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ABSTRACT
GNSS receivers compute its position by a two-steps pro-
cedure. First, synchronization parameters are estimated
and, then, a geometrical problem is solved to obtain re-
ceiver’s position. This is the approach typically taken
due to its simplicity and modularity. However, recent
results pointed out the potential pitfalls of such ap-
proach. In that vein, Direct Position Estimation arise as
a potential alternative, computing receiver’s position di-
rectly from the digitized GNSS signal. The latter is per-
formed as a single-step procedure, obtaining the Maxi-
mum Likelihood estimate of position. We base on a re-
cent result to show that the variance of the single-step
estimator is lower than the variance of the conventional
two-steps estimation of position. The result is validated
by computer simulations, comparing the performances
of both alternatives.

1. INTRODUCTION

A Global Navigation Satellite Systems (GNSS) antenna
receives measurements which are considered to be a su-
perposition of plane waves corrupted by noise and, pos-
sibly, interferences and multipath. An antenna receives
M scaled, time-delayed and Doppler-shifted signals with
known signal structure. Each signal corresponds to the
line-of-sight signal (LOSS) of one of the M visible satel-
lites. The receiving complex baseband signal can be
modeled as

x(t) =
M∑

i=1

aiqi(t− τi) exp{j2πfdit}+ n(t) , (1)

where qi(t) is the transmitted complex baseband low–
rate navigation signal spread by the pseudorandom code
of the i–th satellite, considered known. ai stands for
its complex amplitude, τi is the time-delay, fdi is the
Doppler deviation and n(t) represents zero-mean addi-
tive noise and other unmodeled terms.
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There are two approaches to positioning using GNSS
receivers: the conventional two-steps approach and Di-
rect Position Estimation (DPE for short). Both ap-
proaches are illustrated in Figure 1. The conventional
approach (upper diagram) consists in a two-steps pro-
cedure:
1. Estimation of synchronization parameters.

The receiver is equipped with a number of track-
ing channels, in charge of estimating both time-
delays and Doppler-shifts of the acquired satellites.
In general, this estimation is performed indepen-
dently among channels by a bank of Delay/Phase
Lock Loops or more sophisticated signal processing
techniques. We denote as τi and fdi the delay and
Doppler deviation of the i-th satellite, being the i-th
entries in vectors τ and fd respectively. We form a
vector with these parameters, υ ,

[
τT , fT

d

]T .
2. Position calculation. The estimates of υ provides

a measure of the relative distance between the re-
ceiver an each satellite. Then, an estimate of the
receiver’s position is obtained by solving a geometri-
cal problem, referred to as trilateration. This is typi-
cally done relying on Least Squares (LS) or Weighted
Least Squares (WLS) algorithms.
The lower diagram in Figure 1 shows the concep-

tual idea of DPE approach, i.e., merging the two-steps
approach into a single estimation problem. DPE, as a
GNSS positioning alternative, was proposed in [1]. The
underlying idea of DPE is that synchronization from all
satellites share a strong constraint: they all depend on
the same motion parameters. If we write τi and fdi as

τi =
1
c
‖ pi − p ‖ +(δt− δti) (2)

fdi = − (vi − v)T pi − p
‖ pi − p ‖

fc

c
, (3)

this dependency becomes clear [2]. In these definitions,
c is the speed of light, fc is the carrier frequency of
the RF signal constructed with (1), p = [x, y, z]T is the
user’s position coordinates and v its velocity vector. pi

and vi are the position and velocity vector of the i-th
satellite, respectively, which can be computed from the
navigation message. Finally, δt represents the unknown
receiver’s clock bias and δti is the known bias of the
i-th satellite. Therefore, we express the dependency of
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Figure 1: Block diagram comparing the operation of a conventional two-steps GNSS receiver and the Direct Position
Estimation approach.

synchronization parameters to a common parameter γ
by

υ , υ(γ) =
(

τ (γ)
fd(γ)

)
, (4)

with γ being a vector gathering all motion parame-
ters of the model. The simplest configuration is γ =[
pT ,vT , δt

]T and nγ , dim{γ} = 7. However, DPE is a
quite general approach, allowing a plethora of configura-
tions for γ. Besides, DPE can consider side information
such as Inertial Measurement Unit data or atmospheric
models [3, 4].

DPE addresses some of the inherent drawbacks of
the conventional two-steps approach, at the expenses
of an increased computational cost. The dependencies
between channels are efficiently exploited, in the sense
that signals from visible satellites are jointly processed
to obtain user’s position (which is the common driving
parameter of these signals). Due to the joint processing
of satellite signals, Multiple Access Interference (MAI)
is also optimally mitigated according to the Maximum
Likelihood (ML) principle.

