
A Method Utilizing Window Function Frequency Characteristics for Noise-Robust Spectral 

Pitch Estimation 
 

Iman Haji Abolhassani1, Douglas O’Shaughnessy1, and Sid-Ahmed Selouani2 
 

1 INRS-Energie-Matériaux-Télécommunications, Université du Québec, Montréal QC H5A 1K6, Canada 
2 
Université de Moncton, Campus de Shippagan NB E8S 1P6, Canada  

imanhaji@emt.inrs.ca, dougo@emt.inrs.ca, sid-ahmed.selouani@umcs.ca 
 

ABSTRACT 

A novel method for spectral-domain fundamental frequency (F0) 

estimation is proposed. The basis of this method is estimating F0 

using the power spectrum of a windowed speech segment. For this 

purpose, a new transform is introduced. The prominent feature of 

this transform is that it estimates F0 from the speech segment power 

spectrum by exploiting the window function power spectrum. As a 

result, this transform is named the Window-Based transform. By 

comparison between the proposed method and the autocorrelation 

and the cepstral pitch estimation methods, the superiority of the 

proposed method under noisy environments is demonstrated. 

1. INTRODUCTION 

The fundamental frequency F0 is a primary acoustic cue to intona-

tion and stress in speech, and is crucial to phoneme identification in 

tone languages. Most low-rate voice coders require accurate F0 

estimation for good reconstructed speech, and some medium-rate 

coders use F0 to reduce transmission rate while preserving high-

quality speech [1]. As a result, many fundamental frequency, or 

pitch, estimation methods have been proposed each having their 

own advantages and drawbacks [2]. For instance, the cepstral 

method for pitch estimation is known for its acceptable performance 

in high signal-to-noise (SNR) ratios [3], whereas the time-domain 

autocorrelation method is considered to be one of the most efficient 

methods in noisy environments [3,4]. In this paper, a novel fre-

quency-domain pitch estimator has been introduced, and it is ex-

perimentally demonstrated that it is very efficient both in high and 

low SNR ratios. 

 The Fourier transform of a voiced speech signal is the Fourier 

transform of the glottal excitation X(f) multiplied by the Fourier 

transform of the vocal tract filter V(f).  By windowing the time-

domain speech signal, in the frequency domain, the Fourier trans-

form of the window function W(f) gets convolved with the Fourier 

transform of the speech signal. So the overall Fourier transform of 

the windowed speech segment S(f) can be written as: 
 

           )())().(()( fWfVfXfS ∗= .                              (1) 
 

For windows with big enough window lengths (e.g., at least two 

times the fundamental period of the speech segment), by assuming 

the glottal excitation to be an ideal impulse train in the time domain 

we can rewrite Equation 1 for the magnitude and power spectra as: 

        )())(.)(()( fWfVfXfS ∗=                            (2) 

     
2222

)())(.)(()( fWfVfXfS ∗= .                      (3) 

Since we assumed the glottal excitation to be an ideal impulse 

train in the time domain, its magnitude spectrum |X(f)| also becomes 

an impulse train in the frequency domain. The multiplication of 

|X(f)| by the vocal tract filter |V(f)| scales the impulses in |X(f)| ac-

cording to |V(f)|. So basically, (|X(f)|.|V(f)|) is still an impulse train, 

but with scaled impulses. Thus, the convolution of (|X(f)|.|V(f)|) and 

|W(f)| results in shifted  scaled instances of  |W(f)|  at the locations of 

these impulses. These shifted scaled instances of |W(f)| are called 

“harmonics”. The same idea is valid for the power spectrum of the 

speech segment
2

)( fS where the shifted scaled instances of 

2
)( fW represent the “power-spectrum harmonics”. 

Estimation of F0 in the frequency domain is the estimation of 

the periodicity of the harmonics.  Since we decide which window 

function to use for windowing the time-domain speech signal, we 

have a good knowledge of the shape of the harmonics in the power 

spectrum of the windowed speech segment. This is because, as men-

tioned earlier, the power spectrum harmonics are shifted scaled 

versions of the power spectrum of the window function
2

)( fW . 

The proposed method exploits this knowledge to come up with a 

more accurate F0 estimate. Some attempts have been made earlier 

to estimate the shape of the harmonics in the frequency domain and 

then use that harmonic shape estimate to calculate the fundamental 

frequency in the frequency domain (e.g., the harmonics sieve 

method [5]). However, using the frequency characteristics of the 

window function for this purpose, which is suggested in this paper, 

is novel. In order to estimate F0 from the power spectrum of the 

windowed segment, a new transform is introduced. The transform is 

named the Window-Based Transform (
WBT ).  

