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ABSTRACT

Broadband adaptive beamforming algorithms based on the
least mean square (LMS) family are known to exhibit slow
convergence, if the input is correlated. In this paper, we will
utilised a recently proposed broadband eigenvalue decompo-
sition method to provide strong spatial decorrelation, while at
the same time reduces the subspace in which the beamform-
ing algorithm operates. Additional temporal decorrelation
is gained by operating the beamformer in oversampled fil-
ter banks. Hybrid structures which combine both spatial and
temporal decorrelation demonstrate to provide faster conver-
gence speed than the normalised LMS algorithm or either of
the decorrelation approach on its own.

1. INTRODUCTION

For a number of applications, particularly in acoustics, beam-
formers are required to operate across a wide bandwidth at
a considerable spatial and spectral resolution. This results
in systems with a large number of sensors,M, followed by
tap-delay lines (TDLs) of considerable lengthL. If adap-
tive solutions to this beamforming problem are sought,. then
the dimensionality of the beamforming problem generally
prohibits the use of computationally intensive but fast con-
verging algorithms such as the recursive least squares (RLS)
family [1] or the Newton method [2]. In contrast, approaches
with low computational cost such as those based on the LMS-
type adaptive filter [3] are prone to slow convergence partic-
ularly when the number of coefficients is high and the input
signal correlated due to highly structured interference.

Best convergence conditions are realised for LMS-type
adaptive algorithms, if the input to the adaptive filter is decor-
related and all modes of convergence have equal power [3, 4].
In [4] this is achieved by preprocessing the TDLs with a
Karhunen-Loeve transform (KLT) — or suboptimally by a
number of data-independent transforms such as the DFT,
DCT, or DST — which decorrelates the input vector to the
adaptive filter. An additional power normalisation stage is
generally required to realise fast convergence, but may ham-
per steady-state performance due to noise amplification.

Translating [4] to beamforming and multichannel filter-
ing means that the KLT is applied across all channels and
lags spanned in the TDLs. Applying the KLT to the spa-
tial dimension only works for narrowband beamforming, but
neglects correlation across successive lags arising from con-
volutive mixing, which extends over both spatial and tempo-
ral dimensions. Therefore after convolutive mixing, previ-
ously independent signals are not just spatially correlated at
the same time instance but also over a range of lag values.

This paper proposes the use of a recently introduced
broadband eigenvalue decomposition (BEVD) [5] to per-
form strong decorrelation, which removes correlation be-
tween any pair of signals for all lag values, in order to
improve the convergence behaviour of an LMS broadband
adaptive beamformer. As an example, we apply this tech-
nique to a generalised sidelobe canceller, which is briefly re-
viewed in Sec. 2, together with its input covariance matrix
and traditional decorrelation approaches. Sec. 3 introduces
strong decorrelation by means of a BEVD to the input of the
adaptive filter. Strong spatial decorrelation is complemented
by temporal prewhitening using an oversampled subband ap-
proach [6, 7] in Sec. 4, resulting in two structures, whose
performances are compared to a number of benchmarks in
Sec. 5. Finally, conclusions are drawn in Sec. 6.

2. GSC BEAMFORMER

A linearly constrained minimum variance (LCMV) beam-
former performs the minimisation of variance of an out-
put signal with respect to some spatial and spectral con-
straints [8]. The LCMV problem can be implemented alter-
natively by the GSC technique [9], which performs project
the data onto an unconstrained subspace where standard op-
timisation methods such as RLS or LMS can be readily ap-
plied. The projection is performed via a quiescent vector
wc and a blocking matrixCa, who are constructed from the
beamformer’s constraint equation. The aim of the quiescent
vector is to isolate the signal of interest (SOI) as best as pos-
sible, while the blocking matrix removes any SOI compo-
nents, such that the subsequent adaptive filter operates in an
adaptive noise cancellation architecture [3].

2.1 Simplified GSC Structure

For a broadband SOI impinging onto a linear array from
broadside, the blocking matrix can be simplified by the cas-
caded columns of differencing (CCD) method [9]. In a sim-
plest case, CCD provides a quiescent vector

wc =
1
M

[1 1 · · · 1]T ∈ R
M . (1)

and block matrix that subtracts adjacent sensor signals using

Ca =











1 −1 0

. ..
. . .
. . .

