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ABSTRACT 
This paper studies a spectrum estimation method that util-
ises Digital Alias-free Signal Processing (DASP) to continu-
ously sense the spectrum in a multichannel communication 
environment using relatively low sampling rates compared 
to the classical approaches. Various estimators that use 
similar concepts are considered. The effect of noise on the 
accuracy of the chosen detector is analysed. Most impor-
tantly, general guidelines on choosing the average sampling 
rate within a given scenario are provided in order to guar-
antee sensing reliability. The extra requirement on the 
needed sampling rate imposed by the presence of noise is 
given. The analytical results are illustrated by numerical 
examples. 

1. INTRODUCTION 

Wireless sensor networks that use multichannel communica-
tion protocols [1] to detect the occurrence of an 
event/phenomenon e.g. boarders surveillance and fire detec-
tion are expected to have low channel occupancy due to their 
occasional nature of transmissions. The occupancy is defined 
by the ratio between the simultaneously active channels and 
the total number of channels in the system.  If the channels 
occupy separate frequency bands, the signal sampling rate of 
the receiver monitoring their activity should normally exceed 
twice the total bandwidth occupied by the channels. Failing 
to do so could result in signal aliasing and irresolvable prob-
lems of separating their transmissions. When dealing with 
low channel occupancy scenario, such sampling rates would 
exceed many times Landau rate. Landau rate [2] is the theo-
retically lowest sampling rate that allows avoiding aliasing in 
DSP. In our case it equals twice the bandwidth of the active 
channels. For many bandpass and multiband signals, sam-
pling at Landau rate requires deployment of nonuniform 
sampling as well as a priori knowledge of which channels are 
occupied. Exceeding significantly the Landau rate may indi-
cate potential inefficiencies in using the receiver’s resources 
such as power and/or deployment of high-cost, fast hardware 
capable of dealing with excessive sampling rates. 
In this paper we demonstrate that even if the active channels 
are unknown we can still detect them by suitable use of low-
rate nonuniform sampling and appropriate processing of the 
signal – a methodology sometimes referred to as DASP. One 
of the earliest DASP-type algorithms was introduced in [3] 

and [4].  Few monographs, such as [5] and [6], give an over-
view on the topic. 
In this paper, we study techniques that are based on DASP 
approach to sense the activity of the channels in multichan-
nel communication environment. The adopted spectrum 
detection approach relies on estimating the spectrum of the 
incoming signal and sensing its magnitude. The problem of 
estimating the spectrum using nonuniformly sampled data 
has been studied in several publications [7-13]. We note that 
none of the cited publications; except [13]; took into account 
the presence of noise. Therefore the results produced there 
should be treated with caution when applied to practical 
situations. 
The paper is organised as follows: in Section 2 we formulate 
the studied problem. In Section 3, we consider a set of avail-
able DASP techniques that enable us to sense the spectrum 
and select the ones that are suitable for the task on the basis 
of simplicity, relevance to the considered problem and practi-
cality. The effect of noise on the accuracy of the estimators is 
studied in Section 4.  Primary contribution in this paper is 
presented in Section 5: we give general recommendations on 
the required average sampling rate given the actual band-
width of the processed signal and noise level. Finally, in sec-
tion 6 we give numerical examples to demonstrate the pre-
sented results. 

