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ABSTRACT 

In this work we present an iterative multiple-input multiple-

output (MIMO) sphere decoding algorithm based on a pro-

posed Constrained Metric-first search. The search strategy 

minimizes the number of required iterations as well as the 

variation in the number of iterations while overcoming the 

conventional metric-first memory requirements. Further 

complexity reduction is achieved through the use of a simpli-

fied distance norm and sorted QR-decomposition. The pro-

posed algorithm is shown to be better suited for early termi-

nation schemes employed to guarantee high throughput as 

compared to traditional sequential sphere decoding. The 

decoder is synthesized to a standard TSMC 65nm CMOS 

process and shown to guarantee 750 Mbps throughput for a 

4x4 16-QAM setup with close-to ML (Maximum Likelihood) 

performance and lower complexity than published decoders. 

1. INTRODUCTION 

Sphere decoding (SD) [1]–[2] emerged as a promising 

method to find the optimum ML solution [3] for the MIMO 

decoding problem [4] by reformulating the impractical ex-

haustive search over all possible transmitted vectors into an 

efficient depth-first tree search. However, the complexity of 

the depth-first search employed by the SD algorithm varies 

with channel and noise conditions and can reach the com-

plexity of an exhaustive search in the extreme [5]. This 

variation naturally appears in the throughput of the iterative 

decoder rendering it impractical.  

 

In [6], early termination techniques were applied to the 

original SD algorithm to guarantee upper and lower bounds 

on complexity and throughput respectively. In [7], the SD 

algorithm with early termination was applied to the simpli-

fied tree of the Fixed-throughput Sphere Decoder (FSD) [8] 

in what is referred to as the sequential COSIC (Conditioned 

Ordered Successive Interference Cancellation) decoder. The 

sequential COSIC exhibits, to our knowledge, the minimum 

published complexity among MIMO sphere decoding algo-

rithms. We measure complexity through the throughput 

normalized to gate count and chip-clock frequency 

(bps/Hz/G) metric. 

 

We show in this work that under realistic channel condi-

tions, depth-first based iterative decoders suffer severe per-

formance degradation when early termination schemes are 

applied to guarantee minimum throughput. This motivated 

proposing an alternative MIMO sphere decoding algorithm.  

 

The proposed algorithm involves the introduction of the 

Constrained Metric-first Search (CMS), a variant of 

Dijkstra’s Search [9], which significantly reduces the maxi-

mum memory requirement that has prevented hardware im-

plementation of Dijkstra’s search for sphere decoding. We 

apply the proposed search to the FSD [8] tree using the ℓ
∞
 

norm. The latter configuration allows for significant reduc-

tion in the complexity of the search and the enumeration 

overhead. We show that the proposed search is very well 

suited for early termination schemes used to guarantee 

throughput. The algorithm is coded in HDL and synthesized 

to a TSMC 65nm CMOS process showing about 2x im-

provement in normalized throughput over the next best ap-

proach. 

 

Section 2 explains the MIMO sphere decoding problem. 

Section 3 describes our proposed search strategy and chosen 

distance norm. Section 4 describes the simplified tree struc-

ture and enumeration scheme. In section 5 we discuss early 

termination schemes and the performance of the proposed 

algorithm applied to the case of a 4x4 64-carrier OFDM 

system. Section 6 presents the low hardware complexity of 

the proposed decoder when synthesized and compared to 

published results. We conclude in section 7. 

2. MIMO DECODING 

Consider a MTxMR MIMO system with spatial multiplexing. 

Let s be the transmitted vector of MT independent symbols 

chosen from a given constellation Ω. The received vector y 

of length MR is given by: 
nHsy +=  

 

where H is the MRxMT channel matrix and n is the length-

MR noise vector at the receiver. MIMO decoding attempts to 

find the MT transmitted symbols in s given y and H. Without 

loss of generality, we assume that MR = MT =M. 

  

The Maximum Likelihood (ML) solution [2] is the optimum 

estimate s
)

 out of ΩM where: 

 

  )(minarg ss d=
)

 (1) 

  and 
2

)( Hsys −=d   

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 456



 

Figure 1 –Sample sphere decoder tree for a 4x4 QPSK system. Note 

that only part of the tree is shown. 

 

Finding the ML solution requires a search over all possible 

combinations of [ ]11 ,...,, sss MM − . The number of candidate 

vectors grows exponentially with the number of antennas 

(64
4
 for a 4x4 64-QAM system) and an exhaustive search 

becomes impractical. 

