
OVERVIEW OF EMBEDDED DSP DESIGN 

Iain Hunter 

Texas Instruments Limited 
800 Pavilion Drive, Northampton, NN4 7YL, UK 

phone: +44-1604-663181, email: i-hunter1@ti.com 
www.ti.com

ABSTRACT 
Many researchers are looking to take their work from a 
simulation environment and implement it on an embedded 
DSP platform. This is primarily driven by the need to dem-
onstrate that the research is viable commercially. This paper 
will provide an overview of the different types of hardware 
and software development platforms that are available. It 
will then provide a summary of the software design tech-
niques that are required to maximise the efficiency of code 
on current embedded DSP platforms. These will be demon-
strated using an implementation of a Canny Edge Detection 
algorithm on a DM6437 Evaluation Module.    

1. INTRODUCTION 

Once the decision has been made to implement an algorithm 
on an embedded platform there are several major criteria 
that need to be evaluated. These include:  

• What is the Input/Output format of the data? If it is 
an existing standard such as video then there should 
be no problem. If it is very high sample rate data or 
an unusual format then it will probably either need 
custom analogue interfacing hardware or the use of a 
board with an FPGA that can be programmed to do 
the pre-processing of the data.    

• Is the DSP application standalone or does it need to 
be networked? If it needs to be networked then this 
drives towards a dual processor solution such as an 
ARM +DSP as the ARM will come with an OS to 
provide all the connectivity required.  

• How much effort can be put into dealing with the 
software issues that occur on an embedded DSP? 
These include modifying drivers, optimising the soft-
ware, using OS features such as semaphores, logging 
and solving the real time problems in a multi-tasking 
environment. If the answer is none, then the only 
choice is the use of an auto-code generation tool 
from a simulation environment such as Matlab-
Simulink®. This implies the use of a hardware de-
velopment platform that is supported by this tool us-
ing a Target Support Package. 

• The final criteria is often the most critical one, over-
riding the technical issues described previously. What 
is the budget that can be spent on this tooling? Where 
this is the key criteria then the only realistic option is 
the use of a standard DSP Development Platform or 

Starter Kit that will be bundled with a software devel-
opment environment.   

2. AVAILABLE DEVELOPMENT PLATFORMS 

This section will review in more detail the different types of 
development platforms that are available and the trade offs 
involved in their use. 

 
2.1 Combined FPGA + DSP Platform with Automatic 

Code Generation  
These fully featured development platforms are manufac-
tured by companies such as Sundance[1] and Lyrtech[2]. In 
general they combine high speed data acquisition front ends 
(>100MSPS) with an FPGA and DSP and all the software 
tools to auto-generate code from a model based design envi-
ronment. These manufacturers supply a variety of boards 
with different combinations of acquisition modules and 
processing resources targeting different end applications.   
For the researcher they allow the architecting and partition-
ing of the algorithm to suit the capabilities of the different 
processing devices. The FPGA provides the flexibility and 
parallelism to pre-process high bandwidth input signals 
down to a data rate that can be accommodated by the DSP. 
The DSP can then implement more complex processing on 
the pre-processed signal. This ability to pre-process large 
quantities of data makes these boards ideal for research in 
high performance areas such as Software Defined Radio or 
Medical Imaging. 
The complexity of the hardware required for these applica-
tions means that buying a Commercial Off The Shelf 
(COTS) platform is the only practical option. On the soft-
ware side the use of auto-generation of VHDL and C code 
allied to the use of Target Board Support Packages com-
pletely abstracts the user from low level programming.  
This leaves researchers free to focus only on algorithm de-
sign problems with the main optimisation being on the top 
level partitioning between FPGA and DSP. The primary 
disadvantage is cost. 
   