2. PROBLEM FORMULATION 

Let L  be the total number of channels over which data is 
transmitted in a multichannel communication system. Each 
channel has a bandwidth of CB , hence the total bandwidth 
to be monitored is CB LB= . The maximum number of si-
multaneously active channels and their joint bandwidth are 
given by AL  and A A CB L B=  respectively. All channels’ 
central frequencies are known. We assume that the maxi-
mum channel occupancy is low, i.e. 1<<LLA . Our task is 
to produce an algorithm capable of scanning the monitored 
bandwidth B  and identify which channel(s) are active. The 
algorithm should operate on sampling rates significantly less 
than B2 . Since the use of the Landau rate requires a priori 
knowledge of the position(s) of the active channel(s) [11], 
which in our case is not available, we aim at using a sam-
pling rate which is substantially smaller than 2B but still 
above 2 AB . Similar task has already been solved in [11] by 
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the use of universal sampling. However, here we search for 
algorithms that avoid huge computational costs inevitably 
accompanying solutions proposed in [11]. We note that the 
approach proposed in [3] is capable of detecting/estimating 
frequency components of present signal using arbitrary low 
sampling rates. Nevertheless, it entails the use of infinitely 
long signal observation window which has limited practical 
applicability.  
Random nonuniform sampling which we are going to use 
here eliminates signal aliasing in the form that is known in 
classical DSP. Instead it creates smeared aliasing – a noise-
like signal present at all frequencies [5]. The sought reliable 
detector should be immune to the effects of smeared aliasing 
as well as noise. Besides, in practical systems the transmis-
sion is expected to be continuous where channels activity 
changes. A time moving window is typically used in such 
cases. A spectrum sensing procedure is carried out on each 
of the signal windows. 
The power levels of concurrently active channels can signifi-
cantly differ from each other due to the adverse practical 
constraints of communication systems. A practical approach 
to dependable sensing in such cases is to identify the active 
channel; if any; with the highest power level first and then 
extract it to reveal weaker signal components that are pre-
sent. Extraction methods that are based on modelling the 
targeted channel are expansions of Sequential Component 
Extraction (SECOEX) proposed in [14]. The later targets 
discrete frequencies and may lead to excessive computational 
cost due to the high resolution spectrum of the considered 
communication signals given a long signal observation win-
dow as shown in the numerical examples. The details of the 
extraction procedure lie outside the scope of this paper. 

3. SPECTRUM ESTIMATORS  

The considered DASP techniques consist of two steps:  sig-
nal sampling (nonuniformly) and calculating its spectrum 
with the aid of unbiased estimators. The target of such esti-
mators is given by: 

0
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0t  is the initial time instant of the analysed signal window 
whilst T  is its width. The windowing function given by 

( )w t  is commonly used to suppress the known Gibbs phe-
nomenon. 
In this section we review a set of available spectrum estima-
tors and exclude the ones that are less suitable for our pur-
pose. We start first with periodograms which were intro-
duced in [13] for arbitrarily collected data. They are com-
monly used to detect discrete spectral components. Their 
accuracy is poor compared to the other studied methods.  As 
a result the option of using periodograms is excluded. 
Blind Spectrum Sampling (BSS) [11,12] is a sensing tech-
nique that allows the use of  sampling rates which are arbi-
trary close to the minimum limit i.e. Landau rate to sense the 
spectrum and reconstruct signals. It deploys periodic non-
uniform sampling and blindly scans a predefined range of 

frequencies searching for present spectral components. BBS 
uses complex algorithm that makes it computationally ex-
pensive and consequently it will be abandoned. 
[7] and [8] introduced estimators that are based on a total 
random sampling scheme where sampling instants are identi-
cally distributed, independent random variables whose Prob-
ability Distribution Functions ( PDF’s) cover the whole sig-
nal observation window 0 0[ , ]t t T+ . In [7] two estimators 
were proposed: Weighted Sampled (WS) and Weighted 
Probability (WP). In the latter the sampling instants PDF’s 
are dependent on the used windowing function ( )w t . How-
ever, the average density of sampling instants inside 

0 0[ , ]t t T+  is desired to be constant especially when the win-
dow moves i.e. 0t  changes due to the continuous nature of 
transmission. The optimal estimator (in term of accuracy) 
proposed in [8] has sampling instants whose PDF’s are de-
pendent on the incoming signal which is assumed to be un-
known. Thus, both WP and the optimal estimators are elimi-
nated from the list of candidates.  
Estimators that use stratified and antithetical stratified sam-
pling schemes were introduced in [9] and [10]. The two 
methods divide the signal observation window into subinter-
vals within which sample(s) with uniform PDF’s are taken. 
The quality of the estimators can be improved by designing 
the optimal densities of these subintervals. The optimal cases 
are dependent on the processed signal and hence they will 
not be considered. In the non-optimal cases time subintervals 
are equal, hence the sampling schemes become a kind of 
jitter sampling. We will refer to those two schemes by jitter 
sampling thereafter. 
Therefore the remaining candidates are: the WS and the two 
estimators that utilise jitter sampling (stratified-antithetical 
sampling with equal time partitions). 