.. .
0 1 −1











∈ C
(M−1)×M . (2)
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The simplification is based onCa only being applied to the
spatial component of the data. However, with sensor array
data collected inx[n], it can be easily the verified that

uS[n] = Cax[n] ∈ C
M−1 , (3)

is free of SOI. The blocking matrix outputuS[n] ∈ C
M con-

tains spatial data only, and need to be buffered in tap delay
lines (TDLs) prior to being passed asuST[n] ∈ C

(M−1)L to
the adaptive filter vectorwa ∈ C

(M−1)L as shown on Fig. 1.
The adaptive filter is optimised based on a suitable criterion
applied to the errore[n] which is obtained by subtracting the
adaptive filter output from the quiescent signald[n].

2.2 Covariance Matrix

When optimisingwa based on LMS-type algorithms,the
speed of convergence is influenced by the data covariance
matrix

Ruu,ST = E
{

uST[n]uH
ST[n]

}

. (4)

based on the inputuST[n] to the adaptive filter in Fig. 1. This
covariance matrix can also be expressed as

Ruu,ST=











Ruu,s[0] Ruu,s[−1] . . . Ruu,s[−L+1]

Ruu,s[1] Ruu,s[0]
. . .

...
...

. ..
. . . Ruu,s[−1]

Ruu,s[L−1] . . . Ruu,s[1] Ruu,s[0]











(5)
where

Ruu,S[τ] = E
{

uS[n]uH
S [n− τ]

}

, (6)

contains spatial covariance only, based on the blocking ma-
trix outputuS[n]

uS[n] =









us,0[n]
us,1[n]

...
us,M−2[n]









(7)

as shown in Fig. 1.

2.3 Decorrelation

In order to decorrelate the input to the adaptive filter, the
above covariance matrices need to be diagonalised. This can
be obtained by a Karhunen-Loeve transform (KLT) based
on eitherRuu,S[τ] or Ruu,ST[τ]. If a KLT is applied to the
input of the TDL block in Fig. 1, thenRuu,S[τ] is diago-
nalised while forRuu,ST[τ] only the block-diagonal elements

T
D

LuS[n]

d[n]x[n]

Ca
uST[n]

e[n]

y[n]

wc

wa

Figure 1: Generalised sidelobe canceller.

Ruu,S[0] are diagonalised, while the remainder of the matrix
remains non-sparse.

The application of the KLT is in general not sufficient
in order to increase the convergence speed, since a power
normalisation stage is also required in order to balance all
modes of convergence [4].

[PERHAPS LEAVE OFF?]

3. GSC WITH STRONG SPATIAL
DECORRELATION

This section outlines a method to achieve strong decorrela-
tion of the data vectoruS[n] acquired by the sensor array as
shown in Fig. 1.

3.1 Broadband Eigenvalue Decomposition

In this paper, we use the broadband eigenvalue decompo-
sition as defined in [5], which is the extension of the well
known EVD to the case of a polynomial matrix, here

Ruu,S(z) =
∞

∑
τ=−∞

Ruu,S[τ]z−τ . (8)

Note thatRuu,S(z) is parahermitian, i.e.Ruu,S(z) = R̃uu,S(z)
whereby ˜(·) indicates the parahermitian operator,R̃uu,S(z) =

R
H
uu,S(z

−1). The BEVD of such a parahermitian matrix is
given by

R(z)uu,s(z) = U(z)Λ(z)Ũ(z) , (9)

whereU(z) is paraunitary such thatU(z)Ũ(z) = I andΛ(z)
is a diagonal matrix

Λ(z) = diag{Λ0(z),Λ1(z), . . .ΛM−2(z)} . (10)

Similar to the standard EVD,U(z) preserves the signal
power, however, the “eigenvalues”Λi(z), i = 0· · ·(M − 2),
are polynomials which are spectrally majorised, i.e. the
power spectral densitiesΛi(ejΩ) = Λi(z)|z=ejΩ satisfy

Λ0(e
jΩ) ≥ Λ1(e

jΩ) ≥ . . . ≥ ΛM−2(e
jΩ) , ∀Ω . (11)

Spectral majorisation provides an ordering akin to the sin-
gular value decomposition, which removes ambiguity in the
decomposition.

3.2 Sequential Best Rotation Algorithm

To calculated the BEVD for a given polynomial covariance
matrixR̂(z), the sequential best rotation algorithm using sec-
ond order statistics (SBR2) is utilised as proposed in [5].