2.2 DSP Platforms with Automatic Code Generation 
This type of environment uses standard DSP only develop-
ment platforms from companies such as Texas Instruments 
(TI). This limits the standard interfacing options to the ba-
sics such as video (Standard or High Definition) or audio. 
The software support comes from the Matlab® Target Sup-
port Package TC6 which supports all of TI’s single core DSP 
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C6000 development platforms. The DM6446 and DM6467 
ARM+DSP boards are not supported, as the Target Support 
Package tools support only the DSP/BIOS Real Time Oper-
ating System (RTOS) environment and not the Linux on the 
ARM9. 
The software flow involves the auto-generated algorithm 
code and appropriate board drivers being compiled within 
TI’s Code Composer environment. This step allows the de-
veloper to manually intervene in the process to optimise the 
code, call other optimised library functions, use specific  
DSP/BIOS features such as semaphores or change driver 
code. This is of course also possible on the combined DSP 
and FPGA platforms described previously. This flexibility 
allows the developer to invest as little or as much time into 
the final optimisation stages as required. 
The cost of the auto-generation tools buys the time saved in 
getting the initial system working. If it provides an accept-
able performance then the code generation can be fully 
automatic. The tools are also able to integrate some opti-
mised libraries for standard functions. The trade off for the 
auto-generation tools is that as more time is spent on manual 
software optimisations, the benefit of the quick development 
cycle that is being paid for is lost. These platforms are ideal 
for proof of concept projects that require a fast turnaround.  
  
2.3 Traditional DSP Platforms  
This type of environment takes standard DSP development 
platforms and all the driver and example application soft-
ware and then builds a system from the bottom up. The algo-
rithm will be written from scratch in C with the translation 
from the initial simulation environment done manually.  
As the automatic tool generation options do not cleanly sup-
port the ARM + DSP products such as DM6446/DM6467 or 
OMAP EValuation Modules (EVMs), this is the only real 
option on these platforms. The auto-generated DSP code 
could be packaged for use on these platforms but this would 
involve manual integration. 
On some specific platforms such as TI’s TAS3xxx Audio 
processors a free development environment called Pure-
PathStudio integrates a Graphical interface for routing data 
between blocks and a traditional C code development envi-
ronment for developing algorithms.  
As developing code in C is the lowest cost approach, the 
reality is that this is the most common method used in re-
search. 
The rest of this paper will describe in detail the major optimi-
sation techniques that are used on C64x+ devices and then 
provide example benchmarks using the Canny Edge Detec-
tion algorithm as an example. These techniques can be ap-
plied in the manual intervention stages in CCS on any of the 
platforms described here. 
 

3. OPTIMISATION TECHNIQUES ON C6000 
DSPS 

This section will summarise the major areas of optimisation 
that will significantly improve the performance of the code 
execution and take advantage of the architecture of the de-

vices. There are two main core variations available now. The 
C64x+ core is a fixed point core and is found in the 64xx 
products. The C67x core is fixed and floating point and avail-
able in the TMS320C674x products.  
 

3.1 Optimising Code Execution  
The primary aim here is to minimise the number of instruc-
tions that are actually executed and to maximise the use of, 
and minimise the disruption to, the deep pipeline on the 
C64x+ cores. The recommendations on coding techniques 
that follow are general guidelines that are applicable to any 
code that is written.  
 
3.1.1 Choosing the correct data type 
The majority of the platforms use DSPs with the fixed point 
C64x+ core. Frequently when algorithms are initially ported 
from a simulation environment the DSP code inherits the use 
of floating point variables. This is very inefficient as every 
mathematical operation has to be carried out with a function 
call to a floating point emulation library. In many cases the 
algorithm has no explicit requirements for floating point 
arithmetic, and in fact for video applications the raw data 
type is 8 bit integer. In these cases the simulation model 
should be coded in fixed point arithmetic so that all the fixed 
point implementation issues are managed before the code 
runs on an embedded DSP. 
If an application really requires significant floating point 
operations it should be implemented on a C67x core. 
 
 
3.1.2 Understand software pipelining 
Understanding the principles of software pipelining is the 
key to writing code that makes the most of the C64x+ core. 
The C64x+ core consists of two banks of 4 processing units 
each with 32 registers as shown in Figure 1. 
   

