
A PROGRAMMABLE ACCELERATOR FOR NEXT GENERATION WIRELESS

COMMUNICATIONS

Karim Mohammed, Babak Daneshrad

Henri Samuelli School of Engineering and applied science, UCLA

UCLA Elec. Engr. BOX 951594, 6731G BH, Los Angeles, CA, 90095-1594, USA

phone: +1-310-382-7775, email: kabbas@ee.ucla.edu

ABSTRACT

We present a MIMO decoder accelerator architecture that offers

versatility and re-programmability while maintaining a very high

performance-cost metric. The accelerator is meant to address the
MIMO decoding bottlenecks associated with the convergence of

multiple high speed wireless standards onto a single device. It is

scalable in the number of antennas, bandwidth, modulation format,

and most importantly, present and emerging decoder algorithms. It

features a Harvard-like architecture with complex vector operands

and a deeply pipelined fixed-point complex arithmetic processing

unit. Memory allows efficient access to operands in matrix form,

while a custom state machine enhances performance in light of

OFDM. The accelerator shows an advantage of up to 3 orders of

magnitude in power-delay product for typical MIMO decoding

operations relative to a general purpose DSP.

1. INTRODUCTION

Two prominent trends in wireless communication are the use of

multi input multi output (MIMO) processing, and orthogonal fre-

quency division multiplexing (OFDM) to improve data rate and

reliability [1]. All trends point to the convergence of multiple

MIMO-OFDM standards on a single platform. This motivates an

accelerator-like approach to efficiently deliver on the computation-

intensive elements of the system. The MIMO decoder is one such

component. MIMO processing is computationally intensive due to
the need to invert a channel matrix with very low latency. More-

over over time, systems are expected to incorporate a higher num-

ber of antennas and more advanced algorithms. Analogous to the

use of Viterbi accelerator engines [2] in today’s cellular systems; a

MIMO decoder accelerator that is programmable in bandwidth,

number of antennas, decoder algorithm and modulation format will
greatly facilitate the adoption of multi standard, MIMO based solu-

tions. Such an accelerator engine could also greatly accelerate the

adoption of MIMO communications on software defined radio

(SDR) and cognitive radio (CR) based platforms [3] [4]. MIMO

decoding is essentially an inversion of a complex matrix channel.

This can be achieved using a variety of algorithms with a range of

complexity and performance. The choice of algorithm and antenna

configuration depends on the expected channel conditions, power

budget, available resources, and throughput requirements. MIMO

decoders also require a long design cycle if they are to be opti-

mized to the target platform.

Traditionally matrix inversion is simplified by using one of a num-

ber of matrix decompositions to transform the channel matrix into a

more invertible form [5]. The decomposition usually involves regu-

lar arrays (systolic arrays) of processing elements (often CORDIC

processors) [6]. QR decomposition leading to an MMSE solution is
the traditional approach, but Singular Value Decomposition (SVD)

is also efficiently implemented on systolic arrays [7] [8]. Systolic

arrays deliver a quick, efficient implementation of simple algo-

rithms such as MMSE, but they do not offer an easy tradeoff in

cost/performance. Other implementations use custom arithmetic

datapaths to deliver optimized solutions for specific algorithms [9].

In this paper we present a MIMO decoder accelerator architecture.

The accelerator allows the programmer to define and implement

MIMO decoders at will. The accelerator has a processor-like archi-

tecture with most of the controls derived from a memory-stored

program. The processing core is designed to support a range of

complex operations necessary to enable the realization of major
MIMO decoding algorithms. This architecture does not benefit

from the regular, application specific flow of regular arrays. Nor

can it rely on platform or technology specific optimizations as a

main driver of high performance. The MIMO accelerator departs

radically from a conventional processor in several areas, which

deliver an improvement in performance over general purpose proc-
essors reaching three orders of magnitude. The accelerator core

accepts very wide complex matrix operands and produces complex

matrix results. The high access rate required to support this is made

possible by a memory map that exploits the matrix/vector nature of

the operands in MIMO decoding. The memory map is augmented

by sorting circuits at the inputs and outputs of memory that allow

the programmer to redefine input and output order without using

extra processing cycles. The processing cycle uses properties of

OFDM decoding to optimize its flow, and through the use of pre-

decoded instructions and proper compiler positioning of critical

control signals, the accelerator ensures that the processing pipeline
is continually engaged. A programmable dynamic scaling circuit

automatically handles intermediate wordlength issues for high

dynamic range operations. This allows us to use fixed point proc-

essing units which substantially increases the performance of the

processing pipeline over a floating point implementation.

