18th European Signal Processing Conference (EUSIPCO-2010)

Aalborg, Denmark, August 23-27, 2010

ROBUST BLIND EXTRACTION OF A SIGNAL WITH THE BEST MATCH TO
A PRESCRIBED AUTOCORRELATION

B.B.A.J. Bloemendal', J. van de Laar?, P.C.W. Sommen!

b.bloemendal@tue.nl

'Eindhoven University of Technology,
Department of Electrical Engineering,
Eindhoven, The Netherlands

ABSTRACT

Several blind extraction algorithms have been proposed that
extract some signal of interest from a mixture of signals. We
propose a novel blind extraction algorithm that extracts the
signal that has an autocorrelation closest to a prescribed au-
tocorrelation that serves as a mold. Based on the mold we
perform a linear transformation of sensor correlation matri-
ces. This transformation allows for the construction of a
matrix with a specific eigenstructure. Each eigenvalue is re-
lated to the Euclidean distance between the mold and the
actual autocorrelation of one of the source signals. The ex-
traction filter that extracts the source signal with an auto-
correlation closest to the mold is identified as the eigenvector
that corresponds to the smallest eigenvalue. We show that
this approach is more robust to noise than methods from
literature, while it exploits comparable a priori information.
The results are validated by means of simulations.

1. INTRODUCTION

Blind Signal Processing (BSP) has become a major research
area during the last few years [1,2]. A hot topic in this field
is the Blind Source Separation (BSS) problem. In general, a
BSS algorithm separates all signals from a mixture of source
signals blindly. The separation in BSS can be performed
blindly up to an unknown scaling and permutation. When
only one of the signals is desired a classifier has to select
the desired signal. A less addressed, but practically more
interesting problem is the closely related Blind Signal Ex-
traction (BSE) problem. In BSE the classifier is efficiently
incorporated in the algorithm such that no undesired signals
are extracted and not all signals have to be separated.

Several signal properties have been exploited by classi-
fiers to distinguish between sources. Examples of these prop-
erties are sparseness, non-Gaussianity, smoothness and lin-
ear predictability. In [3], a class of BSE algorithms have
been proposed that extract a signal of interest based on lin-
ear prediction. The signal that has the smallest normalized
mean square prediction error is extracted. By utilizing a
prescribed autocorrelation one is able to design the linear
prediction filter. A disadvantage of this approach is that it
assumes noise free measurements, which is not realistic in
practice. In [4,5] an attempt is made to perform BSE in
case of noisy measurements, however the correlation of the
noise is assumed to be very simple and measurable. In these
approaches the contribution of the noise to the cost function
is compensated in such a way that the noise-free cost func-
tion from [3] is obtained again. Although this compensation
method is valid, it is very sensitive for false assumptions on
the temporal and mixing properties of the noise as well as
mismatches in the estimation of the noise statistics. When a
mismatch is made an undesired signal may be extracted and
the performance of the extraction filter decreases.
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Figure 1: Novel BSE algorithm that extracts the source sig-
nal with the minimum Euclidean distance between a mold
and the actual autocorrelation of the extracted source signal.

In [6] a BSE approach has been introduced to extract
randomly one of the source signals. This method exploits
a so-called Noise-Free Region Of Support (NF-ROS), which
consists of a specifically chosen set of lags of correlation data.
These lags are chosen such that the noise correlation is suf-
ficiently small, which results in noise free sensor correlation
data. The strength of this approach is that noisy corre-
lation data is simply ignored instead of compensated. By
performing a generalized eigenvalue decomposition of sensor
correlation matrices, which are taken from this NF-ROS, the
extraction filters are identified as generalized eigenvectors.

In the current paper we extend the work from [6]. Struc-
ture in the noise free sensor correlation data allows for
the exploitation of prior information to distinguish between
sources. We choose a different correlation matrix structure
than is used in [6] and incorporate a prescribed autocorre-
lation, i.e. a mold. By performing a linear transformation
of these noise free correlation matrices, based on the mold,
we are able to construct a matrix from which the eigenvec-
tors are the extraction filters. The desired extraction filter is
the eigenvector that corresponds to the smallest eigenvalue,
which is related to the Euclidean distance between the actual
autocorrelation of the source signal and the mold.