 
Figure 1 – C64x+ Core Architecture. 

 The D units are primarily responsible for Data moves to and 
from memory, the S units for program flow, the M units for 
multiplication and L units for arithmetic operations. 
The optimal efficiency for code is achieved when all 8 units 
have work to do every cycle. The way this can be achieved 
on typical DSP code is via software pipelining. This is illus-
trated in Figure 2 which shows a typical for() loop to imple-
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ment a Sum of Products. This figure also shows a pseudo 
code implementation of the loop in the software pipeline. 
Each iteration of the loop involves a load of data from mem-
ory, a multiply, an add and loop control with a branch. In 
pseudo code it takes 4 cycles to implement a single iteration. 
Software pipelining takes advantage of the fact that in cycle 
2 the L units are free to read in the data for the second itera-
tion. Similarly, in cycle 3 the M unit is able to multiply the 
second iteration’s data while the D units are loading the data 
for the third iteration. The fourth cycle is the first time that 
the pipeline is fully loaded.  
 

Load Mult Add BLoad Mult Add B

short mac(short *m, short *n, int count) 
{

for (i=0; i < count; i++)  {
sum += m[i] * n[i]; }

Load Mult Add BLoad Mult Add B

Load Mult Add BLoad Mult Add B

Load Mult Add BLoad Mult Add B

i=0

i=1

i=2

i=3

Cycle
1 2 3 54 76

i=4 Load Mult Add BLoad Mult Add B

8

 
Figure 2 – Software Pipelining 

The goal is to write code that is in this fully loaded pipeline 
state for as much of the time as possible. This can be 
achieved by following some basic rules [3].  

• The algorithm must be written in the form that the 
processing takes place in for() loops. 

• Give the compiler as much information as possible 
about the loop and the data alignment used for data. 

      The following Compiler Directive can be used to 
give the compiler details about the possible number 
of iterations in the loop. 

          #pragma MUST_ITERATE() 
In particular specifying the multiple parameter will 
enable the compiler to work out if it will be more ef-
ficient to unroll the loop so that each loop in the pipe-
line actually implements 2 or 4 etc iterations of the 
code. 
The _nassert() intrinsic can be used to tell the com-
piler the expected alignment of data pointers which 
allows it to optimise memory accesses. 

• The loop should not contain function calls as these 
disable software pipelining. Note that the run time 
support library will implement a modulo (%) or di-
vide (/) operation on fixed point variables and all 
floating point operations on a fixed point core with a 
function call. 

• Use C instrinsics to access specific assembly lan-
guage instructions cleanly from C. Instrinsics provide 
a method to take advantage of specific operations 
such as saturated arithmetic or Single Instruction 
Multiple Data (SIMD) packed instructions that have 
no equivalent in the C language. 

• The basic unit of data size for an instruction is 32 bits 
which means that a single ADD instruction takes one 
cycle and three registers whether it is operating on 
two 8 bit, 16 bit or 32 bit values. The C64x+ core 
adds support for packed data which allow either 2 16 
bit values or 4 8 bit values to be added in a single cy-
cle with the ADD2 and ADD4 instructions respec-
tively. 

• Similarly a load of a single data operand takes one 
instruction whether it is 8 or 64 bits. So with 8 bit 
data the use of a 64 bit pointer in C will allow 8 con-
secutive 8 bit values to be read into registers in a sin-
gle instruction. In many cases using the #pragma 
MUST_ITERATE() directive and _nassert() instrin-
sic will give the compiler enough information to op-
timise code with packed data operations. 

• Where possible think laterally about how to imple-
ment an operation in a way that is easier for the proc-
essor to implement. As an example a modulo opera-
tion on a base that is a power of 2 such as, 

                    i = count % 256; 
    can be replaced by the more efficient 
                   i = count & 0xFF; 
    which will be implemented in a single instruction. 
 

