aim is done 
by the ACC, see Figure 6c. The final characteristics shown 
in Figure 6d for this SNR, where both: the averaging and 
ACC are engaged, are very close to those from Figure 5d. 

In order to better clarify the matter we present in Figures 
5e and 6e the “horseshoe” of clusters of phase values 
corresponding to the FD values used previously in 
experiments from Figures 3 and 4. 
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 a) 

b)  

c)  

d)  

 
e) 

 
 

Figure  5 – The performance of self-tuning delay estimator from 
Figure 2 without noise and: a) without both ACC and MA, b) with 
MA, c) with ACC, d) complete scheme with ACC and simple MA 
e) the “horseshoe” of clusters of phase values for FD values as 
above in Figures 5 a, b, c and d.  
 

The smaller the SNR, the dimensions of clusters increase, 
but they still remain distinguishable down to the SNR of 
approximately 15 dB, similarly as in [3], and even less. A 
confirmation is presented in Figure 7.  
 
 

a) 

b)  

c)  

d)  

    
e) 

 
 
Figure 6 – The performance of self-tuning sub-sample time delay 
estimator from Figure 2 with additive white Gaussian noise of  
SNR= 30 dB; a, b, c, d, e as in Figure 5. 
 

There, assuming the initial phase of x[n] in (1) 
corresponding to the fractional delay d=1/2 (the worst case 
for processing) the clusters of the signal values after the 
both  HTF are shown for SNR equal to 30 dB as in Figure 6 
and also for SNR=15 dB. These clusters illustrate not only 
the phase ][ˆ nϕ  discrepancy around ϕ  but also 
independence of this discrepancy on ϕ .  
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Nevertheless, our  result obtained here is a solution whose 
numerical load of processing is significantly reduced in 
comparison with that needed in [3].  
 
a) 

 
b) 

 
 
 
Figure 7 – Illustration of clusters of signals in Figure 2 of length 
2000 samples: a) for when x[n] is corrupted by AWGN of 
SNR = 30 dB and b) of SNR=15 dB.  

][ny

 
The FD filter and both HTF filters in the solution 

engineered in Figure 1, and implemented in Figure 2 need 
altogether only 2 multiplications (1 real-valued 
multiplication for the fractional delay d update and one 
complex-valued multiplication for p[n] computation) versus 
13 multiplications utilized in [3]. Moreover, they need only 
6 adders of real-valued samples instead of 25 adders 
required in [3]. Also the number of integer delay (storage) 
elements in our design is smaller.  

Summing up: the proposed solution achieves similar 
performance as that published in [3] but with much lower 
numerical complexity. That was accomplished by taking 
advantage of the extremely narrow bandwidth of the signal 
under processing.   

 
5.  CONCLUDING REMARKS 

   In the paper a novel solution of a self-tuning time delay 
estimator operating in the discrete time domain on a 
sinusoidal signal has been successfully developed. The 
proposed solution is made up of a series connection of  
fractional delay filter and Hilbert transform filter.   

The performance of our self-tuning time delay estimator 
was illustrated by the results of its operation in presence of 
noise. The performance of the proposed technique is 

comparable to the technique presented in [3] with respect to 
much less computational cost.  
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