DPE proposes an alternative where the estimation of
user’s position is performed directly from the received
and sampled signal. It avoids intermediate steps and
jointly considers signals from all satellites when estimat-
ing user’s position.

This paper uses the results in [5] to prove that DPE
cannot be outperformed by the conventional two-steps
positioning approach. Section 2 delves into the proof of
such claim and Section 3 provides some simulation re-
sults to validate the theory. Simulation results present
the performance of both position estimators, following
either positioning alternatives. Finally, Section 4 con-
cludes the paper summarizing its main contributions.

2. DIRECT POSITION ESTIMATION
APPROACH OUTPERFORMS
CONVENTIONAL TWO-STEPS

POSITIONING

A recent result in [5] provides the means to show that
the conventional two-steps approach cannot overcome
the performance of DPE. This interesting result is the
core of Proposition 2.1.

Proposition 2.1 provides the mathematical justifica-
tion to the DPE approach. Roughly speaking, the result
means that the covariance of the two-steps approach
cannot be smaller than the covariance of the one-step
estimator. Thus, the estimation performance of the
conventional approach can only be equal or worse than
the one provided by the DPE approach, in the Mean
Squared Error (MSE) sense. This is a strong result that
is the basis of DPE framework, as it opens the door
to the design of future GNSS receivers with improved
performance.

Proposition 2.1. Let υ ∈ Υ ⊂ Rnυ and γ ∈ Γ ⊂ Rnγ

be two unknown parameters s.t. there exist an injective
function g(·) : Γ 7−→ Υ,

υ = g(γ) , ∀γ ∈ Γ (5)

that relates both. Function g(·) has a unique inverse
mapping

γ = g−1(υ) ,∀υ ∈ Ῡ (6)

under the subset Ῡ = {υ | υ = g(γ), ∀γ ∈ Γ} ⊂ Υ.
Denote by γ̂1 and γ̂2 the K-samples estimators of γ

based on single–step and two–steps approaches, respec-
tively. Similarly, Σ(γ̂1) and Σ(γ̂2) represent the covari-
ance matrix of each estimator.

Then,
C , lim

K→∞
(Σ(γ̂2)−Σ(γ̂1)) (7)
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is a positive semidefinite matrix.

Proof. Denote the log-likelihood function of measure-
ments x given γ by L (x|g(γ)) , ln p (x|g(γ)). Then,
the Maximum likelihood Estimator (MLE) of γ is

γ̂ML = arg max
γ∈Γ

{L (x|g(γ))} , (8)

which equals γ̂1 by definition. Notice that the optimiza-
tion search in (8) shall be performed only over the space
of possible positions Γ.

Conversely, the two-steps approach consists in first
estimating the MLE of υ as the solution to

υ̂ML = arg max
υ∈Υ

{L(x|υ)} , (9)

and, then, use this estimate to obtain γ̂2 following its
relation with υ. For instance, the second estimation step
can be done by a WLS, which is the common choice in
conventional GNSS receivers:

γ̂2 = arg min
γ∈Γ

{Λ(γ)} (10)

= arg min
γ∈Γ

{
(υ̂ML − g(γ))T W (υ̂ML − g(γ))

}
,

where W is a real, positive definite and symmetric
weighting matrix.

To prove (7), we first obtain the asymptotical ex-
pressions of the covariance matrices of the estimators,
Σ(γ̂1) and Σ(γ̂2) respectively.

Since the one-step estimator is the MLE, it is well-
known that it is asymptotically efficient under regularity
conditions [6]. This means that its asymptotical covari-
ance equals the inverse of the Fisher Information Matrix
(FIM), defined as JF (γ) ∈ Rnγ×nγ . Thus,

lim
K→∞

Σ(γ̂1) =

(
E

{
∂L (x|g(γ))

∂γ

(
∂L (x|g(γ))

∂γ

)T
})−1

, J−1
F (γ) . (11)

Using the chain rule we can extend the derivative as

∂L (x|g(γ))
∂γ

=
∂L (x|υ)

∂γ
=

∂υT

∂γ

∂L (x|υ)
∂υ

, (12)

which substituted in (11) results in

lim
K→∞

Σ(γ̂1)

=

(
E

{(
∂υT

∂γ

∂L (x|υ)
∂υ

)(
∂υT

∂γ

∂L (x|υ)
∂υ

)T
})−1

=
(
E

{
∂υT

∂γ

∂L (x|υ)
∂υ

∂LT (x|υ)
∂υ

∂υ

∂γ

})−1

=
(

∂υT

∂γ
E

{
∂L (x|υ)

