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ABSTRACT

A basic requirement for participation in conversation is the abil-
ity to jointly manage interaction. Examples of interaction manage-
ment include indications to acquire, re-acquire, hold, release, and
acknowledge floor ownership, and these are often implemented us-
ing specialized dialog act (DA) types. In this work, we explore the
prosody of one class of such DA types, known as floor mechanisms,
using a methodology based on a recently proposed representation of
fundamental frequency variation (FFV). Models over the represen-
tation illustrate significant differences between floor mechanisms
and other dialog act types, and lead to automatic detection accura-
cies in equal-prior test data of up to 75%. Analysis indicates that
FFV modeling offers a useful tool for the discovery of prosodic
phenomena which are not explicitly labeled in the audio.

1. INTRODUCTION

A basic requirement for successful participation in conversation is
the ability to jointly manage interaction. In human-human dialogue,
and in multi-party settings in particular, attempts to participate fre-
quently require negotiation; participants are faced with the dual task
of deploying their contributions while at the same time limiting dis-
ruption to dialogue flow across the group. Verbal but implicit in-
dications of intent to acquire or to retain the floor, known asfloor
mechanisms, appear crucial.

The availability of floor mechanisms as a human tactic has im-
plications for spoken dialogue systems, which are being deployed
in increasingly conversational settings. The current trend to aban-
don strict turn-taking and to embrace incremental and continuous
processing of dialogue [1] places greater emphasis on the detection
of floor mechanisms, to date only infrequently studied. Detection
failures are likely to have two main consequences. First, and most
obviously, failures increase the ambiguity of floor ownership. For
example, mistaking floor mechanism speech for feedback may lead
systems to continue speaking at a time when a human interlocutor
is seeking to contribute. Second, and perhaps more importantly, the
failure to react appropriately when an interlocutor has signaled his
or her intent to contribute is likely to decrease the sense of mutual
understanding, increasing the subsequent effort needed for system
and human alike.

In this study, we investigate to what extent prosody, and in-
tonation in particular, can be used to distinguish floor mechanism
dialog acts (DAs). Prosody has previously been shown to help in
DA classification [11, 13, 2]; available results are broadly useful
for our purposes here, as they strive towards a general description
of spontaneous speech, but reported accuracies are dominated by
DA types which are frequent and long in duration. In contrast,
floor mechanisms account for less than 5% of speaking time in the
naturally-occurring conversations we study [12]. They also share a
vocabulary with other DA types, in particular those implementing
feedback, making them more difficult to distinguish lexically.

A novel aspect of the current work is its use of the fundamental
frequency variation (FFV) spectrum [?], and standard acoustic mod-
eling techniques as used elsewhere in speech processing, in contrast

to the often arcane estimation, post-processing, and speaker nor-
malization of pitch tracker output. We note that FFV computation
has not previously been applied to audio collected outside of the
anechoic chamber. Our methodology, as applied to the current task,
is described in Section 3, following a description of our datasets in
Section 2. Model structure is directly interpretable, as described in
Section 4; furthermore, as presented in Section 5, the models can be
used for automatic classification. Section 5 also contains the main
contribution of this work, namely a model description of English
floor mechanism prosody.

2. DATA

The data used in this work is drawn from the ICSI Meeting Corpus
[7] and its associated DA annotations [12]1. To our knowledge, it is
the largest publicly available corpus of naturally-occurring unstruc-
tured multiparty conversation, consisting of longitudinal collections
of meetings by several groups, and amounting to over 66 hours of
meeting time. As defined in the accompanying release notes, 73 of
the meetings have been divided into a TRAINSET of 51 meetings
and a DEVSET and EVAL SET of 11 meetings each. For our ex-
periments, we draw training exemplars from TRAINSET and testing
exemplars from DEVSET; we perform no tuning on the latter and
leave EVAL SET for assessment in future work.

