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ABSTRACT

In this paper, we are interested in non parametric density es-
timation under constraints. It generalises a previous paper
which was devoted to density estimation with non-positive
kernels. The resulting density approximation improves the
estimation (by reducing the bias) but provides negative val-
ues. Therefore, we have proposed a projection method on
the space of probability densities and an algorithm designed
to generate a sample from the projected density. We present
here a generalization of this work in considering several lin-
ear constraints on the estimated density. These constraints
represent an a priori knowledge of the underlying density.
For example, the support, some moments or quantiles of the
approximated density can be set a priori by the user. We
prove that the projected density on the closed and convex
set of functions satisfying some the constraints has a simple
and explicit form. Some simulations show that the proposed
solution outperforms alternative solutions proposed in the lit-
erature.

1. INTRODUCTION

In a previous paper we have proposed an optimal approxi-
mation of a function, which can take negative values, by a
density. This kind of approximation can be useful when we
use non-positive kernels for non-parametric density approx-
imation. Let K be a kernel , f be a probability density de-

fined on Rd and (X1, · · · ,XN) be an i.i.d. sampled from f .

The goal is to estimate f by f̂ (x) = 1
Nhd

!N
i=1K( x−Xi

h
) [6].

In order to reduce the bias of the kernel approximation f̂ ,
one can use non-positive kernels ([2], [3], [7]). But, in that

case, the approximation f̂ can take negative values which is
of course undesirable. In [10], we have proposed to project

the non-positive approximation f̂ on the space of probability
densities of L2, this projection being the new approximation
of f . This method can be applied when we approximate a
function which have some a priori properties. We wish that
the approximation inherits these properties. This is the case
for example when we develop a density with the Edgeworth
serie. The resulting expansion can produce negative values.
We present here a generalisation of this work in consider-
ing several linear constraints of the estimated density. These
constraints represent an a priori knowledge of the underlying
density. For example, the support, some moments or quan-
tiles of the approximated density can be set a priori by the
user. We prove that the projected density on the closed and
convex set of the constraints has a simple and explicit form.
Some simulations show that the proposed solution outper-
forms alternative solutions proposed in the literature.

2. GENERAL FRAMEWORK

2.1 Motivation

• Positivity constraint : as described in the introduction
density estimation with a non positive kernel can produce
negative values. The Edgeworth expansion of the density
of a sum of iid variables can also [4] produce negative
values.

• Support constraint : in some cases, one can be interested
in forcing the estimate to have a predefined supportC ⊂
Rd . For example in [8] a weighted bootstrap method
is described in order to construct a density estimator for
salary data which are necessarily positive. Suppose we
want to approximate a real valued function f defined on

Rd such that
∫

f = 1 by a probability density with support
C⊂Rd . One possibility, if f ∈ L1, is to use the following
approximation,

f1(x) =
f+(x)1C(x)

∫

Rd
f+(x)1C(x)dx

, for all x ∈ R
d , (1)

where (a)+ = max(a,0), for any a ∈ R and 1C(x) = 1 if

x∈C, 0 if not. An alternative, if f is in L2 , is to construct
the projection of f on the subspace of L2-probability den-
sities with support C. This projection improves the esti-
mation for the L2 error as well as for the L1 error [10].

• Quantile or moment constraint : suppose you have a
density estimation f̂ based on a sample. In some cases
you want to find the optimal density g minimizing the

L2 distance to f̂ , for which the quantile "# such that
P(X ≥ "#) = # ∈ (0,1) (where X follows g) is a priori
given. You can also impose the mean of g.

Beyond these three different cases we propose in the paper
an optimal (in some sense) density approximation method.
Thereafter, results will be stated in the d-dimensional case.

2.2 General formulation

Let us consider an L2 function f defined on Rd with values
in R. Let f1, · · · , fn be a collection of functions defined on
Rd with values in R and d1, · · · ,dn some reals. Let S be the
convex set of L2 defined as follows

S=
{

g ∈ L2 |g≥ 0 and

∫

g fi = di for i= 1 · · ·n
}

. (2)

Thereafter we will assume that the constraint functions are
such that S is closed. In this paper, we will be specifically
interested in the case where one of the constraints is such
that f1 ≡ 1 and d1 = 1 i.e. where S is a subspace of L2 ∩
P(Rd)with P(Rd) denoting the space of probability densities
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defined on Rd . The aim of this paper is to provide in most
cases a simple expression for the projection g∗ of f on the
closed convex set S:

g∗ = argmin
g∈S

∫

| f −g|2 . (3)

