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ABSTRACT 

This paper describes a new strategy for the blind equaliza-

tion so that the blind Constant Module Algorithm (CMA) 

can be smoothly switched to the decision- directed (DD) 

equalization. First, we propose a combination approach by 

running the CMA and DD equalization simultaneously to 

obtain a smooth switch between them. We then describe an 

"anchoring process" to eliminate the effect from the CMA at 

the steady state to achieve low residual noise. The overall 

equalization can be regarded as the DD equalization being 

anchored by the combination approach. Numerical simula-

tions are given to verify the proposed strategy. 

 Index terms - Blind equalization, CMA, adaptive filtering. 

1. INTRODUCTION 

The blind minimum-mean-square-error (MMSE) equalizer 
is of particular interest in many systems as it requires no 
training symbols. Perhaps the simplest blind equalizer is the 
so-called decision-directed (DD) equalizer, which is 
achieved by replacing the training symbols in a classic train-
ing-based MMSE equalizer with the hard decision of the 
equalizer outputs. 

 
Although the DD equalizer can converge to the optimum tap 
setting in absence of noise [1], it is difficult to start up for 
channels causing severe inter-symbol interference (ISI), or 
when the "eye" diagram is closed. In [2], a "stop-and-go" 
strategy was proposed so that the decision-directed adapta-
tion takes place only when the reliability of the hard deci-
sion can be determined. But the convergence of such a strat-
egy may be slow especially when the ISI becomes so severe 
that few reliable equalization output is available. 

 
The well known Constant Modulus algorithm (CMA), on 
the other hand, can achieve blind equalization not relying on 
hard decision [3]. Based on higher order statistics, however, 
the CMA suffers from slow convergence rate and high re-
sidual noise. It thus usually switches to the DD mode after 
the convergence. This brings up an issue of when such 
switch should take place. Traditional implementations usu-
ally make the switch at some pre-set time instant determined 

either by experience or to the worst case scenario, im-

plying that often the switch is too late and sometimes is too 
early for severe channels. 
 
In general, an ideal switching strategy between the CMA 
and DD equalization should achieve the following require-
ments: 
 

• Smoothness: Switch occurs automatically and 
smoothly so that, when the equalizer starts to con-
verge, the DD equalization gradually takes over the 
CMA at the earliest possible time, long before the 
traditional abrupt switch is able to happen, leading to 
fast convergence; on the other hand, the DD equali-
zation can also automatically switch back to the 
CMA if it loses convergence due to, for example, a 
sudden change in the channel. 

•  Completeness: At the steady-state when the equal-
izer has converged, the effect from the CMA should 
be completely removed and only the DD equalization 
determines the overall equalization so that the resid-
ual noise is minimized. 

 
It is clear that the traditional switch does not satisfy the 
smoothness requirement for the ideal switch. More flexible 
strategies are desirable. There exist some algorithms for 
making a smooth switch between the CMA and DD equali-
zation. A typical of them is the so-called GPEA-G algorithm 
[4] which was derived following a similar approach to that 
in [5] for the Sato's algorithm. In the GPEA-G algorithm, 
the smooth switch is achieved by including the error signals 
from both the DD and the CMA equalization, denoted as ��� and���� respectively, into an overall pseudo error sig-
nal, �����	�, for the filter adaptation. Specially, �����	�= 


�� ���+

� ������ ���� , where 
� and 

 are two small 
constants. There are two problems related to this approach: 
First, the GPEA-G algorithm can not achieve the complete 
switch, because both k1 and k2 are randomly chosen with-
out optimization, and the effect from the CMA always exists 
after the equalizer converges, resulting in high residua  
noise; Secondly and more seriously, the GPEA-G algorithm 
may suffer from instability, be-cause when ����� becomes 
large, it indirectly increases the step-size parameter of the 
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CMA which must however be significantly small to main-
tain stability [3]. 

