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ABSTRACT
The use of dataflow digital signal processing system mod-
elling and synthesis techniques has been a fruitful research
theme for many years and has yielded many powerful rapid
system synthesis and optimisation capabilities. However,re-
cent years have seen the spectrum of languages and tech-
niques splinter in an application specific manner, resulting
in an ad-hoc design process which is increasingly dependent
on the particular application under development. This poses
a major problem for automated toolflows attempting to pro-
vide rapid system synthesis for a wide ranges of applications.
By analysing a number of dataflow FPGA implementation
case studies, this paper shows that despit ethis common traits
may be found in current techniques, which fall largely into
three classes. Further, it exposes limitations pertainingto
their ability to adapt algorith models to implementations for
different operating environments and target platforms.

1. INTRODUCTION

The emergence of high-performance digital signal processor
chips and dataflow programming languages in the late 1980’s
and early 1990’s resulted in a spate of activity researching
the use of dataflow for embedded digital signal processing
(DSP) system design. The seminal work on Synchronous
Dataflow [3] sparked a rich period in the development on
new languages to support everything from cyclically vary-
ing actor execution [6] to data-level parallelism [5] amongst
others. This has occured in tandem with complementary re-
search into exploiting the semantics of different languages
for intelligent multiprocessor system synthesis approaches
to produce high-quality embedded implementations [2, 14].
This evolution has yielded extended scope of the dataflow de-
sign field to include FPGA technology ([10, 11, 8]), which is
currently a significantly less mature research area than DSP-
based dataflow research.

In an FPGA system design context, the need to synthesise
a processing architecture as well as target the applicationto-
ward that architecture significantly complicates the system
synthesis process when compared with multiprocessor soft-
ware synthesis. Combined with the increasing diversification
and expressivity of current dataflow languages and manipu-
lation techniques, it is simply too complex a problem for a
single designer on a specific application design to produce
a near-optimal implementation using such techniques. As
such, there is a key requirement in this area for system level
design tools and methodologies. However, a pre-cursor to
such tools are generalised, well-known and well-understood
programming languages, language manipulation techniques,
and target devices. Given the dizzying array of cutting-edge,

application specific dataflow languages, ad-hoc manipulation
techniques and open FPGA architectures, this is simply not
feasible at present.

This paper analyses for FPGA dataflow system synthe-
sis case studies and attempts to extract common traits. It
finds that dataflow graph (DFG) manipulation techniques fall
generally into one of three categories: vertex topological,
data topological and semantic. In all cases the application
of specific DFG manipulation for efficient implementation is
driven by one or both of the operating environment and the
target platform, yet no research is underway addressing for-
mal integration of these aspects into new dataflow languages.

Whilst this is not a result in itself, this paper acts as a
starting point for generalised dataflow design for FPGA, ex-
posing the limitations in current approaches and encouraging
research into new classes of dataflow system modelling and
manipulation technique.

The remainder of this paper is as follows; Section 2 pro-
vides an introduction to the dataflow computational domain
and dataflow based system design, whilst Section 3 analy-
ses four design case studies, extracts the major themes in
their design processes and attempts to put these in a coher-
ent design framework on which to build a dataflow FPGA
design methodology and toolset, and on which to extend cur-
rent dataflow research in this area.

2. BACKGROUND

The roots of the current dataflow programming languages lie
in the Dataflow Process Network (DPN) model [4], which
describes parallel processes or actors communicating via uni-
directional first-in first-out (FIFO) queues. Actors map data
token on input FIFOs to tokens on output FIFOs byfiring
to consumeinput tokens andproduceoutput tokens. A set
of firing rules determine, for each actor, how and when it
fires. A simple DPN is shown in Figure 1. For synthesis
and optimisation of an embedded implementation of a simple
dataflow graph (DFG)G= (V,E), whereV is a set of vertices
or actors, andE a set of FIFO edges, a methodology such as
that in Figure 2 is common [2, 1].

Figure 1: Simple DPN Structure
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Figure 2: Rapid Software Synthesis from DFGs

Algorithmlevel manipulations change the structure of the
algorithm topology itself by manipulating the topologicalar-
rangement of actors and edges. The subsequentgraph bal-
ancingmanipulates the numbers of firings of each actor to
ensure, if possible, bounded memory execution or to manip-
ulate the number of firings for efficient implementation and
minimisation of run-time overheads (e.g. the blocking sched-
ules of [3]).