 

The search, however, can be formulated into a tree search by 

performing QR-decomposition on the channel matrix H: 
H = QR  

where Q is a unitary matrix and R is an upper triangular 

matrix. The distance d(s) in (1) becomes:  

  
2

)( Rsys −=
)

d   

  where yQy H
=

)
.  

 

Assuming s = [ ]11 ,...,, sss MM −  and y
)

= [ ]11,...,, yyy MM

)))

− , we 

obtain an M –level tree with partial distances: 
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Finding the ML solution thus translates to finding the path in 

the tree with minimum distance d(s1) at the leaf. The search 

for the path utilizes the partial distance equations (2). Figure 

1 shows the tree structure for a 4x4 QPSK system. 

 

Sphere decoding [1] performs a depth-first search [10] over 

the tree by visiting child nodes before sibling nodes. Any 

node whose distance exceeds a certain radius d falls outside 

the sphere and is automatically pruned along with its chil-

dren and siblings (if the latter are enumerated [11]). If a leaf 

inside the sphere of radius d is reached, the radius is updated 

as the distance to that leaf. When no unvisited nodes are 

inside the sphere, the path to the latest visited leaf is the so-

lution. Accordingly, depth-first search might traverse paths 

whose distance exceeds the distance to the solution before 

the radius d reaches its final value. 

3. CONSTRAINED METRIC-FIRST SEARCH 

We propose an alternative search strategy that minimizes the 

number of iterations during the decoding of a received vec-

tor y. The search is based on Dijkstra’s search algorithm [9]. 

Dijkstra’s search finds the shortest path between two verti-

ces on a graph of positive edges using a metric-first strategy. 

By treating all the leaves as a single node, the algorithm can 

find the ML solution as the shortest path from the root to a 

leaf as described in table 1. 

 

Table 1 –Dijkstra's search in a sphere decoding scenario 

Boundary database DB = {all top-level nodes}. Initialize 

Path database DP = {root}. 

 

Step 1 Find node X in DB with the least distance. 

If X is a leaf then 

 This leaf is the closest leaf. 

The solution is the path from the root to 

this leaf. The path is found in DP. 

Search ends.  

 

Else 

Step 2 Add X to DP. 

Step 3 Expand X, add its children to DB. 

 

Go to step 1. 

 

As can be seen from table 1, the algorithm visits the closest 

node on the boundary at every iteration. This is equivalent to 

visiting all nodes in the tree within a sphere of radius d equal 

to the distance to the leaf that is the solution. This particular 

value of d is the final and minimum sphere radius in a depth-

first search (discussed in section 2). Thus, as is shown in 

[12], Dijkstra’s algorithm minimizes the number of visited 

nodes required to find the ML solution. 

 

Dijkstra’s search, however, has been hitherto avoided in 

hardware implementation for MIMO sphere decoding due to 

the large memory size that databases DB and DP might re-

quire. In the worst case, the search might visit all the nodes 

in the tree except those on the lowest level. Thus, as the 

number of antennas increases, the maximum size of DP and 

DB grows exponentially and the complexity of sorting DB 

grows linearly too. Furthermore, the number of children to 

be expanded per iteration grows linearly with constellation 

size. 

 

We propose the Constrained Metric-first Search (CMS) that 

enforces two constraints on Dijkstra’s search: 

 

a. Limit the maximum size of DB and accordingly DP to 

some value N where boundary nodes that are not 

among the current best N are disposed of along with 

their paths. 
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b. When expanding a node only add its best child and 

best sibling to DB.  

 

Note that constraint (b) has no effect on the performance of 

the search. It allows however for significant complexity re-

duction by avoiding unneeded expansions and supports the 

feasibility of constraint (a).  

 

We investigate the performance of the proposed search strat-

egy as compared to the depth-first SD under the ℓ
∞
 norm 

described in table 2. The ℓ
∞
 norm in particular is the most 

suitable distance norm for iterative sphere decoding: 

 

a. Partial distance calculation and accumulation in the 

ℓ
∞
 norm require a comparison each as compared to 

multiplications and/or additions in the cases of the 

Euclidean (ℓ
2
) and the ℓ

1
 norms (or hybrid norms). 

b. The number of visited nodes during a search is re-

duced by the ℓ
∞
 norm because of the low cumulative 

distance (maximum instead of sum). 

c. The SNR penalty incurred due to the ℓ
∞
 norm ap-

proximation is small, e.g. ~ 1dB at a BER of 10
-3

 

(Figure 2). 

