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ABSTRACT
The statistical efficiency of a batch-processing constant-
modulus blind equalizer for estimating a) the complex-
valued tap weight within a two-path channel model and b)
the equalized signal is investigated. Expanding the constant-
modulus cost-function in a multidimensional Taylor series
up to third order we derive closed-form expressions for the
first-order bias and variance of the path weight and the equal-
ized symbols as a function of the variance of the Gaussian
distributed noise, the block length, and the actual channel
parameters. We study random as well as deterministic sym-
bol sequences. In the first case we compute the average of
the bias and variance over zero-mean random (real-valued)
signals of binary pulse amplitude modulation (PAM), and
(complex-valued) signals of phase shift keying (PSK) modu-
lation. We compare our analytical results with Monte-Carlo
simulations and find good agreement for small to medium
noise variance.

1. INTRODUCTION

Radio communication can be severely distorted due to multi-
path propagation. Then, an equalizer either exploiting train-
ing sequences or operating in a blind way is needed to re-
move the intersymbol interference. The constant-modulus-
algorithm (CMA) is by far the most known and studied
method for blind channel equalization. It was first intro-
duced for blind equalization of quadrature amplitude mod-
ulation (QAM) signals in [1] and of PAM and FM signals
in [2]. A review including a large list of publications about
the constant modulus criterion for blind equalization can be
found in [3]. Theoretical analysis of the CMA mainly deal
with a study of the convergence behavior, see e.g. [4, 5, 6], or
of the error surface [3]. Results concerning an upper bound
for the mean-squared-error (MSE) can be found in [7] and
the steady-state MSE for the equalization of noise-free non-
constant-modulus signals with CMA variants have been pub-
lished in [8].

In this contribution, we present results of a statisti-
cal analysis, both theoretical and numerical, of a batch-
processing constant-modulus blind equalizer using a para-
metric channel model. Our theoretical calculations are based
on a multidimensional Taylor series of the constant-modulus
cost-function in a power series in terms of the additive noise
and the deviations of the estimated parameters from the true
ones. In order to compute the bias, we have to extend the
Taylor series up to third order, as within a second-order ex-
pansion the parameter deviations depend linearly on the ad-
ditive noise which is assumed to be zero-mean. We present
expressions for the first-order bias and variance of the path
parameters as well as an expression for the variance of the

equalized symbols and compare them with the results of
Monte-Carlo simulations. We find that although several ap-
proximations are involved in our theoretical results devia-
tions from the numerical simulations are rather insignificant.

The channel model that we employed in our analysis is
often used as a simple model for a HF-communication chan-
nel. It follows the considerations leading to the Watterson
model [9] which underlies the ITU recommendation [10] for
testing HF modems: Although the HF ionospheric channels
are non-stationary both in frequency and time they can be
considered as nearly stationary for band-limited signals and
sufficiently short times. Furthermore, in most cases the HF
channel is of specular nature, and the representative chan-
nel parameter combinations of the ITU recommendations in-
clude only two fading paths without frequency shifts follow-
ing a complex Gaussian random process. As for quiet and
moderate conditions, which have more than 90 % probability
of occurrence, the frequency spread of the random process
is rather small (up to 1 Hz) we assume the tap-gain func-
tion of each path to be constant for each block of received
data. In this contribution we consider two cases: a channel
with purely real-valued tap-gains distorting a PAM signal,
and the more general case of a channel with complex-valued
tap gains distorting a complex-valued PSK signal.

The paper is organized as follows: we start with the def-
inition of the constant-modulus cost-function. After listing
general expressions for the bias and variance of the path pa-
rameters and the equalized signal we present the main results
for the CM cost-function and compare with MC-simulations.

2. CONSTANT-MODULUS COST-FUNCTION

The algorithm which is analyzed in this work is a variant
of the well known CMA. One modification consists in em-
ploying a parametric zero-forcing filter and the second dif-
ference is that the channel parameters are then estimated
batch-wise from the global minimum of a cost-function us-
ing the constant-modulus-criterion. The impulse responseof
the channel is modeled as

h(t) = δ (t)+ λ δ (t − τ) (1)

with complex-valued path attenuationλ = αe jφ and delay
τ. (As the channel can only be identified up to an unknown
overall factor, we set the amplitude of the first path equal to
one.)