 
In a recent paper [6], an alternative approach was proposed 
to improve the convergence of the blind equalizer by com-
bining two independently running blind equalizers with dif-
ferent step-size parameters. Although the overall equalizer 
can well balance the fast convergence and the low residual 
noise between the two individual equalizers, it still has sig-
nificantly higher residual noise than the DD approach. This 
so-called convex combination CMA (CC-CMA) approach 
was in fact inspired by the convex combination LMS algo-
rithm proposed in [7]. 
 
In this paper, we describe a novel switch strategy between 
the CMA and DD equalization so that both requirements for 
the ideal switch can be satisfied. Also inspired by the convex 
combination LMS algorithm [7], we propose to combine the 
CMA and DD equalizer which are running independently. 
Unlike the convex combination LMS algorithm and its blind 
equalization counterpart in [6], however, here the optimum 
combination cannot be achieved by minimizing the output 
error because there are no training symbols available for the 
DD equalizer. Rather, a so-called anchored process will be 
introduced to minimize the effect from the CMA in the 
steady state. The proposed equalizer has significantly better 
performance than existing approaches including the GPEA-
G algorithm and the CC-CMA algorithm pro-posed in [6]. 
The rest of this paper is organized as follows: Section 2 de-
scribes a combination approach to include both the CMA 
and DD equalization into one framework so that the smooth 
switch can be obtained; Section 3 describes an anchoring 
approach to suppress the effect of the CMA equalization 
from the overall process after the convergence, so that the 
completeness of the switch can be achieved; Section 4 gives 
numerical simulations to verify the proposed algorithm; 
Finally, Section 5 summarizes the paper. 

2. A COMBINATION APPROACH  

2.1 System Model 

 
Without losing generality, we assume the decision delay for 
the equalization is zero. The details of the optimum decision 
delay search can be found in [8] and [9]. The received signal 
vector is given by: 

 ���� � ����� � ����                             (1) 
  

where H is the channel matrix, ����is the transmission sig-
nal vector, and����� is the white channel noise vector. 
 
In the CMA [3], the equalizer coefficient vector is adapted 
according to: 

 ���� � �� � ����� � ������������             (2) 

 

Where ����� � ������ ��
 �  ����� 
� which is called 

pseudo error signal, ����� � ��!������� which is the 

equalization output, �
 � "������#$"������
 which is de-
termined by the high order statistics of the transmission data, 
and ���is the step-size parameter. 

 
Since the CMA suffers from slow convergence and high 
residual noise, after (2) converges, it should switch to the 
DD mode as: 

 �%�� � �� � �%��� � �%�%��������             (3) 
 

where �%��� � �%&��� � �%��� and �%&��� is the hard deci-
sion of the equalizer output �%���. For clarity of exposition, 
we choose the subscripts of "g" and "d" to represent the 
CMA and DD modes respectively. Note that usually �� ' �% so the CMA converges much slower than its DD 

counterpart. 
 

2.2 Convex Combination 

 
In [7], Arenas-Garcia (et al) described a "convex combina-
tion" LMS algorithm in order to balance the conflict re-
quirements of low MSE and fast convergence. This was 
achieved by proportionally summing the outputs from two 
independently running LMS filters with different step-size 
parameters. Similarly, we have both the CMA and DD equal-
izers run simultaneously, and combine them with an adjust-
able combination factor (����so that the overall equalizer 
becomes: 
 �)��� � (����%��� � �� � (���������           (4) 

 
 
Then the smooth switch can be obtained by appropriately 
adapting  (���. 
 
