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ABSTRACT
In a recent work we applied particle filtering to simple
biochemical networks composed of first-order reactions with
the objective of estimating unknowns in the studied system
that include stochastic rate constants and species with time-
evolving numbers of molecules. In this paper we extend
that effort to biochemical networks which have second-order
reactions. We model the unknown stochastic rate constants
by Gamma distributions and the number of reactions in
a given time interval as Poisson random variables. The
observations are nonlinear functions of some of the species
in the system, and they are distorted by noises with known
distributions. With these assumptions, we develop a particle
filter that tracks the number of molecules of all the species in
the network with time and estimates the unknown stochastic
rate constants. We demonstrate the method on a reaction of
importance in studying Ras regulation.

1. INTRODUCTION

The computational approaches to studying biological net-
works are either based on deterministic or stochastic meth-
ods. The former represent the biochemical reactions de-
scribed by the network with differential equations and where
the unknowns are the concentrations of the various species in
the network. These equations are often numerically solved.
In the stochastic framework, the central role is played by the
chemical master equation and the unknowns are the proba-
bility distributions of the species. Of the two approaches,
the stochastic one is more general, and it can improve on
the modeling of the biochemical network. This is particu-
larly obvious when the numbers of molecules of some of the
species in the network are small and/or when studying signal
transduction and gene expression [1], [2], [3]. Also, there
are phenomena that cannot be explained with the determinis-
tic methods, and they include multistability of the observed
system when it is driven by random dynamic switching be-
tween stationary states [4].

For a given network, one can have two types of compu-
tational problems, usually referred to as forward and inverse
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problems [5]. The forward problem amounts to simulating
a network from some starting sizes of molecular species and
sequentially propagating them in time. This presumes that
all the reaction rates of the network are known. The inverse
problem is to estimate the unknowns of the network based
on experimental time series measurements of some of the
molecular species. The unknowns can be the reaction rates in
the network or the numbers of some of the molecular species
that cannot be measured.

Recently, we addressed the inverse problem by apply-
ing particle filtering to a set of measurements of some of
the species in biochemical networks with first-order reactions
[6]. In this paper, we extend this work to networks that in-
clude second-order reactions. We show that particle filtering
can readily be used for accurate estimation of not only the dy-
namic variables in the system, like the time varying number
of molecules of each of the species, but also of the stochastic
rate constants. Due to the model assumptions, we can im-
plement improved particle filtering where we only generate
particles for the species in the system, whereas the unknown
stochastic rate constants are integrated out. We can write the
posteriors of the constants as mixture Gamma densities.

The paper is organized as follows. First, in Section 2
we state the problem as one of studying a discrete state-
space model. In Section 3, we show how we implement
the particle filter and track the constant and time varying
unknowns. In Section 4, we demonstrate the performance of
the proposed approach by computer simulations of a network
that is important in modeling the regulation of the Ras
protein. Finally in Section 5, we present brief conclusions.

2. THE PROBLEM

We consider biochemical networks that include both first-
and second-order reactions. For example, consider the
network described by

XA +XB
c1−→ XC +XD

c3−⇀↽−
c2

XE (1)

where we have three reactions, two of second-order, and one
of first-order. More specifically, the first reaction is given by

XA +XB
c1−→ XC (2)

the second by
XC +XD

c2−→ XE (3)
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and the third by
XE

c3−→ XC +XD (4)

Besides the types of molecules that take part in the reactions,
the latter are also defined by the reaction constants ci. The
stochastic nature of the processes that take place is expressed
by random variables that describe how many reactions occur
in a unit time interval. In our work, the number of reactions
(whether first- or second-order) are given by random vari-
ables with truncated Poisson distributions. For example, in
the time interval between t and t + ∆t, and where at t the
number of molecules of the species XA and XB is xA,t and
xB,t , respectively, the number of reactions r1 defined by (2) is
modeled by

p(r1) =
λ r1

1
C r1!

e−λ1 , r1 = 0,1, · · · ,min(xA,t ,xB,t)

(5)

where C is a normalizing constant, and λ1 = c1xA,txB,t∆t.
It is instructive to view the previous expression also as
p(xA,t+∆t |c1,xA,t ,xB,t) and where r1 = xA,t − xA,t+∆t .