 

Figure 2 shows the BER curves obtained for the proposed 

search strategy for a 4x4 16-QAM setup. Also shown are the 

ML solution (ℓ
2
 norm) and the unconstrained ℓ

∞
 norm solu-

tion (depth or metric-first).  

 

The results show that with N = 8 (only 8-paths in memory), 

the performance of the proposed Constrained Metric-first 

search is indistinguishable from the unconstrained depth or 

metric-first search under the ℓ
∞
 norm. Note that uncon-

strained metric-first search can hold up to 16
3
 paths in mem-

ory for this particular setup. 

 

Figure 3 shows a results sample for a 16-QAM 4x4 setup at 

20dB SNR, we note 3 advantages of CMS over depth-first: 

 

a. Lower average number of visited nodes as expected. 

b. Particularly fewer visits of nodes that are the closest 

among their siblings. This is important because visit-

ing the first node in a set of siblings is more costly as 

can be seen from the partial distance equations (2) or 

their ℓ
∞
 norm equivalents (3). This result is also ex-

pected since the CMS provides a trade-off between 

depth and breadth-first directions. 
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c. A significantly smaller standard deviation in the 

number of visits. As will be seen in section 5, this al-

lows CMS to provide ~2x gain in throughput under 

early termination for practical use. 

 

Table 2 – The ℓ∞ norm 

Distance Norm Distance D to (x,y) Cumulative Distance 

Euclidean (ℓ2) norm x
2

+ y
2  D(parent) + D(child) 

ℓ
∞ norm max x , y( ) max(D(parent), D(child)) 

 

 

Figure 2 – Performance of the proposed CMS search strategy for a 

4x4 16-QAM setup. 

 

Figure 3 –Statistics of the number of visits for a 4x4 16-QAM setup 

at 20dB SNR. Average (per sibling, overall) and standard deviation. 

4. CMS ON THE FSD TREE 

In addition to choosing a search strategy that minimizes the 

number of iterations for a given tree structure, further reduc-

tion in complexity can be achieved through using an inher-

ently pruned tree structure presented in [8] for the fixed-

throughput sphere decoder (FSD). Figure 4 shows a sample. 

 

Recall from (3) that the distance to a node on layer i in the 

tree is scaled by the value of Rii. Accordingly, ordering the 

spatial streams (and thus the layers in the tree) moves critical 

branch decisions between the different layers. By a particular 

ordering, a tree composed of only M paths can be used for a 

4x4 M-QAM system (traditionally M
4
 paths in the tree) with 

almost no loss in performance [8]. The sorting can be done 

during the QR- decomposition prior to the search stage [13]. 

 

In addition to the reduction in the average required iterations, 

applying the CMS to the FSD tree allows for reduction in the 

enumeration overhead of the search. 
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Figure 4 – (a) 4x4 QPSK FSD tree (b) Tree as traversed by the CMS 

algorithm with simplified enumeration. Indices x1, x2, y1, and y2 

correspond to the order of the constellation point in the real and 

imaginary dimensions. 

 

Enumeration corresponds to the sorting of each set of sib-

lings. In a depth-first search, enumeration is required for effi-

cient pruning of the tree [11] whereas in the proposed CMS it 

is required for enforcing constraint (b). In both cases, enu-

meration can either be performed when the parent node is 

expanded or distributed over the visits to the sibling nodes.  

 

In the case of the FSD tree, as shown in figure 4, enumera-

tion is only required on the top-level of the tree whereas only 

the closest child is visited on lower levels. Also, since the 

proposed CMS handles a sorted set of boundary nodes at all 

time then when a top-level node is visited, both its imaginary 

and real neighbouring sibling nodes can be added to the 

boundary (figure 4). This reduces the enumeration space 

from M to M2  points for an M-QAM constellation.  

5. THROUGHPUT GUARANTEE 

Like depth-first, CMS suffers from variability in the number 

of iterations required to find the best solution. However, as 

shown in section 3, the variability of CMS is significantly 

smaller and we thus expect better performance when the 

search is terminated prematurely to guarantee throughput.  

 

Early termination in the context of iterative sphere decoding 

corresponds to limiting the number of cycles or iterations 

where each cycle refers to the expansion of one node. Natu-

rally, limiting the number of cycles independently for each 

vector is not efficient. A block early termination (BET) 

scheme was accordingly proposed in [6] for depth-first 

search and adopted later in [7] for depth-first search on the 

FSD tree (sequential COSIC). The scheme works by allow-

ing vector k of a block of n vectors  

 ( )[ ]M×−−× k-nN)N(n=N usedavk  cycles 

where Nav is the average cycles/vector over the block, Nused is 

the number of already used cycles in the block, and M is the 

number of antennas.  