In the next section, the proposed transform will be defined. Section 

3 focuses on the implementation of the method. In section 4 experi-

ments are carried out to confirm the efficiency of the proposed 

method in noisy environments and section 5 is the conclusion of this 

paper. 

2. PROPOSED METHOD 

The essence of the proposed pitch estimation method is the Win-

dow-Based Transform (
WBT ). The component functions of this 

transform are named the Window-Based Functions (
WBF ) and are 

defined as: 
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f is the frequency (Hz) and F is the period of 
WBF . F is measured in 

Hz since
WBF is going to be used in the frequency domain. )( fF∆  

is the impulse train function, which is defined by: 
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Figure 1 - 
WBF  with F=400 Hz and Bartlet-Hann window with the window 

length of 40 msec plotted for 0 to 1 kHz.  

  

with inverted odd impulses with the overall period of F. 
2

)( fW  is 

the power spectrum of the window function and the division by 

)|)((|
2

fWMax  limits the range of 
WBF  to: 

1)|)(|,,(1 2 +≤≤− fWFfFWB
. In Equation (4) we can see the 

dependency of the Window-Based Function on the power spectrum 

of the window function. An example of 
WBF  is shown in Figure 1. 

Based on the 
WBF ’s, we define the 

WBT  as: 

         dffWFfFfSFT WB

f

ff

WB )|)(|,,(.|)(|)( 2

2

1

2

∫
=

= .       (6) 

In Equation 6, 
2

)( fS  is the power spectrum of the windowed 

speech segment. The boundaries of the integral depend on the fre-

quency region we choose to analyze, e.g., for the experiments in this 

paper they were chosen as 0 to 1 kHz. 

 The value of F for which )(FTWB
 is maximum is the funda-

mental frequency. The reason is that )(FTWB
will have a maximum 

at F0 if the positive components (shifted instances of 
2

)( fW ) of 

the corresponding 
WBF , which is )|)(|,0,( 2fWFfFWB

, occur at 

the same frequencies as the harmonics of the speech segment power 

spectrum. This is illustrated in Figure 2. As can be seen from the 

figure, by exploiting the power spectrum of the window function, 

the Window-Based Function adapts its components to the harmon-

ics of the speech segment power spectrum. The importance of this 

adaptation reveals itself in noisy environments. Since we are match-

ing the components of 
WBF  with the harmonics of 

2
)( fS , we are 

decreasing the effect of noise in tracking the harmonic peaks. The 

idea is similar to the concept of matched filtering in digital commu-

nication systems [6]. 

 The role of the positive components in the Window-Based 

Function has been explained. Negative components have also been 

added to the function because of the following reasons: 

 

• They make the mean of the 
WBF equal to zero. If the negative 

components were not added, the 
WBF ’s with lower periods 

would have higher means and thus would tend to return higher  

 
   a 

 
   b 

Figure 2 - a) The power spectrum of a real speech segment for 0 to 1 kHz 

with F0=295 Hz, windowed by a 35 msec Hanning window; b) The 
WBF  

using the same window and F=295 Hz. 
 

 

values for the corresponding 
WBT . This would make the 

comparison for choosing the maximum for 
WBT  unfair. 

• The negative components have been positioned between the 

positive ones. This characteristic minimizes pitch doubling er-

rors. The reason is that for the 
WBF  with the period equal to 

the double of the fundamental frequency, the negative com-

ponents of the 
WBF  will be placed on harmonics of the power 

spectrum and this will lead to a major decrease in the value of 

WBT  for the corresponding period F=2F0. 

Another issue that should be mentioned is that, although the glottal 

excitation is not an ideal impulse train, the experimental results in 

the following sections will confirm that considering it as an ideal 

impulse train is not a bad approximation for this method. 
 

Comparison between WBT  and the Fourier transform 

Since the power spectrum of a sample is the frequency representa-

tion of its time-domain autocorrelation, applying the Fourier trans-

form on the power spectrum of a sample is identical to its autocorre-

lation in the time domain. Thus, a comparison between 
WBT  and 

the Fourier transform can be regarded as a comparison between our 

pitch-estimation method and the autocorrelation method. This theo-

retical comparison is done in this section. In the Experiments sec-

tion, our method and the time-domain autocorrelation method are 

experimentally compared as well. 
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Figure 3 - In each of the figures a 
WBF  and a sinusoid having the same period (F) are plotted. The period is de-

noted by F and is measured in Hz since the plotted functions are used in the frequency domain. In a and b F=350 

Hz and in c and d F=700 Hz. The window functions are all Hamming with the length of 30 msec in a and c, and 60 

msec in b and d. The figures are plotted for the range of 0 to 1500 Hz. 

