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ABSTRACT

This work presents a framework for multiple description cod-
ing (MDC) based scalable image coding. The paper starts
with defining the conditions for deviating from the conven-
tional multiple description scalar quantization (MDSQ) by
extending the MDSQ into multiple-channel (more than 2) un-
balanced descriptions. These two conditions are extended to
define the new framework for MDSQ with successive refine-
ment. We propose that the split or refinement factor for each
of the refinement side quantizers should be greater than the
number of diagonals filled in the index assignment matrix of
the side quantizer design and should not be integer multiples
of each other, in order to reduce the distortion in joint de-
coding when the number of descriptions included in joint de-
coding is increased. Proofs and verification by simulations
of these propositions are are shown in the paper. Experi-
mental results show high robustness of the proposed scheme
compared to single description scalable image coding.

1. INTRODUCTION

Recent years have seen a great improvement in multime-
dia content coding in terms of high coding gain, scalability,
random accessibility, low complexity and high resilience to
transmission errors. The error resilience is usually achieved
by either using error control codes, error concealment mech-
anisms or using new paradigms, such as, joint source-channel
coding and or multiple description source coding (MDC) [1].
The latter is a simple, yet a very effective solution. In MDC,
the source is encoded into two different bit streams with sim-
ilar rate-distortion performance, known as balanced descrip-
tion bit streams, and they can be decoded independently for a
low quality version or jointly for a high quality version of the
same content. If parts of individual descriptions are affected
from transmission losses, then the joint decoding compen-
sates for these errors and decodes the content as accurate as
possible. MDC is useful for transmission along packet net-
works, where loss of packets occur due to various link band-
widths, buffer capacities and network congestion and trans-
mission along wireless channels, where bit wise errors occur
due to fading. More importantly, MDC is very applicable in
distributed and scalable content storage.

The simplicity in the MDC concept is that it can be eas-
ily integrated into existing coding frameworks. The simplest
way is to create different spatio-temporal versions of the con-
tent by downsampling followed by individual encoding of
each of the description using an existing source coder. This
has been widely used in multiple description video coding.
The other way is to integrate creating multiple descriptions

into usual coding modules, such as, the decorrelating trans-
form, quantization and entropy coding [2]-[5].

The most commonly used MDC method is modifying the
quantization process in a source coder and famously known
as the Multiple Description Scalar Quantization (MDSQ) [5].
In MDSQ, first a central quantizer is designed and then side
quantizers containing balance rate-distortion performance is
obtained by alternating merging of the bins in the central
quantizer. The design problem of MDSQ and quanitzation
bin index assignment conditions for a memoryless Gaussian
source has been addressed in [2]. For multiple description
image coding, most MDSQ solutions have been used in the
wavelet transform domain [5]-[9].

The emergence of using the wavelet transform in image
coding has resulted in incorporating extra features, such as
scalable decoding into image coding algorithms. As scalable
coding usually uses hierarchical representations of spatial-
quality coding layers with progressive interdependencies,
any error in lower layers, for example in low frequency sub
bands, can propagate into the higher layers. Therefore, in
scalable coding, low spatial-quality layers need to be highly
protected for channel errors. In addition to hierarchical chan-
nel coding strategies, MDC can also be used to make scal-
able coded bit stream robust. One such example includes
Embedded MDSQ (EMDSQ), where a set of embedded side
quantizers generating two descriptions are derived from an
embedded central quantizer [8, 10].

Early MDSQ algorithms focussed on obtaining descrip-
tions with balanced rate-distortion performance. In recent
work [11] we derived the conditions for obtaining unbal-
anced descriptions and their joint decoding. We also ex-
tended these conditions for creating more than two descrip-
tions for MDC. In this paper, we use our results on unbal-
anced descriptions to formulate the conditions for succes-
sive refinement of side quantizers of the multiple descrip-
tion scalar quantizers. We demonstrate how successive re-
finements is used for highly robust scalable image coding.

The rest of the paper is organized as follows: An
overview of the MDSQ scheme and the conditions for cre-
ating and joint decoding of unbalanced descriptions are pre-
sented in Section 2 and Section 3, respectively. The con-
ditions for MDSQ with successive refinement are presented
in Section 4. Simulations and experimental results using the
proposed coding in scalable image coding are shown in Sec-
tion 5 followed by conclusion in Section 6.
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Figure 1: Index assignment matrix with central and side
quantizers for (n = 16 and k = 2).