SBR2 is an iterative technique, which consists of a se-
quence of elementary steps involving a time shift in combi-
nation with a Givens rotation in order to eliminate the largest
off-diagonal element of the remaining parahermitian matrix.
The algorithms stops if off-diagonal elements have been sup-
pressed below a specified threshold, or if a maximum number
of iterations has been exceeded. The result for an estimated
polynomial covariance matrix̃Ruu,s(z) is a decomposition

Ruu,s(z) = H(z)Λ̂(z)H̃(z) (12)

with a guaranteed paraunitary matrixH(z), and an approxi-
mately diagonalised and spectrally majorisedΛ̂(z).
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Figure 2: BEVD-based GSC with a paraunitary preprocessor
H(z) to achieve a strong spatial decorrelation for the inputs
to the adaptive filterwa.

3.3 Remaining Covariance Matrix

When applying the paraunitary matrixH(z) •—◦ H[n] to the
array datauS[n] in Fig. 2, the covariance matrix at the output
of H[n] has been diagonalised and spectrally majorised ac-
cording to (10). As a result, the input to the adaptive process,
uST[n], has the following associated covariance matrix,

Ruu,ST =













Λ̂[0] Λ̂[−1] . . . Λ̂[−L+1]

Λ̂[1] Λ̂[0]
. ..

...
...

. ..
. .. Λ̂[−1]

Λ̂[L−1] . . . Λ̂[1] Λ̂[0]













. (13)

This matrix is not entirely diagonalised but has only 2L−1
bands with non-sparse entries. Further, due to spectral ma-
jorisation, the outputs ofH[n] will have decreasing power,
and only a reduced number of broadband sources are consid-
ered, then only those outputs carrying power may be utilised
for further processing, thus reducing the dimension of the
data and subsequently the computation cost of beamforming
algorithms.

However, if a GSC is operated on the output ofH[n] as
shown in Fig. 2, then temporal correlation remains as a po-
tential source of slow convergence when using LMS-type al-
gorithms. The next section will introduce a method to addi-
tionally reduce this temporal correlation.

4. GSC WITH SPATIO-TEMPORAL
DECORRELATION

To perform additional temporal whitening for the BEVD-
GSC beamformer depicted in Fig. 2, we here follow a sub-
band approach based on oversampled filter banks [6].

4.1 Filter Bank-Based Temporal Decorrelation

Amongst a number of different subband adaptive structures,
oversampled systems have been proven to perform very suc-
cessfully [10, 11] and with a clearly defined bound for the
minimum mean square error performance [7], which can be
directly considered in the filter bank design [12]. The sub-
band approach is based on separating the signal intoK well-
defined frequency bands such that only adjacent bands over-
lap, and decimated by a factor ofN < K such that aliasing
in the subbands is kept to a minimum. The subband signals
are correlated due to the redundancy introduced in oversam-
pling, but can be processed independently with the MMSE
limited by the alias level.

In order to reduce the filter bank complexity, oversam-
pled modulated filter banks are used, which only require the

A

A

MCAF

MCAFA

...

...

...
S e[n]

. .
....

...

K−1

0

d[n]

uST,0[n]

uST,P−1[n]

...

...

...

Figure 3: Multichannel adaptive filters (MCAF) operating in
each of theK subbands created byP+1 analysis filter banks
(A) and one synthesis filter bank (S); the multichannel inputs
uST,m[n] are theP≤ (M −1) spatially strongly decorrelated
components ofuST[n] shown in Fig. 2.

design of a suitable prototype lowpass filter [12], and admit
a very low computational cost [13].

The temporal prewhitening by filter banks can be ex-
ploited by two different structures:
BEVD-Subband GSC (GSC-ST) performs strong spatial

decorrelation first, followed by filter bank based temporal
whitening;

Subband-BEVD GSC (GSC-TS) uses a filter bank to
prewhiten the array signals, and GSCs with strong spa-
tial decorrelation such as shown in Fig. 2 are performed
within each subband independently.

4.2 BEVD Subband GSC (GSC-ST) Beamformer

The first approach performs processing similar to the struc-
ture shown in Fig. 2 up to the output ofH(z). Thereafter,
each of theP≤ (M−1) remaining strongly decorrelated sub-
channels with non-zero power is decomposed intoK over-
sampled subbands. Within each of theK subbands, a multi-
channel adaptive filter (MCAF) withP inputs is operated in
order to minimise the overall outpute[n]. This configuration
is depicted in Fig. 2.