Unlike the convex combination LMS algorithm [7], unfortu-
nately, the (���in (4) cannot be adapted based on minimizing 
the overall mean square error (MSE). This is because there 
are no training symbols available in the blind equalization. 
Instead, the hard decision of the symbol estimates has to be 
used to adapt both the DD tap weight, i.e. �%���, and (���. 
This makes the �%���, and (����adaptation be highly inter-
active to each other, diverging both of them. In fact, we 
found that even with the training symbols being used to adapt (��� (but not �%���) in a way similar to that in [7], the 
overall process is still unstable. Hence we let (��� be ad-
justed in a "fixed" manner as: 
 

(��� � �*+ ,-./01 �2�
-./31 �2�4                              (5) 

 
 

where �5/%��� � �)&��� � �%!�� � ������, �5/���� �
��&��� � ��!�� � ������, �)&��� and ��&��� are hard deci-

sion of the overall and the CMA outputs respectively. Since (��� doesn't depend on its previous value (�� � ��/�the sta-
bility problem can be largely avoided. Moreover, we deliber-
ately apply the a posterior error signals of �5/%��� and 
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�5/���� in (5) to further "detach" the interaction between the 

tap weight and (����adaption for better stability. It is clear 
from (5) that 0 < �(��� < 1. To be specific, at the beginning 
when DD equalizer doesn't converge, we have �5/�
 ��� 6
��5/%
 ���, so that (����is small and the overall equalizer is 

more determined by the CMA. As the CMA starts to con-
verge, the output from the overall equalizer becomes more 

reliable, or �5/%
 ��� becomes smaller. This forces (����to 

increase, gradually increasing the contribution from the DD 
equalization to the overall process. And smooth switch is 
thus reached. 

3. AN ANCHORING APPROACH 

In order to achieve the completeness of the ideal switch, the 
value of (����needs to go up to one after the equalizer con-
verges. Unfortunately, this cannot be achieved by (5) which 
does not depend on an optimum criterion. So the contribution 
from the CMA cannot be completely removed out of the 
overall equalization at the steady-state and a high residual 
noise will be observed. Further process is thus desirable. 
 
3.1 Anchoring Process 

 
In this section, we introduce an "anchoring process" such that 
only at specific intervals, namely the anchoring intervals, 
does the overall equalizer operate in a combination manner 
as in (4). At all other intervals, the overall equalizer simply 
runs in the traditional DD mode. This modifies the adaption 
rule for the overall equalizer to: 
 

 
 

7�)��� � (����%��� � 8� � (���9�����/ :;���<=>�?@2)��� � A
�)��� � �)�� � �� � �)�)�� � ������ � ��/ =BC�D�:�� E 

(6) 
 

where  �)�� � �� � �)&��� � �� � �)!�� � ����� � �� , 
and ?@2)��� is the time space between two adjacent anchor-
ing intervals at time n. It is obvious when ?@2)��� = 1, (6) 
reduces to the normal combination approach of (4). 
 
Such process can be viewed as a standard DD equalization 
being anchored by the combination approach. It is required 
that, at the initial stage, the anchoring space ?@2)���is small, 
so that the overall process is intensively anchored by the 
combination approach and the convergence can be guaran-
teed. After the equalizer converges, ?@2)����becomes large so 
that the anchoring happens little and the contribution from 
the CMA can be ignored. In order to satisfy this requirement, 
?@2)����needs to be increased when the equalizer is converg-
ing or has converged, and decreased when the equalizer di-
verges due to, for example, a sudden change in channel. 
This translates into an adaptation rule as: 
 
 
 
 

F�?@2)�� � �� � ?@2)��� � G/ :;�"H�)
���I �6 "H�)
�� � J�I
?@2)�� � �� � ?@2)��� � G/ :;�"H�)
���I K "H�)
�� � J�I E 

(7) 
 
where both G and  J are positive integers which will be ex-
plained in more detail later. 
 
3.2 Fractional Anchoring Space 

 
Adapting ?@2)����directly based on (7) is very sensitive to 
the noise, if it converges at all. This is not only because 
"H�)
���I is difficult to be accurately tracked in real time, but 
also because of the constraint that ?@2)����must be an integer.  
 