3. CHARACTERIZATION OF THE SOLUTION

In this section, we are interested in characterizing the gen-
eral form of the projection (3). In the first subsection, we
consider the projection as the solution of an optimization
problem with linear constraints and a positivity constraint.
The Lagrange method provides the solution which is of the

form g∗ = ( f −!n
i=1#

∗
i fi)

+
, in the special case where the

constraint functions fi belong to L
2. Unfortunately, this ap-

proach is not valid if we are interested in probability den-
sities since the ”probability density constraint” will involve
the constraint function f1 ≡ 1 which is not in L2, except
in the special case where we impose the density to have
a compact support. To overcome that difficulty, we con-
sider in the second subsection the same optimization prob-
lem with constraint functions fi that do not necessarily be-
long to L2. We show that the projection on S has the same
form as before as soon as there exist coefficients #∗

i such
that

∫

( f −!n
i=1#

∗
i fi)

+ fi = di for i = 1, · · · ,n. The last sub-
section considers the special case of two contraints with con-
traints functions f1 ≡ 1 , f2 ≥ 0 not necessarily in L2 and
gives the conditions on (d1,d2) under which there exists co-
efficients #∗

i such that
∫

( f −!n
i=1#

∗
i fi)

+ fi = di for i = 1,2
and therefore under which the solution can be expressed as
g∗ =( f −#∗

1 f1−#∗
2 f2)

+. Hence, the functional optimization
problem reduces to determine the real valued coefficients#∗

i .

3.1 The case of L2 constraints

The projection problem (3) can be viewed as an optimization
problem with several linear constraints and a positivity con-
traint. The following proposition gives the expression of the
projection g∗ of f on S using Lagrange approach.

Proposition 3.1. Let f ∈ L2(Rd ,R), consider the following
optimization problem:

min
g≥0

∫

R

| f −g|2 with

∫

g fi = di for i= 1, ...,n , (4)

where ( f1, · · · , fn) are linearly independent functions in

L2(Rd ,R), then there exists (#∗
1 , · · · ,#

∗
n ) ∈ Rn such that the

solution of (4)

g∗ = ( f −
n

!
i=1

#∗
i fi)

+ . (5)

PROOF The Lagrangian of (4) is :

!=
1

2
‖ f −g‖2−

n

!
i=1

$i(di−〈 fi,g〉)− µg , (6)

where 〈 fi,g〉 =
∫

fig is the usual scalar product in L
2 and µ

a function on Rd . With the assumption that the functions
fi belong to L

2, the theory states [5] that (4) has a unique

solution g∗ given by the necessarily and sufficient following
conditions :































g∗ − f −!n
i=1$i fi− µ = 0

µg∗ = 0

µ ≥ 0

g∗ ≥ 0 .

(7)

where µ is a function. Let us introduce the set A =
{x |g∗(x) > 0}. The second equation of (7) implies µ = 0 on
A. Then, using the first equation of (7) implies the following
equality on the subspace A

g∗1A = ( f +
n

!
i=1

$i fi)1A = ( f +
n

!
i=1

$i fi)
+1A .

Since g∗ ≥ 0 on Rd then g∗ ≡ 0 outside of A. On the other
hand, the first equation of (7) yields that on the complement
of A, denoted Ā the following inequality holds

( f +
n

!
i=1

$i fi)1Ā = −µ1Ā ≤ 0 .

Hence

g∗1Ā = 0= ( f +
n

!
i=1

$i fi)
+1Ā .

This finally yields the following equality valid on the whole

space Rd ,

g∗ = ( f +
n

!
i=1

$i fi)
+ .

Then we end the proof by setting #i = −$i for i= 1, · · · ,n.

3.2 The general case

Proposition 3.1 gives the form of the solution of the problem
(3) when the constraint functions f1, · · · , fn are in L2 with-
out any other conditions. To be able to take into account
the ”probability density constraint” corresponding to f1 ≡ 1
and d1 = 1 we would like to relax the assumption that the
constraint functions f1, · · · , fn belong to L2. The following
proposition achieves this goal.

Proposition 3.2. Let f be a function defined on Rd with val-

ues in R, such that
∫

Rd
| f (x)|2 dx < % , and S be the closed

convex set defined in (2). Assume that there exists reals
(#∗
1 , · · · ,#

∗
n ) such that for i= 1, · · · ,n

∫

( f −
n

!
i=1

#∗
i fi)

+ fi = di . (8)

Then the projection g∗ of f on the subspace S of L2-
probability densities satisfying the linear constraints (2), is
determined by

g∗ = ( f −
n

!
i=1

#∗
i fi)

+ = argmin
g∈S

∫

| f −g|2 . (9)
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PROOF The proof is based on the characterization of the
projection X∗ of a point Y on a closed convex set S in a
Hilbert space [9]. X∗ is the projection of Y on S if and only
if

〈Y −X∗,X−X∗〉 ≤ 0 for all X ∈ S .