The outline of this paper is as follows. In Section 2 we
discuss the mixing model, notation and the mathematical
objective of BSE. In Section 3 the second order statistics
and the assumptions for a NF-ROS are introduced. Subse-
quently, the desired extraction filter is identified in Section 4
and the performance of the extraction filter is discussed and
validated in Section 5. Finally, in Section 6 we conclude this
work and give recommendations for future work.

2. BSE MODEL AND NOTATION

A model of the BSE scenario is depicted in Fig. 1. The D
sensor signals z1[n],--- ,zp[n] with n € Z are discrete sam-
ples of the continuous time signals z1(t), - ,zp(t), where
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t = nTs and T is the sampling time such that no aliasing
occurs. These discrete sensor signals are assumed to be an in-
stantaneous mixture of S source signals si[n], -+ , ss[n], cor-
rupted by D additive noise signals vi[n], -+ ,vp[n]. Math-
ematically, the mlxmg system is represented as a real val-
ued, full rank mixing matrix A € RP*S and the sensor,
source and noise signals are represented as column vectors
x[n] € RP*! s[n] € R¥*! and v[n] € RP*?, respectively.
This vector—matrlx representation allows for the following
mathematical description of the sensor signals:

Za sj[n] + v[n] = As[n] + v[n], (1)
where a’ € RP*} A = [a' - as] and
z1[n] s1[n] vi[n]
x[n] £ ,s[n] £ : and v[n] £ . (2)
zp(n] ss[n] vp|n|

Row elements of a column vector are denoted by their
row number as a subscript index, while column elements of
a row vector are denoted with their column number as a su-
perscript index. Matrix elements are represented with both
their column and row numbers as superscript and subscript
indices respectively. This notation allows for the following
description of the individual sensor signals:

Eas]

The objective in a BSE scenario is to extract the desired
signal sq[n], with d € {1,---,S}, from the sensor signals.
In order to perform this extraction the sensor signals are
filtered by a linear extraction filter that produces an output
signal y[n], as is depicted in Fig. 1. The extraction filter is
represented as a row vector w € R'*? | which results in the
following description of the output signal:

xi[n] = |+ wvin] Vie{l,---,D}. (3)

D
y[n] = Z w'zi[n] = wx[n] = wAs[n] + wrln].  (4)

i=1

In the current paper the extraction filter is designed to max-
imize the signal to noise ratio subject to suppression of all
undesired source signals. From linear algebra it is known
that the undesired signals are suppressed when this filter is
taken from the (pseudo-)inverse of the mixing system, which
only exists if there are at least the same amount of sensors
as there are sources (D > S). If more sensors than sources
are available the extra degrees of freedom may be utilized
to improve the output signal to noise ratio. Here the focus
is on the suppression of undesired source signals. Therefore
we assume to have the same amount of sensors as sources
(D = S), however in order to remain general in notation we
keep using both symbols D and S where they belong.

With blind signal processing techniques it is widely
known that the desired extraction filter can be determined
up to an unknown scaling only, which is solved by normaliz-
ing the extraction filter. Furthermore, it is known that extra
information is required to select a signal of interest. In this
paper we assume to know the shape of the autocorrelation a
priori, which we call a mold as is indicated in Fig. 1.

3. SECOND ORDER STATISTICS

The structure of the Second order Statistics (SOS) in the
sensor signals is exploited, thus auto- and crosscorrelation
functions. The correlation functions of the sensor, source
and noise signals are defined as follows:

Definition 3.1. The correlation function value of a signal
pair (piy, qiy) for all available i1,i2 at a given time n € Z
and with a certain lag k € Z is defined as follows:

E{pi, [n]gi, [n — K]}, ()

where E{-} is the mathematical expectation operator.