2. AN OVERVIEW OF MULTIPLE DESCRIPTION
SCALAR QUANTIZATION (MDSQ)

In wavelet-based MDC, firstly, the input source is decorre-
lated by using the wavelet transform. Then MDSQ is used
for generating two (or more) balanced descriptions. Let d1
and d2 be the two descriptions having rate-distortion proper-
ties of (R1,D1) and (R2,D2). The two descriptions are cre-
ated using the side quantizers derived from a central quan-
tizer having rate-distortion properties of (R0,D0). The two
descriptions are transmitted along two channels separately.
Individual decoding of descriptions results in either D1 or
D2 distortion levels, depending on which of the description
is received. Joint decoding of both bit streams can achieve
a distortion level of D0. For balanced descriptions, we can
define the relationship between these parameters as

D1 ≈ D2,

R1 ≈ R2,

D0 ≤ D1,D2,

R0 = R1 +R2,

(1)

where R0 is the effective rate when both descriptions are re-
ceived.

An MDSQ consists of two parts: A scalar quantizer that
maps a set of random variables to another countable set, com-
monly called a central quantizer and an index assignment
matrix that splits the indexes of central quantizer into two
side quantizers. The description generated from MDSQ con-
tains redundancy that can be controlled by the number of di-
agonals (k) filled in the index assignment matrix. The de-
sign problem of MDSQ for a memoryless gaussian source
has been addressed in detail in [2]. Figure 1 shows such an
example of the index assignment matrix and its correspond-
ing central and side quantizers for k = 2 and n = 16, where n
represents the number of bins in the central quantizer.

3. UNBALANCED MULTI-CHANNEL MDSQ

The MDC model can be generalized into N number of de-
scriptions considering N channels and (2N−1) separate de-
coders (both individual and joint). When 2 or more de-
scriptions are received, they are decoded jointly to achieve
lower distortion. In current MDC approaches, the N > 2 case
is realized by the sub-sampling based packetization of the
two descriptions [5] or by using different number of refine-
ment passes as used in embedded image coding [6]. In both
schemes, the creation of N descriptions is independent of
MDSQ. Our previous work [11] presented an efficient way of
using multiple MDSQs to obtain multi-channel (N > 2) de-
scriptions. Since a single MDSQ, which consists of a single
central quantizer and 2 side quantizers, usually considers bal-
anced descriptions as specified in Eq. (1), it is more efficient
to design each of the central quantizer with various central
rate-distortion performances (R0,D0) to get unbalanced de-
scriptions for the N > 2 case. Such a scenario enables joint
decoding of two or more unbalanced descriptions. There-
fore, it requires careful consideration of the mutual overlaps
of each of the side quantizer bins, in order to improve the
quality (i.e., to reduce the distortion) when the number of
jointly decoded descriptions are increased. We formulate the
conditions for this scenario as follows:

Let d j
i be the descriptions created from side quantizer S j

i
using MDSQ number j with distortion D j

i and rate R j
i , where

i = 1,2 and 1 < j≤ J. J is the total number of MDSQs. Rate
and distortion metrics of two consecutive MDSQs when both
descriptions are received is related as,

D j
0 ≤ D j−1

0 ,

R j
0 ≥ R j−1

0 .
(2)

For satisfying the above relationship we should know the
corresponding relationship between the number of quantizer
bins between the MDSQs j−1 and j.

Let n j−1
0 and n j

0 be the number of quantizer bins of the
central quantizers of MDSQs j− 1 and j, respectively. In
order to satisfy the above constraints, they should be related
as,

n j
i = an j−1

i , (3)

where a is an integer and a > 1. In other words, δ j−1 and
δ j, the quantizer bin sizes of the MDSQs j−1 and j, respec-
tively, are related as

δ j =
δ j−1

a
. (4)

J multiple MDSQs designed using the condition in Eq. (3)
(or Eq. (4)), generate 2J number of descriptions. When N
number of descriptions, where N < 2J, are jointly decoded
the rate distortion performances constrained by the following
relationships are desired.

D1,2,··· ,N
0 < DJ

0,

D1,2,··· ,N
0 < D j

i ,

R1
0 ≤ ·· · ≤ RN

0 ≤ RJ
0,

(5)

where D1,2,··· ,N
0 is the distortion of combination of N descrip-

tions from 2J descriptions.
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Figure 2: Embedded quantizer for three levels P = 3.

Figure 3: Embedded side quantizers for P = 2.

4. MDSQ WITH SUCCESSIVE REFINEMENT
(MDSQ-SR)

We extend the multi-channel unbalanced description MDSQ
result to formulate a framework for MDSQ with successive
refinement and propose a scalable multiple description cod-
ing scheme using the new MDSQ-SR scheme. In embed-
ded quantization used in scalable image coding, the quantizer
bins at higher data rates are embedded within the quantizer
bins of lower data rates.