The received lowpass signalx(t) is then the convolution
of the complex envelope

y(t) =
∞

∑
i=−∞

sig(t − iT ) , (2)
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with the channelh(t). Here,g(t) is the combined transmitter
and receiver filter which fulfills the first Nyquist condition,
and si are the (complex-valued) information-bearing sym-
bols with magnitude|si| = 1. Over-sampling the received
signal by a factor ofM times the symbol rateT , we denote
the data in one batchx = (x1, . . . ,xN̄M)T ∈ CN̄M whereN̄ is
the number of symbols in the batch and(·)T denotes trans-
position. The delay isτ = LT/M with L being an integer. In
order to equalize the received signal a zero-forcing filterw
of lengthWL + 1, with W being an integer, is applied to the
received data. The filter is parameterized by the path weight
λ and the delay. The estimation of the delay will not be the
issue of the statistical analysis presented here. The delayes-
timation can be carried out before, independently from the
estimation ofλ , and does typically not rely on the constant-
modulus criterion. Furthermore, provided that the delay does
not change in time, the estimation of the delay is rather robust
for a sufficiently long observation period. We proceed on the
assumption that the estimated delay equals the true one. In
the following, we will treat the case that the second path is
the less dominant one with weight|λ | < 1, so that the filter
acts on the past dataxnM = (xnM−W L, . . . ,xnM)T . (The other
case where the first path is weaker than the following one
can be treated analogously. Then|λ | > 1 and the transversal
filter acts on the ’future’ data.) Explicitly, the zero-forcing
equalized signal is given by:

zn = xT
nMw =

W

∑
k=0

xnM−kL(−λ )k . (3)

We note that in our Monte-Carlo simulations for a given
value of λ , the filter orderW is chosen such that|λ |W <
10−10. On the other hand, in our theoretical analysis we as-
sume an infinite filter lengthW → ∞ as otherwise the esti-
mate for the path parameter would have an additional bias.

It is obvious, that from a batch of length of̄N symbols we
can get out only a smaller number ofN = N̄ −⌈WL/M⌉+1
equalized symbols. (⌈x⌉ denotes the smallest possible integer
larger than or equal tox.)

The cost-function in whichN equalized symbols are con-
sidered depends on the received data, the path parameters,
the particular transmitted symbol sequences= {si}

∞
i=−∞, and

an unknown, overall scaling factorγ ∈ R for adjusting the
magnitude of the equalized signal:

c(x;α,φ ,γ|s) =
N

∑
n=1

(|γ zn|
2−1)2 . (4)

3. GENERAL EXPRESSIONS FOR FIRST-ORDER
BIAS AND VARIANCE

The path parameters are found by minimizing the CM cost-
function c(x;ρ |s) with respect toρ = (α,φ ,γ)T . (In case
of complex-valued receive data, we define the real-valued

receive vectorx = (x(r)
1−W L,x

(i)
1−WL, . . . ,x(r)

NM,x(i)
NM)T and con-

sider the real-valued cost-function as a function of real vari-
ables only.) In case of no noise, the minimum of the cost
function is at the position of the true parameterρ̂. With ad-
ditional noise on the received signal ˆx, i.e. x̂ changes to
x = x̂+ δx, the position of the minimum will change corre-
spondingly fromρ̂ to ρ = ρ̂ + δρ .

An approximation to the position of the new minimum
can be found by using a Taylor expansion of the cost func-
tion around(x̂, ρ̂). A general expression for the multi-
dimensional Taylor series can be found for example in [11]:

f (y) =
∞

∑
m=0

1
m!

[

(δy
T ∇y)m f

]

y=ŷ

. (5)

Here, we have to partition the variables into one part con-
taining the received signal and another part containing the
channel parameter,y = (xT ,ρT )T . The Taylor series up to
third order then involves partial derivatives of second order
which we collect in the following matrices

D
(xx)
i j =

∂ 2c
∂xi∂x j

∣

∣

∣

∣

x̂,ρ̂
D

(xρ)
ik =

∂ 2c
∂xi∂ρk

∣

∣

∣

∣

x̂,ρ̂
D

(ρρ)
kl =

∂ 2c
∂ρk∂ρl

∣

∣

∣

∣

x̂,ρ̂
(6)

and partial derivatives of third order which are comprised in
the tensors

D
(xρρ)
ikl =

∂ 3c
∂xi∂ρk∂ρl

∣

∣

∣

∣

x̂,ρ̂
, D

(xxρ)
i jk =

∂ 3c
∂xi∂x j∂ρk

∣

∣

∣

∣

x̂,ρ̂
. (7)

Furthermore, we define the multiplication of a tensorD with
a vectorz with respect to the first dimension of the tensor to
be the resulting matrix(D ∗1z) with elements

(D ∗1z) jk ≡ Di jkzi , (8)

where we used Einstein’s summation convention, i.e. if an
index occurs twice in a term, summation over the index is
implied. Then, the third-order Taylor expansion reads

c(x;ρ |s) ≈ c(x̂; ρ̂|s)+
[

∇T
x

c ∇T
ρ c

]

[

δx
δρ

]

+
1
2

[

δx
T δρT

]

[

D(xx) D(xρ)

D(ρx) D(ρρ)

][

δx
δρ

]

+
1
6
(δx

T ∇x)3c +
1
2

δx
T (D (xxρ) ∗1 δx)δρ

+
1
2

δρT (D (xρρ) ∗1 δx)δρ +
1
6
(δρT ∇ρ )3c . (9)

As the cost-function containsP = MN +WL values of the
received signal, each perturbed by an amount ofδx, the es-
timation errorδρ of a small number of parameters, here just
three, is typically much smaller than any one of the com-
ponents ofδx. Moreover, the second last term consists ofP
parts, and the third last term even ofP2 parts. Then, provided
that the third order partial derivative with respect toρ is not
significantly larger than the other partial derivatives, wewill
skip the last term in Eq. 9 which is cubic inδρ .