Within each subband, theP inputs remain strongly decor-
related, while the support of the auto-correlation function of
each input is shortened by approximately the decimation ra-
tio N < K, leading to an additional temporal decorrelation.
The power spectral matrix of the MCAF inputs therefore
takes the same shape as (13) but has an approximatelyN
times lower order.

Thus, spatio-temporal decorrelation is achieved through
the GSC-ST structure. Reconstruction to the fullband sig-
nal can be performed by a synthesis filter bank (S) at the
output of the MCAFs as shown in Fig. 3. This structure is
expected to have faster convergence speed compared to the
BEVD based GSC beamformer due to the additional tem-
poral decorrelation and the reduced number of coefficients
courtesy of onlyP ≤ (M − 1) input signals to the adaptive
process.

4.3 Subband BEVD GSC (GSC-TS) Beamformer

Reversing the order of decorrelation, a subband decomposi-
tion can be applied to each of theM array signals inx[n].
Thereafter, in each of the resultingK subband signals a
BEVD-GSC as outline in Fig. 2 is operated. This system
setup is depicted in Fig. 4.
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Figure 4: Subband-BEVD GSC (GSC-TS), whereby the ar-
ray signalsxm[n] are decomposed intoK temporally decorre-
lated subbands. Within each subband, a BEVD-GSC accord-
ing to Fig. 2 is operated, which implicitly performs a strong
spatial decorrelation.

The subband decomposition performs a temporal decor-
relation by reducing the support window of any correlation
function by approximately a factor ofN. As a result, the
BEVD operates on a power spectral matrix withN times re-
duced order within each of the subbands. Therefore, SBR2
can be expected to converge faster and with lower order uni-
tary matrices compared to the case of the BEVD-GSC out-
lined in Sec. 3. Within each subband, these unitary matrices
achieve a strong spatial decorrelation. The power spectral
matrix within each subband possesses a similar order and
sparseness to the GSC-ST, and low power outputs can be
omitted from further processing.

4.4 Overall Covariance Matrix

For the above cases of GSC-ST and GSC-TS, the overall co-
variance matrices across the TDLs of all adaptive processes
differ in terms of their internal organisation, but share a com-
mon feature found in covariance matrices of subband adap-
tive filters. If Ri j (z) is the power spectral matrix defining
the correlation between TDLs located in subbandsi and j,
then due to overlap between adjacent subbands, the matrix
R describing all TDLs is tri-blockdiagonal with non-sparse
corner elements [13],

R =



















R0,0 R0,1 0 . . . 0 R0,K−1
R1,0 R1,1 R1,2 0 0

0 R2,1 R2,2
. ..

...
...

. . .
. ..

. . . 0

0
. .. RK−2,K−2 RK−2,K−1

RK−1,0 0 . . . 0 RK−1,K−2 RK−1,K−1



















.

(14)
All off-block diagonal terms are due to redundancy in the
oversampled system, and will disappear if the main block-
diagonal correlation terms — on which they are dependent
— are eliminated.

4.5 Complexity Considerations

Instead of applying SBR2 to the full covariance matrix,
the GSC-TS calculates paraunitary matricesHk(z), k =
0· · ·(K −1) based on individual subbands. The covariance
matrices are based on decimated subband signals and will
therefore have a smaller support, which results in both more
accurate and faster computation. This also has the benefit
of reducing the complexity of the SBR2 algorithm, since the
number of iterations required to achieve the desired smallest
value for off-diagonal elements is reduced.
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Figure 5: Polynomial covariance matrix after the application
of SBR2. [Negative moduli — probably showing real part!]

Another difference between the GSC-ST and the GSC-
TS beamformers is the number of analysis filter bank oper-
ations. In case of the GSC-TS, the number of analysis filter
banks is linked to the number of sensor signals,M. For the
GSC-ST, the count of analysis filter banks depends on the
number of independent interferers,P. If the number of in-
dependent broadband interferersP is very small compared to
the number of array sensors, this translates into lower com-
plexity requirements for the GSC-ST beamformer compared
to the GSC-TS beamformer.