2. MINIMUM OPERATION SET

The literature is rich with alternative algorithms for MIMO decod-

ing [6] [7] [9] [10]. We needed to ensure that all major algorithms

can be supported on the accelerator. Our approach to addressing
this problem is to identify the set of primitive processing elements

that form the basis of all major MIMO decoding algorithms. With

such a set in hand, the realization of a specific decoder algorithm

will translate into the proper sequencing of data among these primi-

tive elements through a program. The major decoding algorithms

fall into three categories: Maximum Likelihood solutions (ML)
including Sphere Decoding (SD), Singular Value Decomposition

(SVD) as an arithmetic aid to linear decoding or as a beamforming

tool, and linear decoding algorithms such as MMSE and Zero Forc-

ing (ZF). Matrix decomposition is critical to all these algorithms.

Although there are alternative decompositions for some algorithms,

QR decomposition is the most practical for hardware application.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1294

Givens rotations are commonly used to realize QRD because they

are well suited for hardware implementation using CORDIC [5].

SVD, however, requires various unitary transformations in addition

to Givens rotations both to reduce the matrix to pure real and to

perform the diagonalization step in Jacobi diagonalization.

The algorithms can be supported by four classes of arithmetic op-

erations: complex multiplication, various unitary transformations,

complex addition, and division. These operations spawn a large

number of derivatives due to the nature of operands, for example

multiplication can be of any combination of matrix and vector op-

erands of any size, and unitary transformations may be left or right.
The main difference between the accelerator and a generic vector

processor is supporting data to the processor in its variant forms

without loss in performance. The associated memory map is dis-

cussed in section 4.

3. PROCESSING UNIT

The MIMO-accelerator (fig. 1) consists of a processing unit (fig. 2)

that supports highly flexible vector coarse operations, connected to

a data memory designed to utilize properties of matrix processing

in order to allow flexible and highly efficient access. The process-
ing unit (fig. 2) consists of four cores: An inner product core, a

scalar division core, a coordinate rotation core, and a vector addi-

tion core. Although the design is scalable, we will discuss results

for a realization optimized for 4x4 or smaller matrices. Every clock

cycle the processor accepts a maximum of 32 complex inputs (nec-

essary to support four dot products) divided into two sets/operands
and produces a maximum of 8 complex outputs, corresponding to

two output vectors from the addition and rotation cores.

The addition core is a set of 8 complex adders capable of perform-

ing two vector additions per cycle. The division core is equally
simple, consisting of four dividers, supporting one vector scaling

per cycle. The inner product core is four complex dot product units

that can perform four 4x1 dot products per cycle. The coordinate

rotation core supports a variety of unitary transformations, produc-

ing two output vectors per cycle. Normally CORDIC processors

 [5] [6] [7] [8] are used in unitary transformations due to their good

dynamic-range properties, and the fact that they can be imple-

mented without any multipliers. CORDIC units can be combined to

perform two angle transformations on complex coordinate pairs.

We use a compact realization of complex CORDIC, sometimes
referred to as a super CORDIC. The traditional super CORDIC

units [6] realize only complex Givens rotations. The circuits in fig.

3 are identical to this realization when the multiplexers are set to

mode 0. Combined with the phase processing circuit described

below, the other mode settings of the modified CORDICs allow

other unitary transformations (e.g. single phase rotation on com-
plex vectors, real-imaginary rotation on a single vector, diagonal

exchange rotation, Jacobi transformation, etc.) to be performed

with very little added overhead.