In our case, S is the subspace of L2-probability densities with
linear constraints (2). It is sufficient to prove that,

& =
∫

[ f − ( f −
n

!
i=1

#∗
i fi)

+] [g− ( f −
n

!
i=1

#∗
i fi)

+] (10)

is negative for any probability density g ∈ S, where
#∗
1 , · · · ,#

∗
n are defined in (8). Let us introduce the subsets

of Rd ,

A∗ = {x | f (x)≥
n

!
i=1

#∗
i fi(x)} and Ā∗ = {x | f (x)<

n

!
i=1

#∗
i fi(x)} .

Splitting expression (10) of & into two terms yields

& =
∫

A∗
[ f − f +

n

!
i=1

#∗
i fi] [g− f +

n

!
i=1

#∗
i fi]+

∫

Ā∗
f g

=
n

!
i=1

#∗
i

[

∫

A∗
g fi−

∫

( f −
n

!
i=1

#∗
i fi)

+ fi

]

+
∫

Ā∗
f g

=
n

!
i=1

#∗
i

[

∫

A∗
g fi−di

]

+
∫

Ā∗
f g

= −
n

!
i=1

#∗
i

∫

Ā∗
g+

∫

Ā∗
f g =

∫

Ā∗
g( f −

n

!
i=1

#∗
i fi)

This quantity is non-positive since g ∈ S is a positive func-
tion, which ends the proof.

3.3 Existence of positive part like solution with two lin-
ear constraints

In general, it can be difficult to check whether the existence
condition (8) is satisfied or not. The following proposition
gives a necessary and sufficient condition under which condi-
tion (8) is satisfied in the case of two linear constraints : one
constraint corresponding to the density constraint ( f1 ≡ 1,
d1 = 1) and one general constraint with a non-negative func-
tion f2. For simplicity, thereafter the general notation f1 is
kept, although f1 ≡ 1. Moreover, only the case where #∗

i are
positive is considered.

Proposition 3.3. Let f be a bounded function in L2(Rd),
consider the following constrained optimization problem:

min
g≥0

∫

| f −g|2 with

∫

g fi = di for i= 1,2 , (11)

with f2 a non-negative measurable function not necessarily
lying in L2 and f1 ≡ 1. Assume that the following condition
is verified:















0≤ d1 ≤
∫

f+ f1 < % ,

0≤ d2 ≤
∫

f+ f2 < % .

(12)

Then the solution of (11) has the following form

g∗ = ( f −#∗
1 f1−#∗

2 f2)
+ , (13)

where #∗
i are positive scalars (not necessarily unique) such

that
∫

g∗ fi = di for i= 1,2 , (14)

if and only if (d1,d2) verify one of the following conditions:
• Case 1 :

∫

f2=0
f+ f1 ≤ d1. The condition on d2 is,

∫

( f − #̄2 f2)
+ f2 ≤ d2 ≤

∫

( f − #̄1 f1)
+ f2 . (15)

where (#̄1, #̄2) are the non-negative solutions of















∫

( f − #̄1 f1)
+ f1 = d1

∫

( f − #̄2 f2)
+ f1 = d1 .

(16)

In that case #∗
1 ∈ [0, #̄1] and #∗

2 ∈ [0, #̄2].
• Case 2:

∫

f2=0
f+ f1 > d1. The condition on d2 is,

0≤ d2 ≤
∫

( f − #̄1 f1)
+ f2 . (17)

where #̄1 and ¯̄#1 are the non-negative solution of















∫

( f − #̄1 f1)
+ f1 = d1

∫

f2=0
( f − ¯̄#1)

+ = d1 .

(18)

In that case #∗
1 ∈ [ ¯̄#1, #̄1] and #∗

2 ∈ [0,%).

PROOF By Proposition 3.2, it is sufficient to proof the exis-
tence of #∗

1 and #∗
2 satisfying (14). Thereafter we use the

following technical result (the proof is left to the reader):

let f ∈ L2(Rd) a bounded function with f2 a non negative
function and #2 ≥ 0 then, k(#2) =

∫

( f −#2 f2)+ is a non-
increasing continuous function varying from k(0) =

∫

f+ to
k(+%) =

∫

x/ f2(x)=0
f+.