5. SIMULATIONS AND RESULTS

The benefit of the proposed decorrelation for a broadband
adaptive beamformer is demonstrated below in simulations.
The simulated scenario contains a signal of interest which
illuminates aM = 4 linear equispaced sensor array from
broadside. The array is corrupted by an independent broad-
band interferer covering the spectral intervalΩ ∈ [π

8 , 7π
8 ],

with a signal to interference ratio of−35dB from an angle
−20◦ measured against broadside.

The spatially decorrelated BEVD based GSC beam-
former (GSC-S) requires an estimation of the polynomial co-
variance matrixRuu,S(z). The number of samples used to
estimate this covariance matrix was chosen to be 1000, with
the range of time delays set to|τ| ≤ 25. The polynomial co-
variance matrixRuu,ST(z) estimated from the signalsuST(z)
is depicted in Fig. 5. As only one broadband interferer is
present in the simulated scenario, all the output power is con-
centrated in the first diagonal element ofRuu,ST(z) in Fig. 5.

The above BEVD based GSC beamformer (GSC-S) is
benchmarked against the conventional time-domain CCD-
GSC (GSC) setup without any prewhitening as well as a
KLT-based GSC beamformer (KLT). All three beamform-
ers operate using filters withL = 140 coefficients for the
adaptation process. The CCD-GSC (GSC) beamformer was
further enhanced by the introduction of temporal decorrela-
tion through subband decomposition. This subband CCD-
GSC (GSC-T) structure utilises a prototype filter of length
Lp = 448 to decompose the received data intoK = 16 sub-
band signals decimated byN = 14 characterised in [6]. Due
to theN times increased sampling period, a reduced TDL of
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Figure 6: Learning curves for the various GSC implementa-
tions demonstrating (top) short term and (bottom) long term
convergence behaviour: BEVD-GSC (here labelled GSC-S)
with strong spatial decorrelation only; GSC-T with tempo-
ral decorrelation by means of a subband approach; GSC-
ST by means of BEVD and subband decomposition; GSC-
TS which performs subband decomposition prior to a strong
spatial decorrelation; and (KLT) the GSC beamformer with
decorrelation by a KLT.

lengthL/N = 10 filter coefficients has been applied for each
subband. For this simulation scenario, a total ofM = 4 anal-
ysis filter banks are required for subband decomposition.

The same subband approach was also incorporated into
GSC-ST and GSC-TS beamformers to provide both strong
spatial decorrelation as well as temporal decorrelation. Two
different methods were explored for this integration. For the
GSC-ST, a subband decomposition is performed on theP= 1
signal — the only signal carrying power as characterised the
polynomial covariance matrix in Fig. 5 — and on the desired
signal. The GSC-TS approach requiresM = 4 analysis filter
bank operations, followed by a BEVD calculation in each
subband.

Using an NLMS adaptive algorithm to adjust the adap-
tive filter coefficients, the step sizes were chosen empirically
for each of the beamformers discussed above to achieve ap-
proximately the same steady state mean squared error (MSE)
across the various simulations. The performance in term of
residual MSE, i.e. the beamformer output minus the signal
of interest, over an ensemble of 50 simulations is shown in
Fig. 6. Results indicate that the BEVD beamformer achieves
better convergence speed compared to the CCD-GSC struc-
ture. The two beamformers which utilise both temporal and
spatial decorrelation (GSC-ST and GSC-TS) outperform the
remaining beamformers that only contain a decorrelation in
maximally one dimension. The GSC-TS, which performs
subband processing prior to the BEVD operation, converges
slight faster due to better diagonalisation of the covariance
matrix in the spatial domain as compared to the GSC-ST
structure. The KLT beamformer proofs to be ineffective in
our simulation scenario with convergence rate comparable to
the time domain CCD-GSC beamformer, since the decorre-
lation is not accompanied by a power normalisation [4].

6. CONCLUSIONS

This paper has addressed a number of decorrelation ap-
proaches, in both space and time, to decorrelate the inputs
to n adaptive beamformer, for which we have exemplarily
used the GSC. We have shown that recently developed broad-
band EVD can help to improve the convergence speed with
respect to standard implementations as well as a KLT im-
plementation without power normalisation. The BEVD ap-
proach can be complemented by a spatial decorrelation by
means of subband processing, for which additional benefits
in terms of convergence speed were demonstrated in simula-
tions. We have suggested two approaches, which differ in the
order in which temporal (T) and spatial (S) decorrelations are
imposed, and for which slight and scenario-dependent trade-
offs between complexity and convergence speed exist.
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