Floor mechanisms in this data are annotated as belonging to
one of three DA classes [12]; the following descriptions are taken
from the guide [3] used for their annotation.Floor grabbers (fg )
generally occur at the beginning of a speaker’s turn, and tend to be
louder than surrounding speech. Common lexical implementations
include: “well”, “and”, “but”, “so”, “um”, “uh”, “I mean”, “okay” ,
and “yeah”. Floor holders (fh ) tend to occur in the middle or
at the end of a speaker’s turn, whereasholds (h) typically occur
at the beginning. Prosodically, both floor holders and holds are of
similar loudness with respect to surrounding speech, but of longer
segment durations. Common lexical implementations offh andh
are as forfg , but also include “or”, “let’s see”, “and what else”, and
“anyway”. As described in [3], the three floor mechanisms share a
similar vocabulary, also with backchannels and acknowledgments.

We note that there are a number of mentions of an association
between flat pitch and floor holding (c.f. [4] and references therein).
Also, the literature shows considerable overlap between floor mech-
anisms as described above and categories such as “disfluencies” and
“filled pauses”, which have been more thoroughly investigated (e.g.
[5] and references therein). The extent of this overlap in terminol-
ogy is, however, not known to us, and we have opted here to focus
on the ICSI Meeting Corpus DA categories.

3. METHODOLOGY

3.1 Data Selection and Pre-processing

To facilitate subsequent discussion, we propose an intermediate
temporal unit of analysis, thetalkspurt fragment(TSF). We derive

1Releaseicsi mrda+hs corpus 050512.tar.gz .
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this unit from two reference segmentations, both of which are avail-
able for the ICSI Meeting Corpus. The first is that of speech versus
non-speech, obtained from the forced-alignment of words; we first
derive from this a talkspurt (TS) segmentation, in which immedi-
ately adjacent words are merged (with no bridging of inter-word
gaps). The second reference segmentation is the framing of words
into DAs, which may include DA-internal pauses.

TSF

DA

TS

Figure 1: Construction of the talkspurt fragment (TSF), given refer-
ence talkspurt (TS) and dialog act (DA) segmentations.

An example intended to clarify our TSF definition is shown in
Figure 1. A TSF is the longest unit which belongs to at most one
talkspurt and at most one dialog act, and inherits the DA type of the
DA to which it belongs. TSFs can be:
1. TS-initial (and optionally DA-initial), or
2. mid-TS and DA-initial; and
3. TS-terminal (and optionally DA-terminal), or
4. mid-TS and DA-terminal.
In the current work, we attempt to discriminate between floor mech-
anism DA types and other DA types in each of these four TSF con-
texts. The first two contexts are more immediately relevant to dia-
logue systems whose estimates of DA boundaries may be unreliable
prior to lexical recognition; we include experiments involving the
latter two contexts for completion. In all cases, we focus only on
the 500 ms with which TSFs begin or end.

3.2 Feature Extraction

The fundamental frequency variation (FFV) representation is a 7-
element characterization of within-frame variation in fundamental
frequency. Its computation, which obviates the need to first estimate
the fundamental frequency itself, was described in detail in [8,?,
10]; here, space limitations allow for only a brief account.

Following pre-emphasis (1−0.97z−1), the signal is framed into
32 ms overlapping windows, with a frame step of 8 ms. Two fre-
quency spectra,FL and FR, are computed for the left and right
halves of each frame, respectively, using tapered and largely dis-
joint windows. Each of the two spectra is then dilated in frequency,
over a continuum of dilation factors, while the other spectrum is
kept constant. A modified dot-product yields a measure of align-
mentg(ρ) of their respective harmonic trains, for dilation factorρ .
Frame energy is normalized out of this representation.

We oversample the ensembleg(ρ), which we refer to as the
FFV spectrum, at discrete equi-spaced intervals ofρ , and then pass
the resulting vector through a filterbank whose design was moti-
vated by psychoacoustic studies [6]. An explanation of the 7 result-
ing filter outputs is provided in Section 4, along with an example.

3.3 Density Estimation

As mentioned in Section 3.1, the experiments we present involve
discrimination for several binary partitions of the data. In each
case, and for each binary classc, we estimate a hidden Markov
model (HMM) Mc over sequences of feature vectors using maxi-
mum likelihood (ML) expectation-maximization2 (EM), from train-
ing material belonging to that class. As in [8], we use a model of 4

2Kevin Murphy’s implementation in MatlabTM , available at
http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html
was used for all HMM operations (downloaded on Feb 9 2009).

fully-connected states and a single 7-dimensional Gaussian for the
emission probability of each state.