Inspired by the "fractional filter length" algorithm proposed 
in [10] to adapt the filter length which must also be an inte-
ger, we introduce a concept of pseudo-fractional anchoring 
space, �@2)���, which can take fractional values. The anchor-
ing space adaptation is then re-constructed based on �@2)���: 
 
 
 �@2)�� � �� � ��@2)�� � �� � L� � M� ��)
��� � �)
�� � J��  (8) 
 
And the "true" anchoring space ?@2)��� is obtained as: 
 

?@2)��� � FN�@2)�� � ��O/ �?@2)��� � �@2)�� � ��� P G
?@2)���/ =BC�D�:�� E        (9) 

 
where G and J  are defined in the same way as in (7), M is the 
step-size parameter, L is a small positive constant used to 
prevent �@2)��� from dropping after the equalizer converges, 
and  N� O�rounds the embraced value to the nearest integer. 
 
Specifically, a larger G makes ?@2)����adaptation be less sen-
sitive to the noise, but achieves less accuracy at the steady 
state. On the other hand, J is used to reduce the effect of the 
adaption noise on tracking the error signals. Therefore, the 
larger the J is, the smoother the adaption we can obtain, but 
the longer the delay we will observe. Moreover, in order to 
ensure stability, �@2)��� should be limited such that ?QR2 S
�T�U��� S ?<T*. Normally we let ?QR2= 1 and ?Q@V be a 
large value. 
 
3.3 Discussions 

 
Based on instantaneous rather than mean square errors, (8) 
adapts the anchoring space in an LMS manner with little 
complexity imposed. Taking expectation on both sides of (8) 
yields: 
 "H�@2)�� � ��I � �"H��@2)���I � L� � M� �"H�)
���I �"H�)
�� � J�I�                                                                       (10) 
 
 
Without losing generality, we assume ?@2)�A�= �@2)�A� = 1. 
Then initially the overall equalizer is equivalent to a normal 
combination equalizer and able to converge, we have 
"H�)
���I S "H�)
�� � J�, and then further from (10) we have 
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"H�@2)�� � ��I K "H�@2)���I. Thus at the steady-state, 
?@2)��� always reaches its maximum value of  ?Q@V in the 
mean. Further from (4), we can obtain the contribution from 
the CMA to the overall equalization at the steady state as: 
 

W��� � 8� � (�X�9� �
YZ[\                        (11) 

 
where�(�X� is calculated according to (5) which is usually a 
value close to 1. As an illustration, we assume ?Q@V= 50 and (�X� = 0.9 after the equalizer converges. It is clear from (11) 
that, at the steady state, the contribution from the CMA is 
only W��� = 0.2% which can be ignored in practice. The 
complete switch is thus reached.  
 
On the other hand, when the equalizer diverges due to, for 
example, a sudden change in the channel, we have 
"H�)
���I ] "H�)
�� � J�. This makes "H�@2)�� � ��I 6
"H�@2)���I so that the overall equalization becomes more and 
more determined by the combination approach and the con-
vergence can be resumed. 
 
It is interesting to note that if the combination approach is 
replaced by the traditional CMA, the anchoring process will 
not work. This is because that, unlike the combination ap-
proach, the CMA is a self-adapted process with no interac-
tion with the overall equalization, constantly lifting the resid-
ual noise to a high level. 
 
3.4 The Algorithm 

 
With the above statements, a full description of the proposed 
algorithm is summarized as follows: 
 
For every equalizer input y(n),  n = 1, 2, 3,.... 
 
Update the DD and CMA equalizers simultaneously:  

 ����� � ��!�������/ �%��� � �%!�������/ 
����� � ������ ��
 �  ����� �
/ �%��� � ��& ��� � �%���, 

���� � �� � ����� � ������������/ 
�%�� � �� � �%��� � �%�%��������/ 

 
Update�?T�U���: 
 �@2)�� � �� � ��@2)�� � �� � L� � M� ��)
��� � �)
�� � J�� 

Limit �@2)�� � �� in the range of [?Q@V/ ?QR2I. 
Obtain ?@2)�� � �� according to (9), 