Let P be the number of levels of embedded quantizers,
i.e., C0,C1, · · · ,CP. Then the quantizer bins of Cp are em-
bedded within the quantizer bins of Cp−1, where p is the em-
bedded level index. In other words, each quantizer bin of the
quantizer CP−1 is split into more number of bins to form the
quantizer Cp. If n is the number of quantizer bins at quantizer
Cp−1 and each quantizer bin is split into r number of bins then
the total number of bins at quantizer Cp is rn. Figure 2 shows
the embedded quantizer having 3 levels with r = 2.

In order to adapt the concept of embedded quantization in
the side quantizers within the MDC scheme to obtain MDSQ
with successive refinement we formulate the new constraints
and derive the conditions as follows. For the first quanti-
zation level (i.e., p = 1), the initial MDSQ design approach
in Section 3 is considered and the rate distortion constraint
remains the same as in Eq. (1). Let dp

1 and dp
2 be the descrip-

tions at quantization level p. The distortion of the side and
the implicit central descriptions at quantization level p are
Dp

1 , Dp
2 and Dp

0 , respectively. The quantizer bins of the two
side quantizers generated by the MDSQ are split into further
smaller bins for the refinement with refinement or split fac-
tor (r). Figure 3 shows the side and central quantizers for
2 levels of embedded quantization. Let δ1 be the quantizer
bin width of the central quantizer at p = 1 leading to the side
quantizer bin width of kδ1 at level p = 1. Let up, vp and wp,
xp be the minimum and maximum value of any quantizer bin

of the side quantizers 1 and 2, at level p respectively. For
p = 1, the values of u1,v1 and w1,x1 are related as,

v1 = u1 + kδ1,

x1 = w1 + kδ1. (6)

Since the two side quantizers bins are either leading or lag-
ging each other, w1 and u1 are related as

w1 = u1± (k−1)δ1. (7)

As an example, the values of up,vp,wp and xp for p = 2 are
related as,

u2 = u1 +
ikδ1

r
,

v2 = u2 +
kδ1

r
= u1 +(i+1)

kδ1

r
, (8)

where i = 0,1, · · · ,r−1, and

w2 = w1 +
jkδ1

r
,

x2 = w2 +
kδ1

r
= w1 +( j +1)

kδ1

r
, (9)

where j = 0,1, · · · ,r−1.
As we know, that for any MDC scheme the distortion of

the combined description has to be less than the distortion
of the individual description at required rate. Similarly for
the successive refinement quantizers-based MDC scheme the
distortion of the individual description at quantization level p
should be less than the distortion at quantization level p−1.
On the other hand, the distortion of combined descriptions at
level p is not only less than the distortion of both description
at level p− 1 but also less than the distortion of individual
description at level p. We summarize these constraints as
follows:

Dp
i < Dp−1

i , (10)

Dp
0 < Dp−1

0 , (11)

Dp
0 < Dp

i , (12)

provided that Rp
0 > Rp−1

0 , where i = 1,2 and p = 1,2, · · · ,P.
For satisfying these constraints for MDC using embedded
side quantizers we propose the following quantizer condi-
tions on the values of k and r.

Proposition 1 In order to satisfy the side quantizer distor-
tion constraints between successive refinements when two de-
scriptions are joint decoded at p > 1 the split factor should
be greater than one, i.e., r > 1.

Proof : With reference to Figure 3 and for satisfying Eq. (10),
we need

(x2−w2) < (x1−w1),
(v2−u2) < (v1−u1).

Since the quantizer bin size of the side quantizers is k times
that of the central quantizer at level p = 1, we can rewrite the
above as

kδ1

r
< kδ1,

which is simplified to r > 1. ¥.
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Proposition 2 In order to satisfy the distortion constraints
between the successive refinement and the corresponding im-
plicit central quantizers of the current and the previous levels
when joint decoded, r and k should not be integer multiples
of each other and r > k.

Proof : With reference to Figure 3 and for satisfying Eq. (11)
and Eq. (12), we need

min(x2,v2)−max(u2,w2) < min(x1,v1)−max(u1,w1),

which can be simplified as follows:

min(x2,v2) 6= min(x1,v1), (13)
max(u2,w2) 6= max(u1,w1). (14)

As shown in Eq. (7), w1 and u1 are related to each other by
two forms: w1 is either leading or lagging u1 by the factor
(k− 1)δ . Here we first consider w1 = u1 − (k− 1)δ1 rela-
tionship. For this case, the other values are

w2 = w1 +
jkδ1

r
= u1− (k−1)δ1 + j

kδ1

r
,

x1 = u1− (k−1)δ1 + kδ1 = u1 +δ1,

x2 = u1− (k−1)δ1 +( j +1)
kδ1

r
.