Having determined the number of actor firings in an iter-
ation of the schedule, these areclusteredinto groups of one
of more firings for scheduling. This balance of the clustering
operation can influence the run-time efficiency of the imple-
mentation and the memory requirements [14]. Optimisations
at theSchedulingandCode Generationlevels order the exe-
cution of clusters of actors, and have the ability to negate the
effectiveness of optimisations at the higher levels. For in-
stance, in the case where low data memory requirements are
paramount, if actors are gathered into a small cluster at the
previous level, it is a requirement of this step to interleave the
schedule of the implementation such that source and destina-
tion cluster instantiations are interleaved, such that theinter-
mediate FIFO buffer memories may be reused. Alternatively,
if small instruction memory is of paramount importance, the
clustering step must create large clusters of actor firings such
that the scheduler must then created looped schedules, which
may be efficiently implementation by looped code produced
by the code generator [2].

Such an approach is difficult to extend to FPGA systems,
where structure as much as behavior must be manipulated.
For multiprocessor implementation it is the firing of an actor,
rather than the presence of an actor on the DFG itself which is
relevant. This may not be the case for FPGA design, where
manipulating the graph topology itself via various transfor-
mations may provide more designer control of the imple-
mentation structure [10, 9, 8, 12]. Furthermore, in the lit-
eral context in which DFG structures are translated to coarse
grained dedicated hardware on FPGA, although some graph
manipulation techniques such as loop skewing in Compaan
[10] do allow schedule manipulation of the implementation,
it is difficult to judge how effective this may be in Globally
Asynchronous, Locally Synchronous (GALS) architectures.
As such the ’standard’ FPGA dataflow design approach, if it
exists, is quite different from that above, placing an emphasis
on structure as much as behaviour.

Consider also the place of dataflow languages in FPGA
system design processes such as Function-Architecture Co-
design (FAC), Figure 3 [15]. In such a design process there is
an iterative loop beginning with algorithm specification, fol-
lowed by mutual refinement of the algorithm and architecture
from a set of components until a satisfactory functional/real-
time performance point is met. Whilst dataflow is an excel-
lent choice for algorithm specification, there are three major
problems with its use in such a design strategy:

• Modern dataflow languages and manipulation techniques
are increasingly becoming application specific and ad-

hoc. there is no way to integrate such random manipu-
lation into a toolset for general use.

• Whilst the environment in which an algorithm operates
pervades every facet of the algorithm, from filter lengths
and numerical representation, there is no mechanism in
modern dataflow languages to support parameterisation
of the algorithm in terms of environment characteristics
(e.g. Signal to Noise Ratio (SNR))

• Whilst the manipulation of the algorithm is dependent on
the capabilities of the target platform, there is no way to
incorporate these attributes into the dataflow specifica-
tion during refinement

Figure 3: Function-Architecture Codesign

In short, whilst dataflow is good for specifying algo-
rithm behaviour, it cannot be the backbone of an entire de-
sign process. Whilst they are all dataflow design processes,
tools such as Compaan/Laura [10], ESPAM [11], Owen [8]
and Labview FPGA all apply seemingly ad-hoc optimisation
techniques to their algorithm inputs. Section 3 attempts to
establishcommon traits in FPGA application synthesis ap-
proaches by examining four FPGA dataflow application syn-
thesis examples.

3. DATAFLOW-BASED SYSTEM DESIGN

3.1 Case Studies

To illustrate the varying nature of the transformations ap-
plied, four case studies are used.
• a Normalised Lattice Filter (NLF) Bank [9]
• a 128-channel Fixed Beamformer (FxBF) [8]
• a Motion Estimation (ME) operation as part of an image

processing application [12]
• a multi-channel variable length FFT [13]

The NLF and FxBF applications are modelled using the
MADF computational domain [9], with the DFGs shown in
Figures 4 and 5 respectively. A block diagram of the ME is
shown in Figure 6.

Figure 4: NLF MASDF Graph
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Figure 5: FxBF MASDF Graph

Figure 6: ME Block Diagram

In each subsequent section, the application of a different
class of transformation to one or more of the examples, and
the resulting influence on certain aspects of implementation
efficiency, are outlined.

3.2 Vertex Topological Manipulation

Vertex Topological Manipulation describes a class of trans-
forms employed to explicitly alter the number of vertices and
edges in the DFG. In current dataflow-based FPGA design
methodologies such as Compaan/Laura [10] or Mor [8], this
variation in the topology of a graph is frequently used to con-
trol the number of components in the FPGA implementation,
and as such has a strong influence on resource requirements
and throughput of the implementation.

Consider the FxBF application; for anN-channel beam-
former MADF graph as given in Figure 5,N DRxandmultK
actors are required. However, to implement the DRx and
multK actors may require onlyM cores, where 1≤ M ≤ N,
with each DRx and multK core processingNM channels of
data. Accordingly, the MADF graph for the FxBF in Figure
5 which has as many DRx and multK actors as channels pro-
cessed currently, can be adapted to express this variability by
introducing the factorM into the graph, as shown in Figure
7. Given this control, the DFG topology can then be synthe-
sised toward an FPGA implementation. The results of such
a synthesis operation, for varying values ofM are shown in
Table 1 forN = 128.