The coordinate rotation core is derived from the traditional systolic

array architecture. The rotation core is arranged as a linear array by

time-sharing the traditional systolic architecture. The core delivers

vector pair outputs. Since decompositions can be easily broken
down into vector pair operations; this greatly simplifies program-

ming and offers flexibility in performance-cost tradeoffs. The rota-

tion core (fig. 2) consists of 4 super rotation (SR) CORDIC proces-

sors and one super vectoring (SV) CORDIC. Normally vectoring

CORDICs generate a phase value derived from an internal micro-

rotation vector which is then accepted and retranslated into a rota-
tion vector in rotation CORDICs [5]. In the accelerator, however,

the rotation CORDICs share identical phases, so we designed rota-

tion CORDICs without phase translation units and instead added

two common phase processing units that perform the phase inter-

pretation for all 12 CORDIC units. This reduces the total resources

of the rotation core by 8.7% while allowing the phase processors to
support basic arithmetic manipulations of phases for same-cycle

phase pre-processing.

Figure 1 – Accelerator processing core, data memory, and input

and output sorters.

Figure 2 – Accelerator processing core. Cores from right to left:

coordinate rotation, addition, inner product, scalar division.

Figure 3 – Building blocks of the rotation core, left multi-mode

super vectoring (translation) CORDIC, right multi-mode super

rotation CORDIC. Mode 0: Complex Givens rotation. Mode 1:

Real Givens rotation on two vectors. Mode 2: Single phase

Givens rotation on complex vector pair.

1295

The rotation core accepts two vectors of up to 5x1 size. However,

only four of the input and output pairs are significant in any clock

cycle. In most cases, the rotation core rotates a pair of leading ele-

ments in the SV unit reducing one to null and calculating the

phases used to achieve such a result, and identically rotates the 3
remaining pairs from the 4x1 vector input pair in 3 SR units. In

other cases, however, the core is required to rotate all 4 input pairs

by a phase stored in the phase processing unit or externally gener-

ated in the accelerator. The rotation core outputs are multiplexed

between these two cases, resulting in a 4 element coordinate rota-

tion output. Although this is relatively simple, it has a significant
impact in light of the memory access scheme and the outputs of the

remaining processing units which are limited to a maximum of two

4x1 vectors.

The accelerator must support multiple algorithms and allow modi-

fications and manipulations at will. Part of this is to provide the

programmer with reasonable freedom in the number of operations

that can be performed before the processor overflows. Traditionally

a fixed point simulation is needed before a hardware implementa-

tion is considered. In the accelerator an algorithm is implemented

by repeatedly passing operands through the processing unit (an
arbitrary number of times), therefore no useful predictions can be

made about appropriate intermediate precision requirements. Using

very wide wordlength will cause the size of the accelerator to grow

rapidly. This is exacerbated by the complex matrix/vector nature of

the processing units.

Multiplication and division can result in very fast growth in the

wordlength requirement. Complex vector multiplication effectively

doubles the wordlength of the inputs. We use a dynamic scaling

circuit to manage the precision of the multiplier and divider out-

puts. The circuit efficiently handles vector and matrix inputs of

variable lengths over a variable number of cycles (corresponding to
variable matrix sizes). The circuit (Fig. 4) accepts a vector input of

size 4 (the size of the output of the multiplication and division

cores). Each vector element is a complex number of size 2W bits

per rail where W is the native precision of the processor. A most

significant bit (MSB) mask is calculated from the inputs by passing

them through OR gates. This mask is then held in R2 and further
OR’ed with R1 through another set of OR gates over a variable

number of cycles. The final result of the OR operations stored in

R2 thus holds most significant bit information over multiple cycles.

The contents of R2 are then passed to a scaling value circuit that

extracts a shift value from the result. Control signals route appro-

priately delayed inputs to a programmable shifter where the shift
value is held for a period appropriate for the matrix size while re-

sults are scaled back to W significant bits per rail. The dynamic

scaling circuit provides programmable scaling while maintaining

the throughput of the processor. The additional latency is absorbed

since the latency of the CORDIC core is higher than the combined

latencies of the multipliers and the dynamic scaling circuit. Fig. 5

shows simulation results for a zero forcing decoder with statically

and dynamically scaled realizations. To operate within 2dB SNR of

floating point performance, a circuit with static scaling needs 27 bit

multipliers, while a circuit using dynamic scaling only needs 16

bits per rail.