 

 
 
 

Figure 4 - Block diagram of the Imple-

mentation of the Window-Based Spectral-

domain Pitch Estimation Method. 

 

To compare the Fourier transform and the 
WBT  we need to 

compare their component functions, namely the sinusoids and the 

WBF ’s. In each of the Figures 3-a, 3-b, 3-c, and 3-d a sinusoid and a 

WBF  with the same period have been plotted together. These fig-

ures can be used to better understand the differences between sinu-

soids and 
WBF ’s. It should be noted that since we apply these func-

tions on the speech segment power spectrum in the frequency do-

main, their periods are denoted by F and are measured in Hz: 

• For different periods (F) and the same window functions, the 

bandwidth of the components of the 
WBF  stays unchanged 

while the bandwidth of the components of the sinusoid (the 

positive and negative half cycles) changes. 

• For different windows (different in window type or window 

length) and the same period (F), the bandwidth of the compo-

nents of the 
WBF  changes according the power spectrum of 

the window function to best match the harmonics of the speech 

segment power spectrum. However, the bandwidth of the com-

ponents of the sinusoid (the half cycles) stays the same, since a 

sinusoid is uniquely defined by its period (F). 

Thus, compared to the 
WBF , the FT is more likely to make errors in 

estimating F0 of the speech segment power spectrum because of 

two reasons: 

• Since the components of the sinusoid (the half cycles) are not 

matched with the harmonics, in low SNR values they are more 

vulnerable to noise. 

• Since the bandwidth of the components of a sinusoid (the half 

cycles) is not necessarily equal to the bandwidth of 
2

)( fS harmonics, the FT might pick formants instead of 

harmonics because of this ambiguity in the bandwidth of the 

harmonics. 

As a result, a better performance is expected from our method com-

pared to the autocorrelation method. 

3. IMPLEMENTATION 

Figure 4 shows the block diagram of the implementation of the 

proposed method.  The time-domain speech signal is first low-pass 

filtered to 1000 Hz. Then it is multiplied by the desired window. 

The frequency representation of the resulting frame is calculated by 

applying the Fast Fourier Transform (FFT). By multiplying this 

frequency representation by its complex conjugate, we obtain the 

power spectrum. The power spectrum of the window function is 

calculated in the same fashion. Using the power spectrum of the 

window function, the Window-Based Transform block synthesizes 

its
WBF s and, using them, calculates 

WBT . The optimal implemen-

tation of the Window-Based Transform block is discussed in the 

coming subsection. After calculating
WBT , the period F that corre-

sponds to the maximum of 
WBT  is picked as 

the fundamental frequency F0. In Figure 5, the power spectrum of 

an exemplary speech segment and 
WBT  result are shown. 
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     a 

 
      b 

Figure 5 -  a) Power spectrum of a speech segment windowed by a Hanning 

window with the length of 35 msec, b) 
WBT of the same power spectrum has 

its maximum at F=241 Hz, which is the correct value of the pitch. 
 

  

 As mentioned earlier, the period value F for which )(FTWB
 is 

maximum is the fundamental frequency (F=F0).  Sometimes, how-

ever, the maximum of )(FTWB
 occurs in period values equal to a 

division of the fundamental frequency (i.e., F=F0/n, n=2,3,...). This 

is because for these values of F the corresponding 
WBF  function, in 

addition to including all of the components of the
WBF at F=F0, 

includes additional positive and negative components. These addi-

tional components, although not occurring at the same frequency 

locations as the harmonics of 
2

)( fS , might make a small increase 

in the value of )(FTWB
 at F=F0/n compared to )0(FTWB

, espe-

cially at low SNR values. In this way, the maximum of )(FTWB
, 

instead of occurring at F=F0 occurs at a division of F0 (e.g., F0/2). 

However, since this increase is relatively small, we can solve this 

issue by using a threshold. We first find the maximum value of 

WBT , then define a threshold based on that (e.g., 70% of that value) 

and finally among the peaks which exceed this threshold, we 

choose the one which points to the highest fundamental frequency. 

This is done in the peak-tracking module. 

 The last point to discuss in this section is that in order to enable 

our pitch estimation method to also accept unvoiced segments as 

input, we only need to add a Voiced/Unvoiced Detector (VUD) 

block in the beginning of the block diagram to bypass the unvoiced 

segments. 
 