3.4 Maximum Likelihood Classification

To assess the extent to which modelsMc over the FFV representa-
tion are discriminative for unseen data, we perform automatic clas-
sification of sequences drawn from DEVSET. As in [?], we train 10
modelsMc,i , 1≤i≤10, with different random seeds for each of two
binary classes,c∈ {α ,¬α}. The classifier then assigns, to each test
sequence, a class label

c∗ =

{

α if log ∏i P(x|Mα,i)

∏i P(x|M¬α,i)
> θ

¬α otherwise
. (1)

Varying θ allows for easy construction of receiver operating char-
acteristic curves (ROCs), which we provide in Section 5.5.

4. INTERPRETING MODEL STRUCTURE

One of our aims in this work is to illustrate the utility of hidden
Markov modeling of FFV spectra as an exploratory tool. Whereas
graphical depictions of finite state topologies are widespread and
well understood, we describe here in some detail our depiction of
the emission probabilities, an example of which is given in Figure 2.
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Figure 2: Depiction of single 7-dimensional Gaussian HMM emis-
sion probabilities, for (a) raw observations (∈ [0,1]), and (b) global
Z-normalized observations (∈ [µ −2σ ,µ +2σ ]).

Figure 2(a) shows 7 vertical bands, each corresponding to the
output of one filter in our filterbank. Since energy is normalized
out, filterbank output values, shown on they-axis, are bounded in
[0,1]. Grayscale values indicate the probability of eachy-axis value,
per filter, given that each filter is described by one mean and one
variance (cf. Section 3.3); concentrations of white designate areas
which are in the vicinity of the mean, their relative widths indicate
the relative magnitude of the variance, and black denotes near-zero
probability.

The center band (at 0 along thex-axis) corresponds to frame-
level variation of fundamental frequency in the range[−0.1,+0.1]
semitones per frame, or[−1,+1] octaves per second, and is in-
tended to capture those instants of speech during which the speaker
may be said to be employing a flat pitch contour. Psychoacoustic
studies have estimated that for a vowel 100 ms in duration, flatness
is perceived when the magnitude of the observed pitch change is
smaller than 16 semitones per second, or 1.33 octaves per second.

The two bands identified as−1 and+1 in Figure 2(a) cor-
respond to rates of fundamental frequency change in the ranges
of [−3.4,−0.5] octaves per second and[+0.5,+3.4] octaves per
second, respectively. They describe slowly changing fundamental
frequency. Quickly changing fundamental frequency is modeled
by the two filters identified as−2 and+2 in the figure. These
correspond to rates of change in the ranges of[−5.4,−2.4] and
[+2.4,+5.4] octaves per second, respectively. Finally, the bands
identified as−3 and+3 integrateg(ρ) over the ranges of[−2,−1]
and [+1,+2] octavesper 0.008 ms. They account in part for the
anticipated correlations betweenFL andFR due to frequency halv-
ing and doubling during voiced speech. During unvoiced speech,
all filter outputs exhibit much larger variance and are less correlated
than during voiced speech.
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As described, Figure 2(a) shows an example model over the raw
output of the filterbank. For highlighting differences between com-
peting HMMs, we instead use models overZ-normalized values,
shown in Figure 2(b). A globalZ-transform is computed for each
filter’s response across all TRAINSET frames used in a particular
experiment.

5. EXPERIMENTS AND ANALYSIS

5.1 Talkspurt initiation (TSI)

In a first experiment, we group together all floor mechanism DA
types: floor grabbers (fg ), floor holders (fh ), and holds (h), and
attempt to determine whether they differ from other DA types,
¬{fg+fh+h }, immediately when they start. We do this by training
ML models of the first 500 ms of TS-initial TSFs for both classes.
Both the{fg+fh+h } and the¬{fg+fh+h } models are trained us-
ing 7500 exemplars, drawn randomly from the total number avail-
able; this number is limited by the number of floor mechanism in-
stances in TRAINSET. We use the trained models to classify a set
of 1500 TSFs drawn from DEVSET for both classes.