Figure 7: Modified FxBF MADF Graph

Likewise, for the NLF filter bank in Figure 4, for 8 chan-
nels of data 1≤ y≤ 8 cores may be utilised, each of which
processes8y channels of data. Again, the parametery has
been specifically integrated into the MADF graph to con-
trol number of cores, allowing the graph to be synthesised
to an FPGA implementation. The results of this synthesis,
for varying values of y are shown in Table 2.

M LUTs Multipliers Throughput (MSamples/S)
1 28069 99 1.45
2 29392 198 3.18
4 33130 396 6.19

Table 1: FxBF Synthesis Results

y LUTs Multipliers Throughput (MSamples/S)
8 1472 312 397.4
2 368 78 377.9
1 393 39 208.6

Table 2: NLF Synthesis Results

In both these cases the value of such optimisation to con-
trolling implementation resource and throughput is obvious.
For the FxBF application manipulating the number of cores
has enabled firstly a complex 128-channel fixed beamformer
to be implemented on a resource constrained device (a Vir-
tex II Pro 100 - which is full for optionM = 4) and provides
regular and predictable variation in resource and throughput
by varying M. In the NLF designthe ability to manipulate
the number of cores has enabled the exposition of a sce-
nario whereby the 2 core version (y=2) can achieve simil-
iar throughput to the 8 core version, with only a fraction of
the hardware resource. Given the specific computational re-
dundancy in the NLF, this kind of topological manipulation
has significantly increased the operational efficiency of these
components (by a factor of 3.9). Furthermore, manipulation
of the parameter y has enabled the required host device com-
plexity to drop reduce by an order of magnitude - from a
Virtex II Pro 70 to a Virtex II Pro 7).

It is clear that the actualy values ofM chosen is highly
dependent on the environment in which the algorithm oper-
ates (to define the required throughput) and the target device
toward which the implementation is to be targetted (which
defines the available resource).

3.3 Data Topological Manipulation

Dataflow decrees that DFG edges are traversed by data to-
kens, which are atomic units composed of multiple data
words. Data Topological Manipulation describes a class of
transformations which explore the design space trading-off
token and data-word characteristics.

In the study of a multi-channel, variable point-size FFT
operator in [13], a new type of dataflow optimisation has
arisen. The FFT, which processes two streams of input data,
which has a dynamic range as shown in Figure 8. The size
of each data word is determined by the worst case dynamic
range, however as Figure 8 shows, the majority of the data is
within a dynamic range of less than 50% of the maximum.
As such, in the majority of cases, the data words processed
by the core are oversized and do not contain enough valid
information to justify the defined wordsize for the majority
of samples. Given the fixed-point arithmetic exploited in this
design, it is possible then to collapse multiple of the input
data streams into a single data word (Figure 9), enabling a
new kind of sub-token design space where the dimensions of
the tokens are traded-off with the dataword capacity.

The result of this optimisation in the context of this FFT
system design are stark, and given in Table 3. As this
shows, despite modest resource savings (around 12.5% in
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Figure 8: FFT Input Data Dynamic Range

Figure 9: FFT Data Word Packing

programmable logic cost and 50% in multiplier cost) be-
tween the dual channel original version (2FFT) and the com-
pressed new core (FFT2), the real gains are to be found in
power consumption reduction, with highly impressive 55.6%
and 50.6% reduction in power consumption for two sample
radar datasets (PC1 and PC2 respectively).

LUTs Mults PC1 PC2 Throughput
(mW) (mW) (MSamples/S)

2FFT 2780 18 916 873 1600
FFT2 2421 9 407 431 1600

Table 3: FFT Power Consumption Synthesis Results

The value of this kind of exploration for power consump-
tion optimisation is, as such, obvious. However, again the ap-
plicability of this transformation and it’s effect is highly de-
pendent on the particular nature of the environment in which
the FFT operator resides - from the viewpoints of the fact that
the underutilisation of the dynamic range of the dataword and
the fact that the dynamic range is sufficiently small to enable
efficient fixed-point arithmetic to be used in the first place.

3.4 Semantic Manipulation

Dataflow modelling domains such as CSDF [6] and CSDF-
SC [7] are specialities of the simpler dataflow domains since
they manipulate the firing semantics of an actor and the token
production/consumption characteristics applicable to those
semantics. For instance, CSDF generalises the single firing
rule semantics and constant integer thresholds of SDF actors
to cyclically variable firing rules and thresholds. This en-
ables cyclically changing behaviour to be included in DFGs
without sacrificing the advantageous compile-time proper-
ties of SDF [6]. The Semantic Manipulation class describes
a class of transforms which manipulate these characteristics
for FPGA implementation optimisation and these are widely
exploited in approaches such as Compaan and Mor.This se-
mantic manipulation may be applied, for instance, to reduce
communications bandwidth by promoting data reuse or ma-
nipulate the nature of the communications bandwidth (e.g.
bulk or small data transfers) [14].