4. MEMORY ACCESS

The processing core is designed to accept complex matrix or vector

inputs. The efficiency of the processor is contingent on a memory

access scheme that allows access to any combination of matrix
operands in a single cycle. Additionally to distinguish between

different antenna configurations, the programmer needs to be able

to define how, where, and which results are stored back to memory.

The processing core has a maximum of 32 complex operand inputs.

The programmer may need up to a maximum of four 4x4 matrices

to store intermediate results or observation vectors while process-

ing the 4x4 channel matrix. If all 4 matrices are stored in a single

block of memory and we rely on memory address to access ele-

ments, a serious bottleneck is created at the data bus, potentially

requiring the processor to wait 40 cycles for all inputs to be regis-
tered and all outputs to be written. In OFDM, all subcarriers are

Figure 4 – Dynamic scaling circuit.

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

SNR

B
E
R

ZF uncoded BER

D 13b

D 14b

D 15b

D 16b

D 17b

S 15b

S 18b

S 21b

S 24b

S 27b

floating

Figure 5 – BER for dynamic and constant scaling ZF.

Figure 6 – Data memory map.

1296

processed identically and independently, so data for all subcarriers

must be stored and decoded. Thus, data memory contains a number

that is a multiple of the number of subcarriers. The size of memory

in this case justifies splitting it into multiple blocks. If splitting is

taken to the extent that each of the 64 elements of the four 4x4

matrices occupies an independent block, the processor can be
clocked at its full potential. This memory map is shown in fig. 6.

The 4 conceptual 4x4 matrices are labeled A, B, C, and D; and the

64 independent memory blocks are each as deep as the number of

subcarriers (
SCN).

Exchanging a single memory block for 64 with independent ad-

dress decoders introduces some challenges. Each memory location

now needs a pair of indices to locate it: one to indicate its memory

block; and one to index its depth, namely the subcarrier. The latter

in particular can be prohibitive, needing either a very long instruc-

tion or a very complicated address decoder. However, although the

processor accepts a large number of complex inputs every cycle, all

elements of all operands come from the same depth (subcarrier)

regardless of which of the 64 memory blocks they come from. So
they all share the same subcarrier address in any given cycle. The

address is provided directly by the controller as derived from rela-

tively simple matrix index logic. Memory is clocked at twice the

processor clock. Addresses are multiplexed between read and write

indices, usually offset by the latency of the processing units. Write

enables are multiplexed between a null word and values provided

from the instruction. This allows multiple one port memories to

read and write a whole 4x4 or smaller matrix every processor cy-

cle.

Data memory provides access to all elements of a matrix in a fixed

manner. The processing unit inputs are also fixed, for example the

multiplication core multiplies all elements in input vector 1 with

the exact corresponding elements of vector input 2, and the coordi-

nate rotation core always considers the first element to be the vec-

toring element. To define which matrices or vectors are multiplied

and the direction and target of coordinate rotations, the program-
mer has to be able to map the outputs of the data memory freely to

the inputs of the processor. This is the function of the sorting cir-

cuits at the input and output of data memory. This is the function of

the sorting circuits.

The sorting circuits proved to be the most resource intensive com-

ponents of the MIMO accelerator. Essentially each sorting circuit

consists of a collection of multiplexers equal to the number of tar-

get ports (32 for processor input sorter, 64 for memory input sorter)

with a number of inputs equal to the source (8 for memory input

sorter, 64 for processor input sorter). For the processor input sort-

ing circuit this translates into 32 64x1 multiplexers, equivalent to
16,970 slices on a V4 LX200. This is roughly 150% of the total

area of the coordinate rotation core or 57% of all resources used in

the processor, excluding data memory.

The 32 input ports of the processor are not independent. They are

divided into at most two vector/matrix arithmetic operands, each of

16 complex elements. Each operand can come from a single block

(A, B, C, and D in fig. 6) in memory. This means that each set of

16 processor input ports is associated with 16 memory ports (as

opposed to 64) per cycle. A first level of two 16 element wide 4x1

multiplexers (MA and MB in Fig. 6) is used to link each of the oper-

ands to a matrix, allowing the main sorting multiplexers (N1

through N32) to be reduced from 64x1 to 16x1. This results in a
resource saving of nearly 70% over a direct multiplexing approach.