 
 
Update the overall equalizer: 
 
 If n MOD ?@2)�� � �� � A �5/%��� � �)&���� � �)!�������/� 

�5/���� � ��&���� � ��!�������/ 
(��� � ^_` a� �5/%
 ���

�5/�
 ���b/ 
�)�� � �� � (����%�� � �� � 8� � (���9���� � ��� 

Else 

 �)�� � �� � �)��� � �)�)��������/ 
 
Update the overall output: 
 �)�� � �� � �)!�� � ����� � ��/ 

�)& ��� � ��:��BC��CTD>�>�U:�:=��=;���)�� � ��/ 
�)�� � �� � �)& �� � �� � �)!�� � ����� � �� 
 

3.5 Numerical Simulations 

 
In this section, the proposed approach is verified by numeri-
cal simulations. We consider two channels described in [2] 
and [11] with the impulse response vectors respectively given 
by: 
Channel-I :  [0.0410 + 0.0109j 0.0495 + 0.0123j 0.0672 + 
0.0170j 0.0919 + 0.0235j 0.7920 + 0.1281j 0.3960 + 0.0871j 
0.2715 + 0.0498j 0.2291 + 0.0414j 0.1287 + 0.0154j 0.1032 
+ 0.0119jIc, 

 
Fig. 3. The MSE learning curves for the channel with abrupt 
change. 
 
Channel-II : [0-0.005j 0.009-0.024j 0.854-0.218j 0.049-
0.016Ic                       (12) 
 
In the below experiments, the channel noise for both chan-
nels are white Gaussian with signal- to-noise-ratio (SNR) at 
20dB, 16QAM is used to modulate the transmission symbols, 
the filter length of the equalizer is 21, and the parameters for 
the anchoring space adaptation of (8) are set as follows: G = 
3, J= 50, M= 5e-04, L = 1e-05, ?QR2= 0 and ?Q@V= 50. 
 
The proposed algorithm is compared with the classic CMA, 
the GPEA-G [4] and the convex combination CMA (CC-
CMA) algorithms [6]. For fair comparison, the step-sizes for 
both the CMA and the GPEA-G algorithm are set as 1e-05, 
where the other parameters for the GPEA-G algorithm are 
chosen as same as those in [4]. The step-sizes for the CC-
CMA algorithm are set as 5e-05 and 0.5e-05 for the two in-
dividual equalizers respectively.  
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All of the MSE learning curves below are obtained by aver-
aging over 100 independent runs. 

4.  ABRUPT CHANNEL CHANGE EXPERIMENT 

In this experiment, the channel is initially fixed at Channel-I 
and changed to Channel-II after 8,000 symbols. Fig. 3 com-
pares the MSE performance for the CMA, CC-CMA, GPEA-
G and proposed algorithms respectively, where the advantage 
of the proposed algorithm is clearly shown. It is interesting to 
point out that the GPEA-G algorithm converges to a very 
high MSE level after the abrupt channel change. This well 
matches our previous statement that a sudden rise in the MSE 
indirectly increases step-size of the CMA embedded in the 
GPEA-A algorithm, making it hard to converge. 
 

Fig. 4. The anchoring space learning curve for the channel 
with abrupt change. 
 
 Fig. 4 shows a typical learning curve of the anchoring space ?@2) adaptation for a single run. As was expected, ?@2)��� 
is small at the beginning or when the channel experiences 
abrupt change, and increases to a large value around ?Q@V  at 
the steady-state. A nearly ideal switch strategy is thus 
achieved. 

5. CONCLUSIONS 

This paper presented a new strategy for the blind equalization 
so that the blind CMA can be smoothly switched to the DD 
equalization. Compared with existing approaches, the pro-
posed method of switch is smooth, complete and fast. Nu-
merical simulation has been given to verify the analysis. The 
proposed approach describes a very useful method of imple-
menting the blind equalizer in practice with only a little extra 
complexity being imposed. 
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