The results of this experiment, for which random guessing
would lead to an accuracy of 50% and a ROC discrimination of
50%, are shown in the first line of Table 1. It can be seen that accu-
racy is significantly above random guessing for TRAINSET TSFs,
and that the results generalize well to unseen data (DEVSET).

We also design a similar experiment attempting to differentiate
between{fh+h }, which we expect to be internally similar (and
dissimilar from floor grabbers), and¬{fh+h }. We use 7000 TSFs
for training each of the two models, and 1000 TSFs for testing. As
the second line of the first panel in Table 1 shows, this less diverse
set of DA phenomena is easier to differentiate from the rest, and
generalization to unseen data remains high.

In a third experiment, we attempt to differentiate betweenh
and¬h; because instances ofh are rare, only 500 and 180 TSFs
were available for training and testing, respectively. As can be seen
in the third line of the first panel of Table 1,h instances are sig-
nificantly more differentiable from¬h instances than are{fh+h }
instances from¬{fh+h } instances. We also note that generaliza-
tion is slightly poorer than in the previous two experiments, a fact
we attribute to the smaller number of training exemplars.

DA types Acc. (%) atθ = 0 ROC areaContext
to detect TRAIN DEV DEV

{fg,fh,h } 62.7 63.9 70.2TSI
{fh,h } 65.1 65.3 72.2(§5.1)

h 74.6 72.7 82.0
{fg,fh,h } 59.2 58.3 63.5TST
{fh,h } 63.5 64.1 70.6(§5.2)

h 72.4 68.3 75.6
DAI (§5.3) fh 62.4 63.6 68.4
DAT (§5.4) fh 66.7 67.4 75.0

Table 1: Binary classification accuracies (using Equation 1) for
TRAINSET and DEVSET, as well as discrimination (in %, with
maximum value of 100%) for several TSF contexts.

In Figure 3, we show the transition andZ-normalized emis-
sion probabilities of models trained on the{fh+h } and¬{fh+h }
TRAINSET data. As can be seen, the transition probabilities for
both state networks are very similar, as are the emission probabil-
ities for states labeled “B” and “D”. However, for the most likely
first state, labeled “A”, the emission probability models differ. For
¬{fh+h }, in diagram (a), the response of the central filter, and of
the±1 filters, is lower than its global average, while that of the±2
filters is slightly above their global average. In (b), for{fh+h }, the
responses of all five filters are slightly above their global averages.
This indicates a lower probability of the use of flat or slowly varying
pitch upon entering¬{fh+h } talkspurts, relative to that employed
when entering{fh+h } talkspurts.

Also, we note that the central filter response in the state labeled
“C” in both diagrams is higher for{fh+h }, in (b), than it is for
¬{fh+h }, in (a). This indicates a higher likelihood of flat pitch use
for {fh+h } talkspurts, in the state most likely the next to be visited
following egress from state “A”.
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Figure 3: Models inferred for TS-initial talkspurt fragments;Z-
normalized emission probabilities shown.

5.2 Talkspurt termination (TST)

Having treated talkspurt initiation in Section 5.1, we now turn to
talkspurt termination, and revisit the exact same distinctions among
DA type classes. In this case, models are trained on thelast 500 ms
of each talkspurt-terminal TSF, reversed in time such that the last
frame appears first in the sequence. Time reversal is performed only
to facilitate analysis, yielding in our framework a single egress state
out of talkspurt fragments, rather than a single entry state. The num-
ber of training and testing instances is 7000 and 1500, respectively,
for the{fg+fh+h } versus¬{fg+fh+h } task; 5000 and 1000, re-
spectively, for the{fh+h } versus¬{fh+h } task; and 320 and 120,
respectively, for theh versus¬h task.