[n, k] =

741742

By replacing the signal pair (ps,, gi,) in Def. 3.1 by the
sensor, source and noise signal pairs (z;,, Zi, ), (Si;, Siy) and
(v4,,Viy) we obtain the corresponding correlation functions:

ikl V1 <iii <D,
Tfliz[nvk] VlSh,Z’zSS,
i, k] V1 <iy,ix <D,

respectively. Finally we need to define the correlation func-
tions 73, [n, k], which belong to the signal pairs (s;,, v4,) for
1§i1§8and1§i2§D.

Most conventional methods utilize only the lags k from
correlation functions, which restricts these methods to ex-
ploit only the non-whiteness property of the signals. As
a result, non-stationary signals introduce a quality reduc-
tion. With the current definition of the correlation func-
tions in Def. 3.1 for a time-lag pair (n,k), we are able to
combine temporal signal properties, e.g. non-whiteness and
non-stationarity. We assume that the SOS of non-stationary
signals can be estimated by averaging over a number of sam-
ples close to the indicated time-lag pair.

Before we describe the structure in the sensor correlation
functions we introduce some assumptions on the SOS of the
source and noise signals such that we are able to define a
Noise-Free Region Of Support (NF-ROS).

Definition 3.2. The Noise-Free Region Of Support (NF-
ROS), also denoted by 2, is a set of time lag pairs (n,k)
for which the noise correlation functions rl”z[n k] and
Tivi [n, k] and the source crosscorrelation functions r; ;, [n k:]
for i1 # i2 equal zero. The total number of time-lag pairs in
the NF-ROS is denoted by N, thus: Q 2 {Qi,---,Qn},
where Q; = (n,k); and |Q=N. Finally, the source autocor-
relation functions ri;[n, k] are assumed sufficiently unequal
in the NF-ROS such that they are linearly independent.

Example 3.1. Suppose that D sensors measure a mizture
of S stationary, differently colored source signals that are
each contaminated by additive, temporally white noise with
variance o2 varying per sensor. In that case, the time index
n can be ignored because the signals are stationary signals.
Furthermore, lag k = 0 should not be taken into account be-
cause the noise contributes to the SOS of the sensor signals
for that lag. The NF-ROS may be chosen as the first N lags
larger than 0, thus Q = {(n,1),---,(n,N)} for any n € Z.
Note: when the noisy correlation data is compensated in this
scenario then the noise wvariances have to be measured, es-
timated or known a priori for each separate sensor. This
requires more a priori information and is sensitive for er-
rors. Therefore, the use of a NF-ROS is more robust.

For time-lag pairs in the NF-ROS, (n, k) € Q, the sensor
correlation functions have the following structure:

0] = Za“ IrLlQ] V1<inia<D.  (6)

Az,
This structure can be visualized by defining the following

sensor and source correlation matrices respectively:

R} 2 E{x[n|x"[n—k|} VY(n,k);€Q,
R; £ E{s[n]s" [n — k]} V(n,k): € Q,
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where R? € RP*P and from the assumptions in the NF-
ROS: R = diag(ri;[Q],--- ,755[Q]) € RS*. The mutual
relation between these correlation matrices follows from (6):

R} = AR;(A)" V1<i<N. (7)
The structure in (7) allows us to identify extraction filters.

4. FILTER IDENTIFICATION

The rationale behind our method is that extraction filters
are identified as the eigenvectors of a Generalized Eigenvalue
Decomposition (GEVD) of sensor correlation matrices, as
was already introduced in [6].

Definition 4.1. The GEVD of two sensor correlation ma-
trices Ri, and R, is denoted by:

{w,A} = gevd (R}, Ri;) , (8)

where {w, A} is the set of all eigenvectors and eigenvalues
that solve the system: AWRJ, = wRY,.

Theorem 4.1. Each eigenvector of a GEVD of two corre-
lation matrices Rfl and sz for all i1 # iz is the extraction
filter of one of the source signals.