3.2 Use Optimised libraries 
For many fundamental Signal Processing operations opti-
mised libraries are available from TI that can be included in 
an algorithm. These include: 

• DSPLIB [4] - this provides operations such as filter-
ing, correlation and FFTs as well as general vector 
and matrix operations.  

• IMGLIB [5]– This provides basic image processing 
blocks such as filtering, thresholding, correlation, 
convolution  and morphology with both  C64x+ li-
braries and Matlab Simulink blocks available.  

• VLib [6] – This provides the basic image processing 
blocks required for Video Analytic applications. 

3.3 Optimising Data Accesses 
The other critical aspect to system design is optimising the 
algorithm’s data memory accesses. On most C64x+ devices 
the core will be running two or three times faster than the 
large external DDR memory. As well as this difference in 
relative speed the memory interface and DDR designs intro-
duce significant delays on the first data read in a sequence. 
This particularly impacts random data accesses as each read 
is then the first. 
The C6000 devices design mitigates this performance impact 
through the use of a two level cache architecture. There will 
be a small L1 cache for data and programme that runs at the 
same speed as the core as well as a larger L2 cache that usu-
ally runs at half the core speed. Some of the L1 and L2 
memory can also be configured as mapped memory which 
allows the core to directly access it as fast memory. The 
DM6437 can configure either 48 or 64kbytes of the 80kbytes 
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of L1 memory to be mapped and between 0 and 128kbytes of 
the 128kbytes of L2 memory to be mapped.    
 
3.3.1 Using the Cache 
On a DM6437 the default RTOS software initialisation will 
enable the maximum L1 and L2 caches. In this case the de-
veloper does not need to worry about memory access times 
as the caches hide the physical memory architecture. When 
the cache is being used the key optimisation is to ensure that 
data arrays are aligned on 128 byte boundaries to fit with the 
cache line lengths. This minimises the effect of cache misses. 
As an example a Canny Edge Detection application was built 
using the VLib[6] library on a DM6437 EVM. It captured 
PAL D1 images from a camera, implemented the Canny 
Edge Detection Filter and then displayed a D1 black and 
white edge D1 map on a display. The algorithm shown in 
Figure 3 illustrates the pre and post processing steps required 
to deal with 16 bit YUV data in the capture and display driv-
ers and the conversion to 8 bit Luma data for the Edge Detec-
tion. 

Raw input D1 Input (YUYV, 16bpp)

VLIB_extractLumaFromYUYV_i()

Raw luma D1 Input (Y, only 8bpp)

VLIB_gaussianFilter7x7()

Smooth
luma

D1 Input smoothed (Y, only 8bpp)

VLIB_xyGradientsAndMagnitude()

Grad Y 3 x D1 Gradient images (16bpp)Grad X |Grad|

VLIB_nonMaximumSuppressionCanny()

Possible
edges D1 Possible Edges (8bpp)

VLIB_hysteresisThresholding()

Definite
edges D1 Definite Edges (8bpp)

Pre- Processing

Canny 

Post- Processing
CreateYUYVEdgeFrame()

Edges + 
neutral 

chrominance
D1 Definite Edges Black and white (YUYV 16bpp)

 

Figure 3 – Canny Edge Detection Algorithm  
 
The timings of the individual blocks in the algorithm when 
using the cache to manage all data in external memory are 
given in Table 1. They show that with a total processing time 
of 46ms per frame for the Canny and 15ms per frame for the 
pre and post processing, it is possible to achieve a frame rate 
of 16 fps.  
 
3.3.2 Using the available Internal Memory  
Some applications can slice up the input data into smaller 
discrete blocks which can be operated on independently. This 
processing of the data in slices can in most cases be more 
efficient that just using the caches. The reasons for this is that 
the small slices of data can be put into the L1 mapped RAM  
from external memory in a single Direct Memory Access 
(DMA) copy and then accessed by the core with no penalties 
or cache misses. The overall algorithm needs to be split up 
into the functions that can operate upon sliced data and those 
that can’t because they need access to the entire data set. For 

the Canny Edge detection algorithm the Gaussian Filtering, 
Gradient Calculations and non-Maximal Suppression blocks 
all operate upon discrete lines in the image and so can be 
sliced. Figure 4 shows the relationship between the number 
of lines in each of the data slices. In order to generate N lines 
of non-Maximally suppressed potential Canny edges, N+10 
lines of raw image need to be used.  
 