The memory input sorting circuit accepts 3*8 input busses and

redistributes them over 64 memory input ports. The inputs to this

circuit are results from matrix or vector operations. Similar to the

processor input sorting circuit, processor outputs are divided into at

most two vector outputs with 4 elements each. Each processor

output is assigned in its entirety to a matrix in memory. So, it is
only necessary to distribute the processor outputs over 32 ports (N1

through N32 in fig. 6) corresponding to at most two memory matri-

ces, these ports can then be mirrored on the rest of memory without

loss of generality.

5. SOFTWARE, PROGRAMMING, AND SCALABILITY

The accelerator uses an open instruction with a pre-decoded opera-

tion and control field. The addressing scheme is different from that

used in traditional processors [11]. The physical addresses for all

memory blocks in fig. 6 are used to index the current subcarrier.
Instead, the operand is inferred from a combination of control sig-

nals in the instruction, namely controls to the sorting circuits, write

enables to data memory, and a Hermitian filter control signal. This

addressing scheme corresponds to the complex matrix operands in

MIMO decoding. The typical processor cycle in the accelerator

capitalizes on the nature of OFDM to deliver higher performance.

Because an instruction is normally applied identically to all subcar-

riers, the instruction is fetched only once for a large number of

execution cycles. By properly placing state machine control sig-

nals, the fetch state can be avoided altogether. Thus for most pro-

grams the accelerator is always executing. The accelerator is sup-
ported by a compiler that allows programs written in a custom

higher level script to be translated to machine programs. The script

is very similar to MATLAB and it allows the programmer to ignore

the involved addressing scheme, instead defining operands and

results as matrix ranges.

The architecture described above discusses a single instance of the

accelerator architecture. The complete design flow allows user-

directed generation of architectures by offering the size and struc-

ture of the processor, and the dimensions and access method of

memory as well as wordlength; as pre-synthesis inputs to the user.

These options are made through a user interface that provides real-

time area, operation efficiency, latency, and dynamic performance

feedback; thus allowing hardware design choices to be made rap-
idly before programming commences. The hardware configuration

decision is also aided through an instance recognition tool that

analyzes target programs for the minimum hardware configuration

required.

6. RESULTS

Table 1 shows synthesis results of the accelerator and its main

building blocks for Virtex-4 LX200 speed grade -11, and 65nm

CMOS ASIC. Results on the CMOS process are listed with (accel-

erator) and without (core) data memory realized as registers. Mem-

ory is realized as registers to obtain a conservative vendor-

independent first order estimate of area and power. Table 2 lists
cycle count results obtained from cycle-accurate fixed point simu-

lations for different antenna/algorithm configurations for 64 sub-

TABLE 1
 SYNTHESIS RESULTS. CLK IS MAX PROCESSOR CLOCK.

65nm

TSMC

kGates Power (mW) Clk(MHz)

Accelerator 1644 272 233

Core 824 169 233

V4-LX200 Slices Multipliers BRAM Clk(MHz)

Accelerator 27040 48 72 209

1297

carriers. The identity of full and singular-value-only cycle counts

for 2x2 SVD is an example of the accelerator processing multiple

small vectors simultaneously.

To compare the accelerator to a general purpose DSP we carried out

a series of tests to measure the energy required to carry out a set of

typical complex matrix operations and MIMO decoding algorithms.

To quantify delay we measure the number of cycles required to run
these tests on a general purpose DSP and the MIMO accelerator.

We repeated the tests with different subcarrier counts to expose the

effects of latency. The DSP used is a fixed point TI DSP6416

600MHz, a power number assuming 60% CPU utilization is used,

and cycle counts are obtained from TI code composer studio code

profiling tools. Decompositions and MIMO decoders on the DSP

are not necessarily identical to those on the accelerator, instead us-

ing software friendly algorithms to reach the same decomposition.

For example QR decomposition on the DSP is implemented using

Gramm-Schmidt orthogonalization instead of Givens rotationns.