As an illustration of the application of this technique to
FPGA architectures, consider the design of a ME actor for

image processing appications (see Section 3). The relatively
large token dimensions in this situation, encapsulating en-
tire video frames, means that despite the relatively low to-
ken processing rate (30 frames/s) that high communications
bandwidth is required in tandem with relatively large storage
capacity.

From the starting point of the ME block diagram, a CSDF
specification can be constructed, as in Figure 10(a). The ma-
jor problem with implementing this model is that the com-
bination of high communications bandwidth and large size
of the storage required for the current and reference frames
(Figure 10(c)) to be supplied to actorsA and B in Figure
10(a). This results in the situation where implementation
as-is is impossible since the use of large off-chip storage to
meet the memory size demands cannot meet the high band-
width requirements [12]. By refinements of this model into
the CSDF-SC domain [7], to enable data reuse and consump-
tion without removal of the token from the incoming FIFO,
this DFG may be refined to that of Figure 10(b). This has an
accompanying memory hierarchy as given in Figure 10(d),
which is implementable on a standard FPGA platform.

(a) ME CSDF Specification

(b) ME CSDF-SC Specification

(c) ME CSDF Memory Re-
quirements

(d) ME CSDF-SC Memory
Requirements

Figure 10: ME Memory Requirements

This kind of optimisation has a profound impact on the
communications mechanisms in the implementation, reduc-
ing off-chip bandwdith requirements by almost three orders
of magnitude, from 3.3.GB/s to less than 4 MB/s, whilst
keeping smaller, higher bandwdith portions of the algorithm
closer to the datapath, making a previously infeasible imple-
mentation possible. Similarly the interleaved/block process-
ing variability implemented by Mor in the NLF and FxBF
examples ([9] and [8] respectively) fall into this domain of
transformation.
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Again, however, such manipulation is only required since
the off-chip memory in this case cannot support the required
bandwidth - had such a facility been available such manip-
ulation would not be required to the same extent, if at all.
The ability to integrate this kind of target-specific informa-
tion, in a parameterised manner, into a dataflow model is an
important step would be an important enabling step toward
generating the implementation. Again, however, such a fa-
cility in the algorithm modelling domain of interest, is not
available.

3.5 3D Constrained Algorithm Manipulation for FPGA
Synthesis

Sections 3.2-3.4 have shown there are general similaritiesbe-
tween different specific transforms applied in very different
applications, to achieve very different performance gainson
synthesis to FPGA implementation. However, the specific
nature of the transform are driven by the operatinf context of
the DFG in every case, in terms of both the operating envi-
ronment in which the algorithm finds itself, and the platform
to which it is to be targetted. There is no standard semantic or
syntax by which the kinds of operating environment and tar-
get platform information required in these design processes
can be included in, or complementary to the dataflow models
describing the algorithm. The emergence of such models is
critical if dataflow languages are to become the backbone of
FPGA DSP system design tools. This process thus requires
a three dimensional design process manipulating the vertex
and data toplogy of the algorithm, as well as it’s semantics,
driven by the operating environment and target platform.

The requirement to consider the operating environment
and target platform, as well as the actual algorithm behaviour
becomes even more important in the context of systems op-
erating in dynamic operating environements. For instance,
Multiple-Input Multiple-Output (MIMO) receivers operating
on dynamic communications channels, with varying levels
of signal distortion, must be able to adapt the processing of
the system on the fly based on characteristics of the channel.
Filters must vary in length, decoders must search larger re-
ceived signal spaces etc. As such, in this case not only the
operational efficiency of the system ,but the effective oper-
ation itself, is dependent on the ability to integrate environ-
mental information into the algorithm definition and adapt
the algorithm according to this information.

4. SUMMARY

Dataflow design languages have proven highly effective and
modelling DSP and image processing systems with a view
to rapid and efficient implementation. However, work on ex-
tending this work to FPGA architectures is immature and ad-
hoc.

In this paper, via analysis of four case-study designs, it
has been shown that current seemingly ad-hoc algorithm op-
timisation approaches all fall broadly into three classes:ver-
tex topological, data topologicalor semantic. Further, these
are all motivated by two key aspects not considered in the
algorithm description: the operating environment, and the
target platform.

This discrepancy becomes even more apparent in the
modern generation of applications, such as DSP for mo-
bile communications, whose behaviour can fluctuate wildly
with their dynamic operating environments. This discrep-

ancy must be addressed if dataflow languages are to form the
backbone of design tools for dynamic FPGA systems.
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