Let us introduce the following non-negative function, defined
on R+×R+,

H(#1,#2) =
∫

( f −#1 f1−#2 f2)
+ f1 . (19)

f1 and f2 being non-negative functions, the maximum value
of H(#1,#2) on R+ × R+ is

∫

f+ f1 and is obtained for
(#1,#2) = (0,0). Now, let us consider the following equa-
tion,

H(#1,#2) = d1 . (20)

The function #2 -→ H(0,#2) =
∫

( f −#2 f2)+ f1 decreases
continuously as #2 increases, from H(0,0) =

∫

f+ f1 to
H(0,%) =

∫

f2=0
f+ f1. Now, let us consider the two follow-

ing cases,
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• Case 1 :
∫

f2=0
f+ f1 ≤ d1. From (12) we deduce that

H(0,0) ≥ d1 while H(0,%) ≤ d1. Therefore it exists #̄2
such that H(0, #̄2) = d1 . For a given #2 ∈ R+, there
is a solution #1 = #1(#2) of equation (20) iff #2 ≤ #̄2.
Indeed, if #2 ≤ #̄2, #1 -→ H(#1,#2) decreases from
H(0,#2)≥ d1 toH(%,#2) = 0 (recall that f1≡ 1 and that
f is bounded). Hence, for any #2 ∈ [0, #̄2], there exists
#1(#2) ∈ [0, #̄1] such that

H(#1(#2),#2) = d1 , (21)

where #̄1 and #̄2 are given by equation (16). Notice that
in that case #∗

1 ∈ [0, #̄1].
• Case 2 :

∫

f2=0
f+ f1 > d1. From (12), we deduce that

H(0,0) ≥ d1 while H(0,%) > d1. Hence, H(0,#2) ≥ d1
for any #2 ≥ 0. (#2, #1) -→ H(#1,#2) decreases from
H(0,#2) > d1 to H(%,#2) = 0. Hence, for any #2 ∈ R+,
there exists #1(#2) ∈ R+ such that

H(#1(#2),#2) = d1 . (22)

Notice that #2 -→ #1(#2) is decreasing from #1(0) =
#̄1 to #1(#2 = %) = ¯̄#1 where ¯̄#1 is solution of
∫

f2=0
( f − ¯̄#1)+ f1 = d1. Hence in that case #

∗
1 ∈ [ ¯̄#1, #̄1].

Now, let us deal with the second constraint. Let us introduce
the following non-negative function with 0≤#2 ≤ #̄2 for the
case 1 and 0≤ #2 ≤ % for the case 2:

G(#2) =
∫

( f −#1(#2) f1−#2 f2)
+ f2 . (23)

• Case 1 : G varies continuously from G(0) =
∫

( f − #̄1 f1)+ f2 to G(#̄2) =
∫

( f − #̄2 f2)+ f2. That is,
G(#2) = d2 has a solution iff G(#̄2) ≤ d2 ≤G(0), which
gives the condition (15) on d2.

• Case 2 : G varies continuously from G(0) =
∫

( f − #̄1 f1)+ f2 to G(#2 = %) = 0. Then notice
that lim

#2→+%

∫

f2>0
( f −#1(#2) f1−#2 f2)+ f2 = 0 observ-

ing that lim
#2→+%

#1(#2) = ¯̄#1 < %. We can conclude that

G(#2) = d2 has a solution iff d2 ≤G(0), which gives the
condition (17) on d2.

Observing that G(#2) is continuous, we conclude that
G(#2) = d2 has at least one solution #2 = #∗

2 under the con-
ditions (15) - (17). Then, #∗

1 = #1(#∗
2 ) is the associated

solution of (22). Applying proposition 3.2, we conclude the
proof of proposition : the solution of the constrained opti-
mization problem (11) has the form (13) with #∗

i positive iff
(d1,d2) satisfy the conditions (12) - (18).
Moreover, one can prove that the solution (#∗

1 , #∗
2 ) is

unique iff f1 and f2 are linearly independent on '(#) =
{x | f (x)−#1 f1(x)−#2 f2(x) ≥ 0} . Thereafter, we present a
sketch of the proof by demonstrating that G(#2) is a strictly
decreasing function. First, applying the implicit function the-
orem to H(#1(#2),#2) = d1 gives :

d#1(#2)

d#2
= −

(

(H

(#1

)−1 (H

(#2

∣

∣

∣

∣

#1=cte

(24)

By developingG(#2+ )) around #2 for small ) , we obtain,

dG(#2)

d#2
= −

∫

'(#)
(
d#1
d#2

f1+ f2) f2 (25)

(H

(#1
= −

∫

'(#)
f 21 and

(H

(#2
= −

∫

'(#)
f1 f2 .