Proof. The proof follows directly when we substitute (7) into
Def. 4.1 and choose for the eigenvector w one row from the
inverse of the mixing matrix A, i.e. w = e;(A)™! where
e; € RS is a vector with a one at the j’th column and
zeros elsewhere. O

Although this filter identification problem is solved
rather easily, we do not know which source signal is extracted
when randomly an eigenvector is selected. Therefore, we ex-
ploit the structure in the generalized eigenvalues. We com-
bine the eigenvalues with the mold in order to select the
desired extraction filter.

The eigenvalues of the GEVD in (8) are given by:

N=2"2 cR Vje{l, -, 9
o {18} (9)

The mold gives us an a priori estimation of the two required
correlation function values. Thus based on an a priori ex-
pected value of the eigenvalue we are able to identify the
desired extraction filter.

In Section 4.1 we generalize these results such that we are
able to search for the (absolute) smallest eigenvalue, which
can help in order to develop more efficient algorithms. Fur-
thermore, we generalize the results such that we can utilize
the mold for more than two time-lag pairs only, which in-
creases robustness.

4.1 Filter identification procedure

Suppose that the mold is given as an a priori available es-
timation r: € R'™¥ of the autocorrelation of the desired
source in the NF-ROS:

rl & [ree[€] ree|QN]] VQ; € Q. (10)

We assume that for this estimate it holds that:

[(re,ra)| _ [(re,xd)|

I3l (I3 ]

Vi d, (11)

where |-| is the absolute value, (-,-) is the Euclidean inner
product, ||-]| is the Euclidean norm and:

S 2 [rs (] N e RN Vie {1,---, S}, (12)

This assumption implies that the mold is closer to the actual
autocorrelation of the desired source rj than to any of the
autocorrelations of the other sources.

In order to identify the desired extraction filter based
on the mold we define the following linear combinations of
correlation matrices:

N D
=) ¢RI=A (Z fZRf) (a)", (13)
i=1 i=1

and &, 2 [5117 e 7&1\7] € R™¥. The linear combinations of
source correlation matrices have the following structure:

N
3 6Rs :diag{all7-~~ 70415} (14)
i=1

where o} £ (£;,15), for each vector &;.

Linear combinations of correlation matrices possess a
similar structure as in (7) such that the extraction filters
can be identified by the following GEVD:

{w,\} = gevd (Ty,,Ty,) . (15)

In this case, the eigenvectors are again the extraction filters,
but the eigenvalues obtain a new structure:

A\ O‘;2 <£l2 , rzs>

o (&)

Observe that each eigenvalue depends on the correlation vec-
tor r; of one of the source signals, which is indicated in the
superscript index, and the vectors §;, and §,, that form the
linear combinations as is indicated by the su%script indices.

vie{l,---,S}.  (16)

Theorem 4.2. Suppose that we choose two linear combi-
nation vectors §, and &, as orthonormal vectors, then the
eigenvalues are a measure for the angle pis between the vec-
tor &, and the vector rj projected on the two dimensional
space spanned by &, and §,:

i <£27I‘f>

12 = €10 Vie{l,---,S}. 17)

= tan ¢l

Proof. We find an orthonormal basis for the space R™>¥ by
choosing the N vectors &, € RN for I € {1,---,N} or-
thonormal with respect to each other. Using this orthonor-
mal basis we decompose the correlation vector r; as follows:

N
v = "rig Vie{l,---,S} (18)
=1
where 7! € R. Given this decomposition, it follows that:
(&, rf) = !, which results in the following eigenvalues:

we (&1,18) i

On the other hand, the projection 7§ of the vector rj onto the
space spanned by &, and &, is given by: # = r}¢, —|—ri2£2. It
follows from geometry that the angle %5 between the vector
&, and #{ is characterized by tan(pi,) = r?/ri. O

If the mold is two dimensional, i.e. N = 2, then the
problem is completely determined. If we choose £, as:
&, =ri/||re||, then the absolute smallest eigenvalue corre-
sponds to the desired source according to the assumption in
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(11). Otherwise, if N > 2, some dimensions are ignored and
the projected autocorrelation vector of an undesired source
may have a smaller angle with respect to the mold than the
autocorrelation vector of the desired source. We solve this
problem by using the following property: the generalized
eigenvectors for multiple GEVD of different linear combina-
tions of correlation matrices are the same.