Table 3 lists the ratio of accelerator PDP to DSP PDP for different
test scenarios. In all tests the operands are complex vectors or matri-

ces. The accelerator has a substantial advantage for all operations.

Particularly for Givens rotations where the DSP expends almost half

the energy (or cycles) calculating trigonometric functions. There is

only a very slight trend with increasing number of subcarriers, and

the trend is in the accelerator’s advantage. Even when software

friendly algorithms are used, the difference in performance is almost
always above three orders of magnitude.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless commu-

nications in a fading environment when using multiple anten-

nas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311–335, Mar.

1998.

[2] M. Anders, S. Mathew, R. Krishnamurthy, S. Borkar, “A 64-

state 2GHz 500Mbps 40 mW Viterbi accelerator in 90nm
CMOS,” VLSI Ciruits, Digest of Tech. Papers, 2004 Symp.

On, pp. 174-175, Jun. 2004.

[3] J. Mitola III, “The Software Radio Architecture,” IEEE Com-

mun. Mag., May 1995, pp. 26–38.

[4] Simon Haykin, "Cognitive radio: brain-empowered wireless

communications," IEEE J. Sel. Areas Commun., IEEE Journal

on, Vol.23, Iss.2, Feb. 2005 Pages: 201- 220.

[5] N.D. Hemkumar, “Efficient VLSI Architectures for Matrix

Factorizations,” Ph.D. dissertation, Rice University, Houston,

TX, 1994.

[6] J. Wang, “A recursive least-squares ASIC for broadband 8 x 8
multiple-input multiple-output wireless communications,”

Ph.D. dissertation, Henry Samueli School on Engineering and

Applied Science, University of California in Los Angeles, Los

Angeles, CA, 2005.

[7] R.P. Brent, F.T. Luk, “The solution of singular-value and

symmetric Eigenvalue problems on multiprocessor arrays,”
SIAM J. STAT. COMPUT., vol.6, No. 1, Jan. 1985.

[8] R.P. Brent, F.T. Luk, C. Van Loan, “Computation of the singu-

lar value decomposition using mesh connected processors,” J.

of VLSI and Comp. Systems, Vol. 1, No.3, pp. 242-267.

[9] Hun Seok Kim, Weijun Zhu, Jatin Bhatia, Karim Mohammed,

Anish Shah, and Babak Daneshrad, “A Practical, Hardware

Friendly MMSE Detector for MIMO-OFDM Based Systems,”

EURASIP Journal on Advances in Signal Processing, vol.

2008.

[10] B. Hassibi, H. Vikalo, ““On the Sphere-Decoding Algorithm I:

Expected Complexity,” IEEE Trans. Signal Proc., vol. 53, No.
8, pp. 2806-2818, Aug. 2005.

[11] F.M. Cady, “Microcontrollers and Microprocessors Principles

of Software and Hardware Engineering,” Oxford University

Press, 1997.

TABLE 2

 CYCLE COUNT ESTIMATES FOR 64 SUBCARRIERS BY ALGORITHM AND

ANTENNA COMBINATION.

QRD Exhaustive search

ML

SVD (singular

values only)

SVD (full)

2x2 512 2x2 BPSK 1280 2x2 1088 2x2 1088

3x3 896 2x2 QPSK 3200 3x3 2880 3x3 5632

4x4 1408 3x3 BPSK 2944 4x4 5568 4x4 16448

4x2 896

6x3 1664

8x4 2688

TABLE 3

 PDP COMPARISON WITH TI DSP6416. 600MHZ ROT.=ROTATION

 DSP PDP/Acc. PDP Throughput

Subcarriers 64 128 256 512 DSP
(ksps)

Accel.
(Msps)

Addition 143 194 236 264 1784 206

Multiplication 781 1062 1292 1452 325 206

Division 94 127 154 173 2725 206

Series 524 577 624 652 262 206

Real Rot. 4970 6577 6196 6143 77 206

Complex Rot. 5594 7374 8610 9151 51.5 206

2x2 SVD 2927 3069 3120 3146 10.7 14.5

4x2 MMSE 815 845 861 869 44 16.5

4x4 QRD 1724 1769 1793 1805 15 11.6

2x2 ML 1998 2084 2130 2154 20.8 19.3

1298