Since min(x1,v1) = u1 +δ1, Eq. (13) can be rewritten as

min(x2,v2) 6= u1 +δ1.

But, min(x2,v2) = u1 +δ1 when the following two conditions
are satisfied: Firstly,

u1− (k−1)δ1 +( j +1)
kδ1

r
= u1 +δ1,

j =
r
k
(k− k

r
),

which is simplified to j = r−1.
Secondly,

u1 +(i+1)
kδ1

r
= u1 +δ1,

which is only possible if i = 0 and k = r.

On the other hand, since

max(u1,w1) = u1,

Eq. (14) can be rewritten as

max(u2,w2) 6= u1.

But max(u2,w2) = u1 when the following two conditions are
satisfied: Firstly,

u1 +
ikδ1

r
= u1,

which is only possible if i = 0.
Secondly,

u1− (k−1)δ1 +
jkδ1

r
= u1,

j =
r
k
(k−1),

which is only possible if k and r are integer multiples of each
other and r > k. ¥.
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Figure 4: Row 1: Rate Distortion plots of Gold Hill image
for N = 2 descriptions when k = 2 for different r.

These propositions and proves show that if k = r and k
and r are multiple of each other, the constraints in Eq. (11)
and Eq. (12) are not satisfied. The same can be shown for
the second condition, i.e., w1 = u1 +(k−1)δ1. Thereby, we
design a series of side quantizers that allow successive refine-
ment for reducing the distortion of the joint decoding when
the number of descriptions decoded are increased.

5. SIMULATIONS AND RESULTS

We evaluate the proposed scheme in two steps: Firstly, con-
sidering transmission along a lossless channel (in order to
study the rate distortion performance for different values of r)
and secondly considering transmission along a lossy (packet
erasure) channel.

Figure 4 shows the rate distortion plots of the side and
central description for r = 2,3,4,5 and k = 2 for Gold Hill
image. It is evident from figures, that when r = 3 and r = 5
the rate distortion performance is better when joint decoded
than when individually decoded. On the other hand, for r = 2
and r = 4, the rate distortion plot when joint decoded is the
same as if they are individually decoded. Simulation results
verify the conditions proposed in this paper, i.e., the split or
refinement factor r should be greater than the number of di-
agonals k filled in the index assignment matrix and are not
integer multiples of each other.

For the comparison of the rate distortion performance
when both descriptions are received for different values of
r when k = 2 is shown in Figure 5. It is evident that the rate
distortion plots for odd values of r when k = 2 are better than
those for even values of r.

The second set of experiments we performed was to eval-
uate the designed coder for transmission over a packet era-
sure channel. Wavelet tree based packetization is used for
each description. Let M be the total number of packets and p
be the number of lost packets. There is a total of MCp num-
ber of combinations to loose p packets from M packets. The
average PSNR at particular number of packet loss is then cal-
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Figure 5: Rate Distortion Graph when both descriptions are
received for different values of r when k = 2 for (a) Gold Hill
and (b) Barbara images.
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Figure 6: Effect of packet loss on the PSNR for all loss pat-
terns for a number of 18 transmitted packets and probability
of loss for (a) Gold Hill and (b) Barbara images.

culated by measuring and averaging the PSNR of all possible
combinations. The average PSNR value of the decoded im-
age for different quantization level P and single embedded
description is shown in Figure 6 for Gold Hill and Barbara
images.

Decoded Gold Hill images at the same quantization level
but different splitting factor r is shown in Figure 7. It is
clear from images that the MDC based on the embedded side
quantizers outperforms the embedded single description cod-
ing (SDC) case. Furthermore, the decoded image quality is
better for the higher values of r provided that the conditions
proposed for r and k are satisfied.

6. CONCLUSIONS

We have extended the conditions for unbalanced multi chan-
nel MDC to define a new framework for MDSQ with suc-
cessive refinement. We proposed that the split or refinement
factor r for each of the refinement side quantizers should be
greater than the number of diagonals k filled in the index
assignment matrix of the side quantizer design and should
not be integer multiples of each other, in order to improve
the fidelity (to reduce the distortion) in joint decoding when
the number of descriptions included in joint decoding is in-
creased. We demonstrated the use of the proposed method
to integrate quality scalable decoding in the MDSQ-based
multiple description image coding. The experimental results
show high robustness of the proposed scheme compared to
single description scalable image coding. Our future work
includes integration of resolution scalability in to this frame-
work in order to obtain highly robust full scalable image bit
streams.

SDC P = 2,r = 2

P = 2,r = 3 P = 2,r = 4

Figure 7: Portion of the Decoded Gold Hill image after 18%
packet loss.
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