The results for all three experiments are shown in the second
panel of Table 1. As can be seen, at talkspurt-terminal locations
automatic classification yields accuracies which are significantly
above random guessing (of 50%), which generalize to unseen data,
and which follow approximately the same trend as at talkspurt-
initial locations as the class of interest is narrowed progressively
towards purelyh speech. However, all accuracies are slightly lower
than they are for talkspurt-initial classification, suggesting that it is
more difficult to differentiate floor mechanisms using variation of
fundamental frequency as they are ending.

Figure 4 shows model structure for both{fh+h } and¬{fh+h }
classes, in diagrams (a) and (b), respectively, trained in the same
way as in the preceding section. We again note that the transi-
tion probabilities in both diagrams (a) and (b) are quite similar.
Although the most visible difference is that between the emission
probabilities of states labeled “D”, these states are not frequently
visited; we focus instead on the remaining three states.
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As can be seen, the relative response of all filters for these three
states is visually quite similar between diagrams (a) and (b). How-
ever, closer inspection reveals that the Gaussian means are all higher
in (b) than in (a). This result indicates thatg(ρ) attains higher val-
ues while{fh+h } speech is terminating than while¬{fh+h } is
terminating, regardless of F0 slope. Our explanation for this is as
follows. In computingg(ρ), we do not normalize out the spectral
envelope ofFL or of FR; as a result,g(ρ) can be expected to be
higher when the envelopes are more similar. We believe that in in-
stances of identical filterbank responseshape, a higheroffsetfor all
filters indicates more slowly varying spectral envelope, i.e. a slower
rate of speaking. This observation is corroborated by the MRDA
annotation manual [3], but was unexpected from the FFV represen-
tation. Evidently, the effect is strong enough to form a basis for
discriminating among these two classes of DAs at talkspurt ends.
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Figure 4: Models inferred for TS-terminal talkspurt fragments;Z-
normalized emission probabilities shown.

5.3 Mid-talkspurt DA initiation (DAI)

We now turn to two complementary problems, in this section and
the next, asking whether floor mechanisms which begin and end
in the middle of an ongoing talkspurt can be distinguished from
other types of DAs. This scenario is less directly applicable to con-
versational dialogue systems, whose estimates of DA boundaries
at runtime are likely to be less dependable than those of talkspurt
boundaries. In this section, we focus on 500 ms of mid-talkspurt
DA-initial speech; only thefh DA type occurs frequently enough
in this context to allow for modeling. We use 1200 TSFs for training
both class models, and 240 TSFs from each class for testing.

The results, given in the third panel of Table 1, indicate perfor-
mance which is on par (but slightly lower) with that for TS-initial
contexts for all floor mechanisms ({fg+fh+h } in panel 1). Due to
space constraints, we do not show the model structure for this case.
However, we note that transition probabilities for both networks are
similar, and, as in the previous section, the only visually apparent
difference is that the offsets for filter responses of thefh model
are higher than for those of the¬fh model. Given our current un-
derstanding, we believe that the models are differentiating among

mid-TSfh and¬fh initiation based largely on speaking rate.

5.4 Mid-talkspurt DA termination (DAT)

Finally, we explore the same distinction as in Section 5.3, but for
DAs which end in mid-TS. As for that task, onlyfh DAs occur
sufficiently frequently for modeling; we use 750 TSFs for training
both thefh and the¬fh models, and 180 testing TSFs from each
class drawn from DEVSET. The results, shown in the fourth panel
of Table 1, indicate that in this locationfh closure is easier to detect
than its onset; furthermore, performance is also better than for the
{fg+fh+h } versus¬{fg+fh+h } and{fh+h } versus¬{fh+h }
distinctions in the second panel of the table.

The models learned for this task are shown in Figure 5. Al-
though there are several differences between the¬fh model and the
fh model to note, we focus in particular on the most likely state to
terminate the TSFs in question, identified as “A” in both diagrams.
This state terminates both types of TSFs over 50% of the time. As
can be seen, the response of the center filter of state “A” in the¬fh
model is approximately what it is on average, while the response
of the slowly varying fundamental frequency filters is higher than
it is on average. This is even more the case for the quickly varying
fundamental frequency filters. In contrast, for thefh model, the
response of all filters is above average in the state labeled “A”. This
difference between the two models suggests that flat pitch is used to
terminate mid-TSfh TSFs more frequently, in relative terms, than
it is used to terminate mid-TS¬fh TSFs.
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Figure 5: Models inferred for mid-TS DA-terminal¬fh (a) andfh
(b) TSFs;Z-normalized emission probabilities shown.