We assume that we have n−time varying unknowns in
the system denoted by xt , where xt = [x1,t x2,t · · · xn,t ]>, and
that they represent the number of molecules of the various
species in the network. We also assume that each species can
undergo only one reaction in the time interval ∆t. Another
set of unknowns in the network is the vector of stochastic
rate constants c. Given c, we have that

xt ∼ p(xt |xt−1,c) (6)

i.e., the process that describes the reactions in time is
Markovian. Note that at the beginning, we either know the
initial number of molecules or we model them by the prior
p(x0). For the vector of stochastic rate constants c, we
specify its prior, i.e.,

c ∼ p(c). (7)

We will assume that the prior p(c) is a product of individual
priors, i.e.,

p(c) =
K

∏
k=1

pk(ck) (8)

where K is the number of reactions in the system, and where
each individual prior is a Gamma distribution with parame-
ters (αk,βk). Finally, we need to model the observations yt
in terms of the unknown states xt , that is,

yt ∼ p(yt |xt). (9)

Thus, given the distributions p(xt |xt−1,c), p(x0), p(c),
p(yt |xt) and the observations y1:T , we want to estimate all
the dynamic states xt and the stochastic rate constants c.

3. THE SOLUTION

Our solution is based, as in [6], on the use of particle
filtering [7]. Here we briefly summarize the main points

of the approach. First, the particle filter approximates the
posterior of the unknowns with a discrete random measure,
χt = {(x(m)

t ,c(m)),w(m)
t }M

m=1, where (x(m)
t ,c(m)) is the m−th

particle and w(m)
t is the associated weight of the particle. The

constants c require special care in particle filtering because
there is no dynamics involved with them. Ideally, we would
like to integrate them out if at all possible. We can write

p(xt |x1:t−1) =
∫

p(xt |c,xt−1)p(c |x0:t−1)dc.

(10)

The integrand p(xt |c,xt−1) is a product of individual distri-
butions, i.e.,

p(xt |c,xt−1) =
K

∏
k=1

pk(xt |c,xt−1) (11)

where K is the number of reactions in the system, and
pk(xt |c,xt−1) is the probability distribution that describes
the k−th reaction, and its actual arguments are the reactants
of the k−th reaction. The forms of pk(·) are truncated Pois-
son distributions as shown by (5). Similarly, the posterior
p(c |x0:t−1) is a product of K factors, one for each constant
ck and represented by a Gamma distribution. For as long
as the number of molecules that are reactants does not drop
very low, we can approximate the truncated Poissons as reg-
ular Poisson distributions, in which case the K integrals from
(10) can be analytically solved. For example, if we let with-
out loss of generality ∆t = 1, we can write for the first reac-
tion (2) the following:

p1(xA,t |xA,0:t−1,xB,0:t−1) =
(xA,t−1xB,t−1)xA,t−1−xA,t

(xA,t−1− xA,t)!

× (β + xA,0xB,0 + · · ·+ xA,t−2xB,t−2)
α+xA,0−xA,t−1

Γ(α + xA,0− xA,t−1)

× Γ(α + xA,0− xA,t)
(β + xA,0xB,0 + · · ·+ xA,t−1xB,t−1)

α+xA,0−xA,t

(12)

where we recognize the Poisson-Gamma distribution [8].
Thus, in principle we can generate the particles of xA,t
without having to generate particles for c. We can also
readily obtain the posteriors of ck. They are all Gamma
distributions with parameters αk,t and βk,t . For example, for
p(c1|x0:t) we have

p(c1|x0:t) =
β α1,t

1,t

Γ(α1,t)
c

α1,t−1
1 eβ1,t c1 (13)

where

α1,t = α1 + xA,0− xA,t (14)

β1,t = β1 +
t

∑
j=1

xA, j−1xB, j−1. (15)

The method is implemented using at each time instant t
the following steps:
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1. Generate particles of all the species using Poisson–
Gamma distributions of type (12).

2. Compute the weights of the particles

w(m)
t ∝ w(m)

t−1 p(yt |x(m)
t ). (16)

3. Resample if necessary.
As pointed, the overall posterior of the rate constants is
a mixture of Gamma distributions, i.e., for example, the
posterior of c1 is approximated by

p(c1 |y1:t)'
M

∑
m=1

w(m)
t Ga(α(m)

1,t ,β (m)
1,t ). (17)

If necessary we can draw particles from the above distribu-
tions, or we can obtain some point estimates (for example the
MSE estimate) without resorting to Monte Carlo sampling.