4. SPECTRUM ESTIMATORS PERFORMANCE 
IN PRECENSE OF NOISE 

Spectrum estimators studied in [7-10] were all evaluated in 
noise free environments. However, most data transmission 
systems are subject to noise which affects/limits the system 
performance. Noise is commonly modelled as zero mean 
Added White Gaussian Noise (AWGN). Hence, the proc-
essed signal which is composed of data ( )x t  and noise ( )n t  
is represented by ( ) ( ) ( )y t x t n t= + . In this section we assess 
the effect of noise on the unbiased nature of the WS estima-
tor as well as on its accuracy. The presented results are linked 
to the estimators that use jitter (stratified-antithetical) sam-
pling.  
The sampling instants used in WS approaches are independ-
ent from each other and have identical PDF’s which are 
given by: 

0 0
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WS estimator is defined by: 
2

1
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where N  is the number of the captured samples.  
 
4.1 Unbiased Spectrum Estimator 
In this subsection we show that the WS estimator remains 
unbiased despite the presence of noise. The expected value of 
the estimators is evaluated with respect to the sample points 
as well as the added noise. We note that all the components 
of the summation in (3) are independent and identically dis-
tributed random variables with identical PDF’s, hence: 

{ } 2( ) ( ) ( ) ( ) j ft
WSE X f TE x t n t w t e π−⎡ ⎤= +⎡ ⎤⎣ ⎦ ⎣ ⎦       (4) 

where t is a random variable defined by ( )WSp t . Given 

that 2( ) ( ) 0j ftE n t w t e π−⎡ ⎤ =⎣ ⎦ : 
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Therefore the estimator is unbiased.  
4.2 Accuracy of the Estimator in Noisy Environment 
Although the lack of bias is a sought property for any statisti-
cal estimator, it does not indicate the estimator’s accuracy. 
On the other hand, the standard deviation is directly related 
to the accuracy according to Chebychev’s inequality which 

states that: [ ]{ }
2

2Pr XX E X
σ

ε
ε

− ≥ ≤  where X is a random 

variable and 0ε > .  In this section we evaluate the effect of 
the noise factor on the standard deviations of the WS estima-
tor. The variance is defined by: 
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The expected value of (7) in terms of the sampling instants 
and the added noise is calculated over two stages: when indi-
ces are identical i.e. n m= and when they are distinct, hence: 
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Since the sampling instants are independent from each other 
and with identical distributions we can make use of (4) and 
(5). For n m= , expected value of (8) reduces to: 

{ } { }
2
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where WSE and  WE  represent the energy of the windowed 
signal and the area of the used window respectively. They are 
defined by: 
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Now when n m≠ , the expected value of (8) yields: 
2( 1) ( )W
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By inserting (11) back into (6) we obtain: 
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where /N Tα =  is the average sampling rate. Hence, 
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The estimators that use stratified and antithetical stratified 
sampling schemes reserve their unbiased nature despite the 
presence of noise. Besides, the impact of noise on the accu-
racy of the two methods is identical to that of the WS estima-
tor i.e. 2

0 /WEσ α  for the equal time partitions case i.e. jitter 
sampling. Those two facts can be proven by following simi-
lar procedures to the ones shown above. 