We note in passing here that the state labeled “D” in both dia-
grams in Figure 5 also exhibits quite different emission probabili-
ties; however, this state is only rarely visited, in both cases.

5.5 Task Comparison

The accuracies presented in Table 1 characterize performance when
the log-likelihood-ratio thresholdθ is zero; to describe performance
over the full range ofθ , corresponding to different weights associ-
ated with precision and recall, we present receiver operating char-
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acteristic curves for the four pairs of models shown in Figures 3
through 5, in Figure 6. Over most of the range of possible true posi-
tive rates, the four detection tasks appear to be increasingly more
difficult in the order: mid-TS DA-terminalfh TSFs, TS-initial
fh+h , TS-terminalfh+h , and mid-TS DA-initialfh . However,
at high true positive rates, the two tasks which appear to rely more
on speaking rate than on variation in fundamental frequency outper-
form the other two. This effect is currently under investigation.
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Figure 6: Receiver operating characteristic curves for detection us-
ing Equation 1 and the models of Sections 5.1, 5.2, 5.3, and 5.4. The
x− andy−axes represent false and true positive rates, respectively.

6. DISCUSSION

The experiments presented indicate that floor holdersfh and holds
h (which together make up the majority of floor mechanism pro-
duction by time) differ from other DAs in the rate of F0 variation
and/or the rate of speech, at both their onsets and ends, regardless
of whether they begin or terminate at talkspurt boundaries.

The models we infer for the classes described are single mul-
tivariate Gaussian distributions with diagonal covariances. When
change in inter-harmonic spacing is slow, the models appear to con-
found the effects of change in harmonic structure and change in
spectral envelope. We believe thatg(ρ) is dominated by changes in
harmonic structure, both from an underlying mathematical perspec-
tive as well as from the fact that we achieve higher classification
accuracies where inferred model pairs differ in filterbank response
shape rather than offset. Shape normalization by subtraction of the
offset, and separate modeling of the offset, may in the future shed
light on which effect is more pronounced, for a given context. A
more optimal strategy may involve inverse filteringFL andFR prior
to the computation ofg(ρ).

We note for completion that the floor mechanism TSFs used
in our experiments are on average shorter than other DA type TSFs.
When a particular TSF is shorter than 500 ms, we truncate the audio,
leading to shorter sequences of feature vectors; not doing so would
encourage models to learn silence after the end of TS-initial TSFs
and before the start of TS-terminal TSFs. Separate experiments us-
ing only a duration threshold have shown that forh detection, for
example, accuracy is barely above 50%. This indicates that audio
truncation by itself is not responsible for the classification accura-
cies observed using FFV models.

7. CONCLUSIONS

We have demonstrated the use of the fundamental frequency vari-
ation (FFV) representation in exploratory analysis of a rare but
important phenomenon in spontaneous speech. The work pre-
sented is the first application of FFV modeling to the inference
of dialogue act type in multiparty conversation, on non-anechoic-
chamber, close-talk-microphone recordings which exhibit a signifi-
cant amount of crosstalk. To a first approximation, our experiments

suggest that, at talkspurt-initial locations, floor holders and holds
differ from other DA types in their more frequent use of flat pitch.
Talkspurts belonging to these two classes appear to terminate with
the use of slower speech. Conversely, in mid-talkspurt locales, floor
holders appear to begin with slower speech than do other DA types,
but end with relatively more frequent use of flat pitch. These find-
ings corroborate, and elaborate on, those in the literature regarding
floor holding mechanisms, and support our previous finding that
flat pitch is strongly predictive of locations in which interlocutors
in two-party dialogue do not begin to speak. Overall, the proposed
methodology has been shown to be suitable for the discovery and
analysis of prosodic phenomena which, as in this work, are not ex-
plicitly labeled. We expect that it will service future automatic dis-
crimination efforts as well as improved human understanding.
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