4. COMPUTER SIMULATIONS

We demonstrate the performance of our method on the
following biochemical network:

XA +XB
c1−→ XC +XD

c2−→ XB +XE (18)

This is a reaction scheme that can be used for de-
scribing the mechanism by which the regulation of
Ras protein1 (activation/inactivation) takes place [9],
i.e., Ras−GDP+GEF

c1−→ Ras−GDP−GEF+GTP
c2−→

Ras−GTP+GEF+GDP. Namely, in that case the species
XA is the inactive conformation Ras-GDP, where GDP is a
nucleotide, XB represents the exchange factor GEF which in-
duces disassociation of GDP from Ras by first forming the
intermediate complex Ras-GDP-GEF, denoted by XC. The
species XD is the GTP nucleotide that substitutes the GDP in
the Ras-GDP-GEF conformation and thereby releases the ex-
change factor GEF. Thus, XE is the activated Ras in the form
of Ras−GTP. Note that for simplicity in (18) we dropped
the species GDP (which results as a product of the second
reaction) because it does not affect our study in the simula-
tions. Once activated, Ras initiates a number of pathways
[10].

We simulated the reaction (18) with the following setup:
XA,0 = 1,000, XB,0 = 800, XC,0 = 200, XD,0 = 300, and
XE,0 = 0; c1 = 10−5, and c2 = 8× 10−5. The observations
were modeled according to

y1,t = round(X3/2
A,t )+ vA,t (19)

y2,t = round(X3/2
E,t )+ vE,t (20)

where round(·) stands for rounding operation, vA,t ∼
N (0,σ 2

v ), and vE,t ∼N (0,σ2
v ), with σv = 200. For the pri-

ors of c1 and c2 we used Gamma distributions with param-
eters (α1 = 10,β1 = 105), and (α2 = 90,β2 = 105). Thus,
there were two observations per each time instant, one that
was a measurement related to XA,t and the other related to
XE,t .

1The Ras molecules are proteins attached to the cell membranes and are
key components for controlling various cell processes including cytoskeletal
integrity, proliferation, adhesion, apoptosis, and migration.

0 50 100 150 200
6

8

10

12
x 10

−6

time

c
1

0 50 100 150 200
7.5

8

8.5

9

9.5
x 10

−5

time

c
2

Figure 1: Estimates of the constants c1 and c2 as functions of
time. The true values were c1 = 10−5, and c2 = 8×10−5.

0 50 100 150 200
700

750

800

850

900

time

X
B

,t

0 50 100 150 200
100

150

200

250

300

time

X
C

,t

Figure 2: Estimates of the species XB,t and XC,t as functions
of time. The solid (red) line represents the true values and
the das-dot (blue) line the estimated values.
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Figure 3: A histogram of estimated values of the constant c1
after T = 200 observations. The true value of the constant
was c1 = 10−5.
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Figure 4: A histogram of estimated values of the constant c2
after T = 200 observations. The true value of the constant
was c2 = 8×10−5.

Some of the results are shown in Figs. 1–4. In Fig. 1,
we see the estimates of the constants c1 and c2 as functions
of time for one realization of the biochemical process and
the associated measurements. We can see that soon after the
beginning, the values of the stochastic rate constants settled
near their true values.

In Fig. 2, we observe the estimated evolution of the
unobserved species XB,t and XC,t and how they compare with
the true values of the species. Again, we can conclude that
there is a good agreement between the true and the estimated
values.

In Figs. 3 and 4, we plotted the histograms of the MSE
estimates of the stochastic rate constants from 100 different
realizations. From the histograms, we may conclude that
these estimates are somewhat biased; on average c1 was
underestimated and c2 was over estimated.

5. CONCLUSIONS

In this paper we presented a particle filtering method for
tracking the unknown numbers of molecules in a biochemical
network that may contain first- and second-order reactions.
The priors of the unknown stochastic rate constants were
modeled by Gamma distributions, and the distribution of
the number of molecules of the species given their history,
as Poisson-Gamma distributions. The performance of the
particle filtering method was demonstrated on a biochemical
network of interest in modeling Ras regulation.
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