 

Implementation of the Window-Based Transform Block 

In the Window-Based Transform block in Figure 4, the 
WBF ’s are 

synthesized using the power spectrum of the window function. Our 

base equation for extracting the 
WBF ’s is Equation 4 which is writ-

ten in the frequency domain. However, in order to decrease the 

computational cost, practically we extract the 
WBF ’s in a different 

way: 

As the first step, we rewrite Equation 4, but this time we separate 

the positive and negative components: 
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By using Equation 5, we rewrite this equation as: 
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The boundaries of the sums (k1, k2, m1, and m2) are matched with 

the boundaries of the )(FTWB
 integral in Equation 6, which define 

our analysis frequency region.  

If the length of the window function is big enough (at least two 

times the pitch period), the bandwidth of the power spectrum har-

monics, which are the shifted instances of the window function 

power spectrum 
2

)( fW , become small and as a result, we can 

assume the harmonics to be separate. Using this assumption, we can 

write Equations 9 and 10 as: 
 

                
2

2

2

|))((|

|)(|

)|)((|

|)(|







 −
≈

−
∑∑

kk fWMax

kFfW

fWMax

kFfW                    (9) 

          

2

2

2

|))((|

|)
2

(|

)|)((|

|)
2

(|
















−−

≈
−−

∑∑
mm fWMax

F
mFfW

fWMax

F
mFfW

.         (10) 

Using Equations 9 and 10, the base equation can be written as: 
2
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If we denote the time-domain window function as w[n] 

( )(][ fWnw FFT →← ), using the frequency shifting characteristic of 

the Fourier transform we can write: 

           )(].[ 0
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By using the frequency shifting and linearity characteristics of the 

Fourier transform, we can finally write our base equation as: 
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Figure 6 - Gross Pitch Error rate (GPE%) comparison between the window-based, autocorrelation, and cepstral pitch estimators. 

 

Implementing the synthesis of the 
WBF ’s using Equation 13 is 

much simpler and faster than doing the same task using Equation 4 

directly. It should be noted that in this way, for synthesizing each 

WBF  we only need to perform two FFT operations (one for the 

positive and one for the negative components) and some simple 

multiplications which, altogether, make this method quite fast and 

practical.  
 

4. EXPERIMENTS 

4.1 Experimental Details 

For evaluating the efficiency of the proposed method under noisy 

environments, we chose to compare it with the autocorrelation and 

the cepstral pitch estimation methods. The autocorrelation method 

was chosen since it is one of the best pitch estimators under noisy 

environments [3,4]. The cepstral method was also chosen because, 

like our method, it estimates F0 using the speech segment frequency 

representation. The samples were taken out of the DARPA TIMIT 

acoustic-phonetic continuous speech corpus database.  The sam-

pling frequency was 16000 Hz. Speech samples were windowed 

using a 40 msec Hanning window and the time between frames was 

10 ms. The samples were analyzed at the SNR values of infinity, 10, 

5, 0, -5, and -10 dB by the window-based, autocorrelation, and cep-

stral pitch estimation methods, using additive white Gaussian noise. 

A total number of 3714 pitch estimation iterations were performed 

for each method. No post processing or smoothing was done on the 

data.  Finally the number of the gross pitch estimation errors was 

counted. If 
eP  is the estimated pitch and 

rP  is the reference correct 

pitch, if 1.0>
−

r

re

P

PP , we regard this as a gross pitch estimation 

error. 

 

4.2 Experimental Results 

Figure 6 compares the performance of the three methods. It can be 

seen that, as expected, the proposed method shows a superior per-

formance in low SNR values compared to both the autocorrelation 

and the cepstral pitch estimation methods. At the SNR value of 10 

dB, the window-based and the autocorrelation pitch estimation 

methods show about the same performance and for higher SNR 

values, the autocorrelation method shows a slightly better perform-

ance. The performance of this method is also impressive compared 

to the other methods which are tested in [3,4]. 

5. CONCLUSION 

A new method for noise-robust spectral pitch estimation is proposed 

that utilizes a new transform. Since the transform incorporates the 

frequency characteristics of the window function, it best matches its 

component functions to the harmonics of the speech segment power 

spectrum. In this way, the proposed method is efficient in minimiz-

ing the gross pitch estimation errors in noisy environments.  The 

gross errors of this method, the autocorrelation method, and the 

cepstral method were compared and it was confirmed that the pro-

posed method shows superior robustness to noise. We are continu-

ing our efforts by assessing the performance of this scheme in 

speech recognition configuration in adverse conditions.  
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