From the necessary condition for the minimum∇δρ c = 0
we get

δρ = −
(

D(ρρ) +(D (xρρ) ∗1 δx)
)−1

· (D(ρx)δx+
1
2
(D (xxρ) ∗1 δx)T δx). (10)

The bias(δρ) = E[δρ] is obtained by taking the expectation
operation, using forδx

E
[

δxδx
T
]

=

{

σ2
n I for real-valued receive data

1
2σ2

n I for complex-valued receive data
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E[δx] = 0 , E[δxiδx jδxk] = 0, (11)

and expanding the denominator of Eq. 10 for small
δx (provided that none of the eigenvalues of the matrix
(D(ρρ))−1(D (xρρ) ∗1 δx) equals one),

(

D(ρρ) +(D (xρρ) ∗1 δx)
)−1

≈ (12)

(D(ρρ))−1(1− (D(ρρ))−1(D (xρρ) ∗1 δx)+ ...
)

.

Finally, defining the vectors with elements∆(1)
k =

D
(xρρ)
jmk D

(ρx)
m j and∆(2)

k = D
(xxρ)
iik , we get for the leading order

term of the bias

bias(ρ) = E[δρ]

= σ2
n (D(ρρ))−1((D(ρρ))−1∆(1)−

1
2

∆(2)
)

. (13)

If we consider only the term of orderO(δx) in Eqs. (10,12)
which would have been obtained from a second-order Taylor
series which, of course, would lead to a zero bias, the leading
order variance is identical to the leading order term of the
MSE. The first-order variance is then contained in:

var(ρ) = E
[

δρδρT
]

= σ2
n (D(ρρ))−1D(ρx)D(xρ)(D(ρρ))−1 . (14)

An expression for the variance of the equalized signal
can be derived by expanding Eq. (3) in a Taylor series inx,λ
(which is trivial forx aszn depends linearly onx). Consider-
ing only the leading order inδx,δλ we obtain for the error
of the equalized signalzn

δ zn = z(x̂nM + δxnM, λ̂ + δλ )− x̂T
nMw(λ̂ )

≈ δxT
nMw+ x̂T

nM
∂w

∂λ

∣

∣

∣

∣

λ̂
δλ . (15)

The first-order variance is computed straightforward:

E[δ znδ z∗n] = σ2
n |w|2 +

∣

∣

∣

∣

x̂T
nM

∂w

∂λ

∣

∣

∣

∣

2

E[δα2] (16)

−2σ2
n ℜ

{

x̂T
nM

∂w

∂λ

(

D(λ λ ∗)
)−1

D(λ ∗x)w∗

}

.

Here, we have used the second-order Taylor series of the cost
function in terms of the complex signalx and the complex
path parameterλ , ignoring the scaling factorγ in the first
instance.

The bias and variance can be computed for a particular
symbol sequences. On the other hand, we are interested in
the average over all possible symbol sequences with a given
probability distributionw(s). Regarding the expectation of
the above expressions with respect to the symbol sequence,
e.g. Es [E[δα]] =

∫

ds E[δα]w(s) we see that an analytical
calculation is not feasible. On the other hand, the expecta-
tions of the individual terms in the expressions for the bias
and variance can be carried out analytically. Because these
individual terms have distributions which are very well local-
ized around their mean for large block lengthN we approx-
imate/replace the above expectation by proper expressions
containing the expectations of the individual terms. More
details of this argument will be published elsewhere.

4. THEORETICAL RESULTS FOR THE
CONSTANT-MODULUS COST-FUNCTION

We studied three different cases with respect to the nature of
the channel and symbols. All different cases have the follow-
ing assumptions in common:

A0.1 The filterg(t) is a rectangular pulse:

g(t) =

{

T−1 0≤ t ≤ T
0 otherwise

(17)

(Note: For path delays larger than the length of the
pulse the results below are the same for arbitrary
pulse which fulfills the first Nyquist condition.)

A0.2 The path delayτ is an integer multiple of the symbol
periodT . (Note: For different path delays the results
below change slightly.)