5. SPECTRUM DETECTION 

The procedure of detecting active channel(s) proposed in this 
paper relies on creating unbiased estimates of the received 
signal spectrum and scanning its magnitude. In order for the 
detection to be reliable, we request that the spectral peak(s) 
associated with the targeted active channel(s) are visibly 
higher than the level of the smeared aliasing and noise that 
are present in the signal spectrum. This request will impose a 
lower limit on the used average sampling frequencyα .  
Let H be the average peak of the magnitude spectrum of the 
targeted channel(s) i.e. with the highest power level. We re-
call that AB  is the bandwidth of the processed signal i.e. joint 
active channels bandwidth. We note that ( )WS fσ  is constant 
at frequencies where the signal is not present. This represents 
the maximum error of the estimator given by 

2
,max 0( ) /WS WS WE Eσ σ α= + . ,maxWSσ  features a white-noise-

like error that is inversely proportional to α .  This error 
represents the effect of noise and smeared aliasing on the 
estimator’s accuracy and its relation to the spectrum of the 
signal ( )WX f is described by Chebychev’s inequality. Hence 
in general for the spectral peak(s) of the targeted channel(s) 
to be visible i.e. notably above the error/smeared-aliasing 
level: 
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where  0f  is the frequency where the highest peak in the 
magnitude spectrum of the signal exists. Experimental re-
sults; including numerical examples in [7] for noise-free 
case; showed that 2( ) /WX f N  contribution in term of re-
ducing the estimator’s error level according to (13) is insig-
nificant.  Thus, for a conservative approach to reliable detec-
tion (14) can be written as: 

,maxWSH ησ>                    (15) 

where 2η ≥ . Hence:   2 2 2
0( ) /WS WH E Eη σ α> +  and as a 

result the average sampling rate is decided by: 
2

2 0
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>               (16) 

If the rectangular windowing function is used, WSE reduces to 

the signal energy given by 
0

0
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= = ∫ while the 

window energy becomes WE T= . According to Parseval’s 

theorem: 2( )WS X f df
+∞

−∞

= ∫ . Now if the used signal obser-

vation window is long enough, the signal energy can be cal-
culated by estimating the area under the squared magnitude 
spectrum of the present signal i.e. : 

     22 AS B H≤                        (17)    
We note that 2

0N Tσ=  embodies the noise energy. As a result 
(16) can be written as: 

2
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Hence for reliable detection of the channel(s) with the high-
est power level, the average sampling rate should comply 
with the following conservative guideline: 

     
1
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                 (19) 

Formula (19) gives a clear lower bound on the needed aver-
age sampling rate which is a function of the channel occu-
pancy and Signal to Noise Ratio (SNR). In practical applica-
tions such parameters are usually known.  
We note that according to (19), the lowest recommended 
sampling rate for a noise free environment is 8 AB which ex-
ceeded Landau rate by a factor of 4. On the other hand for 
uniform sampling the required sampling rate is 2 2 AB B>> , 
hence substantial savings on sampling rates can be obtained 
by using the adopted approach. The presence of noise im-
poses an additional ( ) 122 AB SNRη − factor on the required 
average sampling rate. 
The standard deviations of the stratified-antithetical sampling 
estimators are shown in [9] and [10] to be less than or at most 
equal to that of the WS. Hence, they are theoretically more 
accurate. However, such an advantage over WS is noticeable 

only if the used number of samples is large i.e. high α  pos-
sibly higher than the uniform sampling case. The numerical 
examples given in [9] and [10] also indicate this fact. We 
recall that the reason behind using DASP is maintaining the 
sampling rate lower than that of the uniform case. Therefore, 
the improvement gained by using stratified-antithetical sam-
pling estimators is minor for the considered problem as will 
be shown in the numerical example in the next section. From 
this perspective, the lower bound on the needed average 
sampling rate for WS estimator given by (18) applies to jit-
ter-stratified-antithetical sampling estimators. In this case the 
bound is expected to be even more conservative.  