∂υ

∂LT (x|υ)
∂υ

}
∂υ

∂γ

)−1

=
(

∂υT

∂γ
JF (υ)

∂υ

∂γ

)−1

, (13)

where JF (υ) ∈ Rnυ×nυ is the FIM of υ.
Now we focus on the covariance matrix of γ̂2. Ac-

cording to [7], for large data sets,

Σ(γ̂2) '
(
E

{
∂2Λ(γ)

∂γ2

})−1

E
{

∂Λ(γ)
∂γ

∂ΛT (γ)
∂γ

}(
E

{
∂2Λ(γ)

∂γ2

})−1

(14)

can be used as an approximation. We know that:

Λ(γ) , (υ̂ML − g(γ))T W (υ̂ML − g(γ))
∂Λ(γ)

∂γ
= −2

∂υT

∂γ
W (υ̂ML − g(γ))

∂2Λ(γ)
∂γ2

= 2
∂υT

∂γ
W

∂υ

∂γ
, (15)

which, when substituted in (14), yields to

Σ(γ̂2) '
(
E

{
2
∂υT

∂γ
W

∂υ

∂γ

})−1

E

{
2
∂υT

∂γ
W (υ̂ML − g(γ))

(
2
∂υT

∂γ
W (υ̂ML − g(γ))

)T
}

(
E

{
2
∂υT

∂γ
W

∂υ

∂γ

})−1

. (16)

The first and last expectations in (16) do not con-
tain terms with υ̂, thus we can neglect the expectation
operator there,

Σ(γ̂2) '
(

∂υT

∂γ
W

∂υ

∂γ

)−1

∂υT

∂γ
WE

{
(υ̂ML − g(γ)) (υ̂ML − g(γ))T

}
W

∂υ

∂γ
(

∂υT

∂γ
W

∂υ

∂γ

)−1

. (17)

We now recall that the covariance matrix of υ̂ML

tends to the inverse FIM under regularity conditions,
then

lim
K→∞

Σ(γ̂2) =
(

∂υT

∂γ
W

∂υ

∂γ

)−1

∂υT

∂γ
WJF (υ)W

∂υ

∂γ

(
∂υT

∂γ
W

∂υ

∂γ

)−1

. (18)

Defining

V1 =
∂υT

∂γ

V2 =
(
V1WVT

1

)−1
V1W , (19)

for the sake of clarity, we have that the asymptotical
variances can be expressed as

lim
K→∞

Σ(γ̂1) =
(
V1JF (υ)VT

1

)−1
(20)
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and
lim

K→∞
Σ(γ̂2) = V2JF (υ)VT

2 . (21)

Substituting (20) and (21) into (7),

C , V2JF (υ)VT
2 −

(
V1JF (υ)VT

1

)−1
, (22)

we are ready to verify its positive semidefiniteness. That
is to say, for any real vector u 6= 0, we have that

uT Cu ≥ 0 . (23)

Define the vectors

a = J−1/2
F (υ)VT

2 u

b = J1/2
F (υ)VT

1

(
V1JF (υ)VT

1

)−1
u (24)

and, by the Cauchy-Schwartz inequality1, we have

(
uT V2JF (υ)VT

2 u
) (

uT
(
V1JF (υ)VT

1

)−1
u
)

−
(
uT

(
V1JF (υ)VT

1

)−1
u
)2

≥ 0 . (25)

Recalling that
(
V1JF (υ)VT

1

)−1 is a non-negative defi-
nite matrix, since it represents a covariance matrix, we
can write (25) as

uT
(
V2JF (υ)VT

2 −
(
V1JF (υ)VT

1

)−1
)
u ≥ 0 , (26)

proving (23).

Notice that the inequality in (26) becomes equality
when we choose the weighting matrix such that W =
JF (υ). However, the true value of υ is not available,
which reinforces the idea that the one-step estimation
cannot be outperformed by the two-steps approach.

3. SIMULATION RESULTS

This section aims at comparing the variances of the es-
timators of position in either cases: two-steps and DPE
approaches. The former was computed by first comput-
ing ML estimates of synchronization parameters [8] and
transforming them by the WLS procedure, as given in
[2]. The latter was obtained by solving the ML estimator
of position, reported in [1]. Both ML estimators (υML

and γML) required the optimization of a non-convex cost
function, which was performed by the Accelerated Ran-
dom Search (ARS) algorithm [9].

When using WLS to compute user’s position from
synchronization parameter estimates, the construction
of weighting matrix W is not unique. We considered
that the diagonal entries in W are the carrier-to-noise
density ratios (C/N0) of the corresponding satellites,
normalized to the highest C/N0 value.