NN+4N+10 N+2

2
10 4

Raw
Image

Smoothed
Image

Gradient
Image

Canny Edge
Image

First Slice - Full Load + Calculation

Subsequent Slices – reuse previous values

Subsequent Slices - New Load + N lines per Calculation

5 lines to be zeroed

 

    Figure 4 – Overlapping Slices in the Algorithm  
On the DM6437 with 64kbytes of L1 mapped memory avail-
able the value of N=7 was used so that all the slices could 
exist in internal memory at the same time.  
In order to use the slicing approach the algorithm is also re-
sponsible for using DMA channels to bring the N+10 raw 
image lines into memory, processing them and then storing 
the N lines of possible canny edges back to external memory. 
In addition it can optimise the use of DMA and core band-
width by ensuring that where lines of data overlap between 
slices they are reused by the next slice. This ensures that each 
line of data is only fetched from external memory or calcu-
lated once.  
The final stage of the Canny algorithm is Hysteresis thresh-
olding. This function cannot be broken up into slices and so 
must use the cache to access full frames of data in external 
memory. As the sliced data is written back out to external 
memory the cache needs to be invalidated before the Hys-
teresis function is carried out to force the reloading of the 
valid data from external memory. The timings of each block 
using slicing are shown in Table 1. 
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 Slicing 
(ms) 

Frame/Caching 
(ms) 

Extract Luma from raw image 1.40 3.95 
Fill Luma with Definite Edges 8.20 10.60 
  Total pre+post processing 9.60 14.55 

Gaussian Filtering 5.00 6.75 
Gradient Calculation 0.95 13.70 
Non Maximal Edge Suppres-
sion 

11.20 16.55 

Edge Hysteresis 9.50 9.10 
DMA+cache management 4.10  

      Total Canny 30.75 46.10 

Table 1 – Comparing Caching and Slicing Timings. 

 
These results show that by using slicing the total frame rate 
that can be achieved increases to 24fps. The most significant 
improvement in performance is from 13.7ms to 0.95ms on 
the gradient calculation. This is because this function has the 
highest proportion of data accesses to instructions and most 
of them are writes. In the slicing method the time taken for 
the Edge Hysteresis function actually increases compared to 
the cached method. This is due to the fact that the cache has 
been invalidated and so there are no cache hits initially.  
There is an overhead with slicing of 4ms per frame for DMA 
and cache management but this is in this case significantly 
outweighed by the performance improvement.   

4. CONCLUSIONS 

This paper has summarised the different approaches that are 
available for moving an algorithm from simulation to a real 
time DSP hardware implementation. The options are driven 
by the applications specific input/output requirements, the 
requirement to run an OS like Linux on an ARM core, the 
software effort required and the budget available. 
All of the methods leave the option of optimising the code to 
improve performance by making better use of the DSP’s in-
struction set and memory. The paper reviewed the major 
techniques for improving the efficiency of the code generated 
and the memory usage.   
 

REFERENCES 

[1] www.sundance.com 
[2] www.lyrtech.com 
[3] TMS320C6000 Programmer’s Guide, SPRU198i, 
www.ti.com 
[4] TMS320C64x+ DSP Little-Endian DSP Library Pro-
grammer’s Reference, SPRUEB8B, www.ti.com 
[5] TMS320C64x+ DSP Image/Video Processing Library 
(v2.0) Programmer's Reference, SPRUF30A, www.ti.com 
[6] Vision Library (VLIB) Application Programming 
Interface, www.ti.com/vlibrequest 

479