Theorem 4.3. Suppose we take the following summation of
squared eigenvalues that correspond to source s;[n]:

where the eigenvalue structure is as in (16) and the vectors
&, form an orthonormal basis for R*™N with &, = r3/ ||r]].

If (11) holds, then the value of m® is minimal for that series
of eigenvalues that correspond to the desired source signal.

Proof. By using the decomposition of a correlation vector
from the proof of Thm. 4.2 it follows that:

Notice that by our assumption in (11) the value of
|ri| /lIrf]| € [0,1] is maximal for the desired source, thus
for i = d. It follows that 0 < m?¢ < m® for all i # d. O

From Thm. 4.3 it follows that the desired extraction fil-
ter is identified as the eigenvector that corresponds to the
smallest m* for ¢ € {1,---,5}.

4.2 Filter identification algorithm

The GEVD of two matrices I';; and I';, can be written as a
conventional eigenvalue decomposition of the following ma-
trix Ty, (T, )", if Ty, is invertible. Thus, given that T, is
invertible:

{Wv )‘} = gevd (Fh s Fl2) = eig (Flz (Fll)il) ) (22)

where {w, A} = eig(T") are the solutions of: Aw = wI'. Fur-
thermore, if a matrix is multiplied by itself, i.e. (T';,)* £
I';,T';,, then the eigenvalues of that matrix are squared while
the eigenvectors remain the same.

From these properties it follows that the eigenvalues of
the following eigenvalue problem correspond to the squared
values of m" in (20):

{w,\} = eig (Z (rl(rl)l)Q) 7 (23)

1=2

where A' = (m*%)?. If we compute the eigenvector that corre-
sponds to the smallest eigenvalue of (23), then we have the
desired extraction filter.
We summarize this procedure in the following algorithm:
e Find the mold ri € R*" in the NF-ROS for which (11)
holds;
e Calculate or estimate the sensor correlation matrices RY
forie{1,---N};
e Find a complete set of orthonormal vectors &, -+ ,&y
for RYN  where &, = rs/||r3]].
e Calculate N linear combinations I'; of the sensor corre-
lation matrices;
e Combine the matrices I'; as in (23);
e Compute the eigenvector that corresponds to the smallest
eigenvalue of (23).
This procedure is validated by means of simulations.

5. SIMULATION RESULTS AND DISCUSSION

We validate the novel BSE algorithm by showing that it out-
performs the Linear Prediction based BSE (LP-BSE) meth-
ods for noisy measurements from [4,5]. In order to make
a fair comparison we first give a description of the LP-BSE
problem as a GEVD problem.

5.1 Linear prediction based BSE as a GEVD

In our simulations the linear prediction filter b, with filter
coefficients b, for p € {1,---, N}, was chosen as the opti-
mal Wiener filter based on the prescribed autocorrelation.
By utilizing this filter we computed prediction error signals
e[n] € RP*! from the measurements x[n] € RP*! as follows:

ei[n]::ci[n]—pr:ci[n—p] Vie{l,---,D}. (24)

p=1

The extraction filter from [3] was then identified from the
following GEVD of the following two correlation matrices:

{W7 )‘} = gevd (Rz7 Re) ) (25)

where R® 2 E{e[n](e[n])”} and R® £ E{x[n](x[n])T}. Each
eigenvalue corresponds to the normalized mean square pre-
diction error in [3] and the respective eigenvectors are the fil-
ters that extract the corresponding source signal. Therefore,
the eigenvector that corresponds to the smallest eigenvalue
can be selected as the desired extraction filter. In case of
sensor noise both correlation matrices R* and R® are com-
pensated to find the extraction filter, as is proposed in [4,5].