Injecting (24) in (25) we finally express the gradient of G,

(G

(#2
=

(

∫

'(#) f1 f2

)2

−
∫

'(#) f
2
1

∫

'(#) f
2
2

∫

'(#) f
2
1

. (26)

Thanks to Schwarz inequality we see that, for all #2,
(G
(#2

< 0

as soon as f1 and f2 are linearly independent on '(#).

4. SIMULATIONS

4.1 Application to support constraint

Let f an L2(R) function with any support (possibly infinite).
The goal is to approximate f by a density having a compact
support C. This projection method can be applied when we
know a priori the support of the true density. This is the case
for example with salary data which are necessarily positive
[8]. For this application, if we approximate this density by
a kernel estimation density, the result can provide negative
values. Now, we set one constraint f1 ≡ 1 (which does not
belong to L2(R)) with d1 = 1 for the ”density constraint” and
f2 ≡ 1x∈C with d2 = 1 for the support constraint. We focus
on the case 1 of the proposition 3.3 which give, with the
necessary conditions (12) :

∫

C̄ f
+ ≤ 1≤

∫

C f
+ where C̄ is the

complement of C. The conditions (15) for the existence of
#∗
i give:

∫

C
( f − #̄2)

+ ≤ 1≤
∫

C
( f − #̄1)

+ . (27)

where (#̄1, #̄2) verify (16):















∫

C
( f − #̄1)

+ +
∫

C̄
( f − #̄1)

+ = 1 ,

∫

C
( f − #̄2)

+ +
∫

C̄
f+ = 1

(28)

(27) and (28) imply

∫

C̄
( f − #̄1)

+ = 0 and

∫

C
( f − #̄1)

+ = 1

which gives #̄1 ≥ sup f (x)
x∈C̄

. This implies the condition,

∫

C
( f − sup f (x)

x∈C̄

)+ ≥ 1, (29)

Under this condition, we set #∗
1 = sup f

C̄

and #∗
2 such that

∫

C ( f − sup f (x)
x∈C̄

−#∗
2 )

+ = 1, we obtain the expression of g∗:

g∗(x) = ( f (x)− sup f (x)
x∈C̄

−#∗
21x∈C)+ (30)

We can check that g∗ is a density which is zero in C̄.
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As an illustrative example we take f (x) =
1

*

sin(x)

x
centered

in x = 10. We wish to project f on the densities space with
supportC= [0,25]. This function satisfies the condition (29).
On figure 1, g∗ is compared with the so called L1-projection
g∗1(x) = 1x∈C f+(x)/

∫

C f+(x) . Simulation results show that
the L1 error is identical for the 2 projections, which agrees
with [10], but the L2 error is 0.18 for g∗1 and 0.15 for g

∗.

0 5 10 15 20 25
!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

Original function

L2 Projection

 L1 Projection

Figure 1: Original function compared with the 2 projections.
(Case constraint functions not belonging to L2)

4.2 Application to mean constraint

Here, we will consider a function f with compact supportC.
Let us consider again a case where f1 ≡ 1 and d1 = 1 for
the density constraint and f2 ≡ x and d1 = µ for the mean

constraint. Here the constraint functions are in L2(C) and the
Lagrangian method gives (Proposition 3.1):

g∗(x) = ( f (x)−#1−#2x))
+ (31)

where #i (possibly negative) are determined by the 2 con-
straints. As an illustrative example we take f (x) = k(+1(x)+
+2(x)) where +i = N(,i,-2i ) are 2 Gaussian densities of
mean and standard deviation (,1 = 1,-1 = 1) and (,2 =
3,-2 = 0.2). The support of f is C = [,1− 3-1,,1 + 3-1]
and k is such that f is a density. The mean of f is 2 and the
imposed mean is µ = 3. On figure 2, g∗ is compared with a
test function of the form g1 = .1 f (x− .2) where .i are such
that g1 satisfies the 2 constraints. Simulation results show
that the L1 and L2 errors are drastically reduced. The L1 er-
ror is 0.7 for g∗, 1 for g1 and the L

2 error is 0.35 for g∗, 0.55
for g1.

5. CONCLUSION

This paper presents a quite general methodology to estimate
a density under linear constraints (for example: positivity,
support, moments or quantiles). The desired approximation
is the projection of the free density estimation on the set of
the probability densities satisfying the constraints. The solu-
tion is expressed in a simple form. Some simulations show
the improvement of the approximation compared with alter-
native methods.

!2 !1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Original function

L2 Projection

 Test function

Figure 2: Original function comparedwith the projection and
the test function. (Case constraint functions belonging to L2)
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