The recreated scenario consisted of M = 7 satellites,
in a realistic geometry. The simulated constellation is
described by the following azimuth and elevation angles
(in degrees)

θ = [288.9, 215.2, 87.9, 295.4, 123.5, 46.1, 130.6]T

φ = [46.9, 24.5, 29.1, 32.1, 71.5, 24.4, 60.7]T , (27)
1Cauchy-Schwartz inequality: ‖ a ‖2‖ b ‖2 −(aT b)2 ≥ 0

2-steps and WLS
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Figure 2: MSE performance versus C/N0 of the satel-
lites.

respectively. These satellites transmit civilian GPS-like
signals at a carrier frequency of fc = 1575.42 MHz. We
considered a single antenna based receiver, with a 1.1
MHz pre-correlation filter and a sampling frequency of
fs = 5.714 MHz.

With this setup, the Root-MSE (RMSE) perfor-
mance of either position estimators is plotted and com-
pared to their respective theoretical lower bounds, pro-
vided by the Cramér-Rao Bound (CRB) and reported in
[10]. In Figure 2 the curves are plotted against the C/N0

of the satellites, assumed all equal in this simulation. It
arises that both estimators have similar asymptotical
bounds, although a close look will reveal that the CRB
derived under DPE’s framework is lower than the bound
of a conventional 2-steps approach. In addition, we see
that the MSE performance of DPE is smaller than the
one achieve by the WLS processing of ML estimates of
time-delays and Doppler-shifts, in accordance to Propo-
sition 2.1.

Since the strength of DPE approach comes due to its
ability to jointly process signals coming from indepen-
dent channels, a slightly different scenario was tested.
Figure 3 shows the RMSE performance of the estimators
when the C/N0 of one satellite is swept, while the rest re-
main at 45 dB-Hz. On the one hand, we can see how the
CRBs differ for low-SNR conditions and that the DPE’s
CRB is always below conventional’s positioning CRB.
On the other hand, the performance of the conventional
position estimator is severely degraded when accounts
for low-powered signals, in contrast to DPE. When the
swept C/N0 exceeds the value of 45 dB-Hz, this satel-
lite introduces a MAI to the rest of visible satellite. The
latter is seen as a degradation of the position solution in
the MSE sense. Since the estimation of synchronization
parameters is performed independently, a conventional
receiver is not immune to MAI. Conversely, DPE pro-
vides an optimal approach to jointly process all signals,
following the ML principle. Thus, effectively mitigating
the effect.
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Figure 3: MSE performance versus C/N0 of one satel-
lite, the rest are assumed all equal to 45 dB-Hz.

Simulation results also point out that the bound pro-
vided by the CRB might not be valid for low C/N0 val-
ues. This can be seen in Figure 2 for either positioning
approaches and in Figure 3 for the conventional two-
steps procedure, where the estimators are likely to be
biased for low C/N0 conditions. The reason is that the
CRB falls in the category of small-error bounds, mean-
ing that its validity is conditional on having small esti-
mation errors. Thus, other bounds could be explored to
have more accurate benchmarks under that regime, see
for instance [11].

4. CONCLUSIONS

Although the conventional approach to positioning us-
ing GNSS receivers consists in a two-steps procedure
(estimate synchronization parameters and solve a geo-
metrical problem), this paper shows that this solution
is not ML-optimal. In particular, this scheme does not
provide in general ML estimates of receiver’s position.
These optimal estimates, in the ML sense, are given by
DPE’s approach. DPE proposes to estimate position di-
rectly from digitized signal, thus, merging the two-steps
into a single process. The paper delved into the proof of
Proposition 2.1, showing that DPE provides better MSE
performances than a two-steps approach. In particular,
the result states that the performance of the two-steps
position estimator is, at most, equal to that given by
DPE. This result reinforces the interest on DPE’s philos-
ophy to design GNSS receivers. A number of computer
simulations were performed and discussed to validate
the statement under realistic signal conditions.

DPE was seen to provide enhance positioning capa-
bilities in scenarios where satellite links are affected by
independent degradation effects. In the simulation re-
sults we discussed the case of a weak satellite signal,
however, other cases are of interest. For instance, the
problem of multipath mitigation can be mitigated by
DPE, relying on the joint processing of signals affected

by independent propagation channels [1].
The contribution of the paper is twofold. First,

to provide a mathematical justification for DPE’s ap-
proach, establishing a solid basis for its further inves-
tigation. Secondly, studying the performances of both
position estimators and commenting on some of their is-
sues, such as the Multiple Access Interference mitigation
of DPE’s approach.
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