The calculation of the results below can be carried out by
computing the formulas like Eqs. (13,14,16) containing the
partial derivatives of the cost function. The terms involving
multiple sums can be resolved with the help of the assump-
tions Eqs. (18,24) and formulas for geometric series. Details
of the rather long calculations will be published elsewhere.

4.1 Random complex-valued symbol sequence transmit-
ted over complex two-path channel

In this case, a n-PSK signal passes the two-path channel Eq.
(1) with complex path weightλ = αe jφ and we make the
following assumptions:

A1.1 The symbolssn ∈ C have the expectations

E[sn] = 0,E[sns∗m] = δn,m,E[snsm] = 0. (18)

A1.2 The noiseδxi is a discrete complex-valued Gaussian
random process with

E[δxi] = 0 , E
[

δxiδx∗j
]

= σ2
n δi, j . (19)

Under the above assumptions, the term of leading or-
der in σ2

n for the variance and bias of the CM-estimate for
the path parameters of a two-path channel with tap gain
λ = αe jφ is asymptotically (for large block lengthN)

Es
[

δα2] =
σ2

n

N(1−α2)
+O(N−2) (20)

Es [δα ] = −σ2
n

α
1−α2 +O(N−1) (21)

Es
[

δφ2] =
1

α2 Es
[

δα2] , Es [δφ ] = 0 (22)

and the leading order term for the variance of the equalized
symbols in the caseδγ = 0 reads

E
[

|δ z|2
]

=
σ2

n

1−α2 +O(N−1) . (23)

4.2 Random real-valued symbol sequence transmitted
over real two-path channel

Here, a binary PAM signal passes the channel Eq. (1) with
real path weightλ = α and we assume:

A2.1 The symbolssn ∈ {+1,−1} have the expectations

E[sn] = 0 , E[snsm] = δn,m . (24)
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A2.2 The noiseδxi is a discrete real-valued Gaussian ran-
dom process with

E[δxi] = 0 , E[δxiδx j] = σ2
n δi, j . (25)

Under the above assumptions, the term of leading or-
der in σ2

n for the variance and bias of the CM-estimate for
the path parameter of a two-path channel with tap gainα is
asymptotically (for large block lengthN)

E
[

δα2] =
σ2

n

N
1+ α2

1−α2 +O(N−2) (26)

E[δα] = −σ2
n

α
1−α2 +

σ2
n

N
6α

(1−α2)2 +O(N−2) . (27)

4.3 Periodic real-valued symbol sequence transmitted
over real two-path channel

It is interesting to compute results for a specific symbol se-
quence. There are some particular symbol sequences which
show a relatively large deviation from the average. E.g. fora
deterministic periodic binary PAM signal{+1−1} and the
assumption A2.2 we find for the first-order variance and bias

E
[

δα2] =
σ2

n

N

(

1−
1
N

2α
1−α2

)

+O(N−2) (28)

E[δα] = −
σ2

n

2
3+5α

(1+ α)2 +O(N−1) . (29)

5. NUMERICAL COMPARISONS

We compared the analytical results with Monte-Carlo (MC)
simulations. We considered a block length ofN = 100, i.e.
there are 2N ≈ 1030 different symbol sequences. In order to
obtain smooth curves, we had to use a large number of at
least 200,000 MC runs, resulting in a computation time of
about one day on a PC.
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Figure 1: Standard deviation of the path parametersα,φ for
σn = 0.01 andN = 100. The transmitted symbols are 4-PSK.

For the case of a complex path weight and 4-PSK sym-
bols Figs. 1 and 2 show the standard deviation and bias for
varying path attenuationα. In order to avoid confusion, we
note that the theoretical variance is based on a second or-
der Taylor expansion which by itself does not lead to a bias.
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Figure 2: Bias of the path parametersα,φ for σn = 0.01 and
N = 100. The transmitted symbols are 4-PSK.

Therefore, we have to compare with the standard deviation
of the numerical results, not with the MSE. On the other
hand, the equalized symbols do not show a bias, therefore,
Fig. 3 displays the MSE of the equalized signals. We find
very good overall agreement, only for values ofα close to
one, the numerical results are problematic due to the filter
length approaching infinity.
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Figure 3: Mean-Squared-Error of the equalized 4-PSK sym-
bols atσn = 0.01 andN = 100.

For the case of real path weight and BPSK symbols Figs.
4 and 5 display the bias and standard deviation for varying
path attenuationα. For the bias we plotted two lines: the
first one corresponds to the first term in Eq. 27, which is
the leading order term inN. The small gap to the numerical
result is filled by including both terms. In Fig. 6 the bias
and the square root of the variance are plotted for varying
noise variance. We find that the results start to differ for a
noise variance larger than aboutσ2

n ≈ 0.03, which shows the
limitations of the Taylor series expansion. Finally, in Fig. 7
we show the dependence of the results on the block lengthN.
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