 

This scheme guarantees each vector a minimum of M cycles 

allowing a depth-first search to reach the first leaf.  

 

To accommodate the minimum number of cycles M for find-

ing a leaf, we modify the CMS such that if the remaining 

 

Figure 5 – BER performance of the proposed algorithm as com-

pared to ML, FSD [8], and sequential COSIC [7] under a channel 

with 15 ns of r.m.s. delay spread for both 16 and 64-QAM. 

 

allowed cycles is less than L, where L < M, the search ex-

pands the best node such that it is not above level L. 

 

Performance and Analysis 
 

In a scenario where the vectors in a block correspond to in-

dependent and identically distributed channel instances, a 

block with sufficiently large size n would exhibit global per-

formance. Nav can then be equal to the global average num-

ber of required cycles. This is the case that is assumed in [6] 

and [7] where n = 64 and the vectors are suggested to be ob-

tained form a 64-subcarrier OFDM system. 

 

In reality, sub-carriers in an OFDM system exhibit high cor-

relation between their channels (e.g. 802.11n or WiMax). 

This is also true if the vectors of a block are obtained sequen-

tially from a non-OFDM system.  

 

We present simulation results of our proposed algorithm as 

compared to the depth-first based alternative (sequential 

COSIC [7]) for realistic channel conditions. We assume each 

block of vectors is obtained from a 64-subcarrier OFDM 

system with 20MHz of bandwidth.  

 

Figure 5 shows the case of a 15ns r.m.s. delay spread chan-

nel. This scenario is at the highest-correlation end of the typi-

cal indoor r.m.s. delay spread range (15 to 50ns) [14]. Notice 

that the proposed decoding algorithm requires only ~58% as 

many cycles per vector as the depth-first based alternative. 

 

The difference in the required number of cycles per vector is 

due to the fact that when vector k uses Nk > Nav cycles, vec-

tor k+1 corresponding to a correlated sub-carrier would 

probably require Nk+1 > Nav cycles as well. Thus, a block of 

vectors will not sample the global population. The required 

average cycles over that block might thus be greater than Nav. 

The advantage of the proposed algorithm then is the low 

variability in the number of required visits due to the more 

intelligent choice of visits. 
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Figure 6 – Block diagram of proposed decoder architecture. 

Table 3 – Synthesis Results. 

 Proposed 
Sequential 

COSIC [7] 

Parallel 

COSIC [7] 
K-Best [6] 

Norm ℓ
∞ ℓ

∞ ℓ
1 ℓ

1 

Algorithm CMS Depth-first Parallel FSD K-Best K=10 

Mod. Scheme 16-QAM 16-QAM 16-QAM 16-QAM 

Clk. freq. 331 MHz 492 MHz 769 MHz 200 MHz 

Area 20 kG 25 kG 83 kG 135 kG 

Throughput 757 Mbps 656 Mbps1 4.1 Gbps 319 Mbps 

Loss2 vs. ML 1.3 dB 1.3 dB 0.75 dB ~1 dB 

1Throughput is calculated according to the 12 cycles/vector requirement. 
215ns r.m.s. delay spread channel, 20MHz of bandwidth. 

6. HARDWARE RESULTS 

The proposed decoder was implemented as a single stage 

data-path that performs one node expansion per iteration as 

shown in figure 6. The design was coded in HDL and syn-

thesized to a TSMC 65nm standard cell library with 13-bit 

precision.  

 

Table 3 shows the synthesis results as compared to other pub-

lished results scaled to the 65nm technology node. The SNR 

penalty shown is under the 15ns r.m.s delay spread channel; 

throughput numbers for the sequential COSIC [7] are re-

calculated accordingly. Area is calculated as the number of 

equivalent 2-input NAND gates.  

 

The results show ~2x increase in throughput compared to the 

sequential COSIC [7] for normalized clock frequency and 

circuit area. On the other hand, compared to non-iterative 

decoding, the proposed decoder requires 24% of the area of 

the parallel COSIC [7] (the most efficient parallel search of 

the FSD to our knowledge).   

7. CONCLUSION 

In this work we proposed an alternative search strategy for 

iterative sphere decoding. We showed that a decoder based 

on the proposed strategy performs satisfactorily well under 

realistic channel conditions with high-throughput guarantee 

and ~2x reduction in complexity (increase in normalized 

throughput) compared to the next best approach.  
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