The used estimator is expected to process data on continuous 
basis. A moving time window is typically used in such cases. 
From this point of view, estimators that use jitter sampling 
schemes can be handled easier compared to the ones that use 
total random sampling particularly once the window shifts. 
Besides, implementing jitter sampling imposes fewer con-
straints on the used Analogue to Digital Converter (ADC). In 
the case of total random sampling two sampling instants can 
be arbitrary close to each other whereas such phenomenon 
can be better controlled with the use of jitter sampling. 

6. NUMERICAL EXAMPLES 

In this section we present numerical results that illustrate the 
analysis performed in the previous sections. Our goal is to 
sense the spectrum of a multichannel communication system 
that consists of 50 channels ( 50L = ) that are 2 MHz each 
( CB = 2 MHz). QPSK modulated signals with maximum 
bandwidths are transmitted over the channels. The moni-
tored range of frequencies i.e. system bandwidth stretches 
from int 800f = MHz to int 900Cf LB+ = MHz. Channel 
occupancy of 10% is assumed i.e. 5AL = . Channels with 
central frequencies of [815, 841, 845, 875, 895] MHz are 
expected to be active and with similar power levels.  Rec-
tangular window of width 200T = µs is used.  
In the first example we consider the noise free case and 
choose 125α = MHz i.e. 2.5η = . Figure 1 shows the sig-
nal’s normalised magnitude spectrum versus intf f−  for WS 
and jitter-stratified sampling estimators. As shown in Figure 
1, the five active channels can be identified clearly. We note 
that the minimum uniform sampling rate in this case is ap-
proximately 400 MHz (bandpass sampling). The detection 
task was accomplished with a saving of 68.75% on the sam-
pling rate with the use of the proposed method. We note that 
higher savings can be achieved by using lower α . The two 
plots in Figure 1 show that WS estimator has an error level 
slightly higher than the jitter sampling one. However, the 
former features spectrum peaks at certain frequencies higher 
than those for the WS case which emphasises the statistical 
nature of the study. This confirms the minor differences be-
tween WS and jitter sampling estimators for the studied sce-
nario in term of performance. 
In the second experiment we consider a noisy case with SNR 
of 2 dB. The WS estimator with minimum α = 130.5 MHz 
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according to (19) is depicted in Figure 2. The figure shows 
that with relatively high level of noise active channels can be 
detected with the minimum α  which is well below its uni-
form sampling counterpart. This confirms the conservative 
nature of (19). The effect of noise can be viewed as a rise in 
the estimator’s error floor. Experimental results (not shown 
due to space restrictions) showed that distribution of simulta-
neously active channels across the scanned bandwidth does 
not hinder the performance of the detection procedure. 

7. CONCLUSION 

A method that utilises DASP techniques to detect the chan-
nel(s) with the highest power in a multichannel communica-
tion environment is proposed. The method uses estimators 
that deploy different nonuniform sampling schemes. Their 
differences are insignificant for the detection problem. The 
estimators exploit the low channel occupancy to use sam-
pling rates that are well below the ones used with classical 
approaches. Lower bounds on the required average sampling 
rate for noise-free and noisy cases are provided given the 
SNR and the channel occupancy values. The provided lower 
bound indicates that 25% is the maximum channel occu-
pancy percentage for which the proposed method is advanta-
geous over classical DSP in a noise free environment.  
The used average sampling rates support channel modelling 
i.e. reconstruction either for effective sequential extraction or 
data recovery purposes. This prompts researching into effec-
tive reconstruction algorithms of noisy nonuniformly sam-
pled data (little work on the topic is available in open litera-
ture for the best knowledge of the author). Besides, the pro-
posed method demands high number of frequency points per 
channel as a result of the unsmoothness of the signal spec-
trum due to the relatively long signal observation window.  
Hence the need for a spectrum smoothing technique that 
would minimise the required frequency points per channel to 
detect its activity. 

 
Figure 1, Normalised magnitude spectrum of the received signal. 

Figure 2, Normalised magnitude spectrum of the processed signal 
with SNR = 2 dB using WS estimator. 
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