5.2 Simulation setup

We simulated an instantaneous mixing system with three dif-
ferent noise scenarios. The sources consisted of three station-
ary Auto Regressive Moving Average (ARMA) signals s1, s2
and s3, from which s; was the desired signal. The source sig-
nals were created by filtering zero mean white Gaussian sig-
nals. The pole pairs of these filters were complex conjugates:
p1 = —0.740.7¢,p2 = 0.14£0.9¢ and ps = 0.94+0.154, and the
zeros were: z1 = 0.98, z2 = 0.86 and z3 = 0.92, which corre-
sponded to source s1, s2 and s3 respectively. The correspond-
ing source signal variances were: (05)? = 0.88, (05)% = 1.1
and (03)% = 0.93.

The sensor signals were computed according to the rela-
tion in (1), with the following instantaneous mixing system:

0.5488 —0.0086 —0.0805
A= 00965 -0.4677 —0.3520|, (26)
—0.3117 —1.0405 —0.4808

and with different noise v[n] for each mixing scenario. In
the first scenario no noise was assumed, i.e. v[n] = 0. The
LP-BSE method for noise free measurements (NF-LP) and
the novel BSE method with a NF-ROS of the lags 0 until
4 (NF-BSE) were used to find the extraction filter. In the
second scenario, we contaminated each sensor with white
Gaussian noise. The noise power distribution was given
by: (0¥)? = 0.75,(c%)? = 0.65 and (0%)*> = 0.72. The
LP-BSE method with white noise compensation (WN-LP)
and the novel BSE method with a NF-ROS of lag 1 un-
til 5 (WN-BSE) were used to find the extraction filter for
this scenario. In the third mixing scenario the temporal
structure of the noise was changed into a Moving Average 1
(MA1) structure. The zeros of the MA1 filters were given
by: z1 = 0.15, 22 = 0.81, z3 = —0.70 for the respective noise
signals. For this scenario the LP-BSE method with colored
noise compensation (MA1-LP) and the novel BSE method
with a NF-ROS of lag 2 until 6 (MA1-BSE) were used to
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Figure 2: Simulation results for noisy mixtures.

find the extraction filter. The compensation is performed
with noise correlation matrices that were calculated from
theory, thus extra prior information is used for the LP-BSE
methods.

For each scenario our mold was the exact autocorrelation
function of the desired source signal si, which was also used
for the calculation of the prediction filter. We measured the
performance of the methods by the Performance Index (PI)
from [1], which is defined as follows:

PI £ 10log L zs: (93)2 -1 '
S -1\ & max{(91)?,- -, (95)}

This PI measures the suppression of sources from the follow-
ing extraction performance vector: g 2 wA/||wA|| € R'*S.
If the performance vector g is close to a vector with a one at
one of the columns and zeros elsewhere then the PI value is
low. If the output signal contains still a mixture of several
sources then the PI value is high. A PI value of 0dB corre-
sponds to a uniform mixing of the sources. Furthermore, we
determine if the desired source s7 is extracted.

We performed a Monte Carlo simulation in which we
simulated each mixing scenario 5000 times for a range of
Signal to Noise Ratios (SNR) from 0 dB until 50 dB, where:

E{||As||*}

SNR. £ 10 - log,,
E{|lv*}

[dB]. (27)

Each simulation a new realization of the 3 x 50000 source and
noise signal samples was taken and each time the PI value
was calculated. The results for both methods in case of the
noisy scenarios are depicted in Fig. 2. For each method the
mean PI value, thus the mean interference of non-extracted
sources, over the 5000 simulations per SNR is depicted in the
upper graph, while in the lower graph the error percentage
per method and SNR is depicted. The error percentage con-
sists of the relative number of extraction filters that extract
another source than the desired source. The mean PI values
of the noise free mixing scenarios were -77.3 dB and -79.8
dB for the NF-BSE and NF-LP method, respectively. Both
noise free methods found the extraction filter without errors.

5.3 Discussion

From the simulations we observe that both the LP-BSE
method and the novel BSE method have a similar, excel-
lent performance in case of a noise free measurement. These

noise free simulations introduced a lower bound for the ex-
pected PI value of approximately -80 dB. The simulations
with noisy measurements, for which the results are depicted
in Fig. 2, show three interesting regions. First, when the
SNR reaches above 30 dB then the PI value reaches towards
the lower bound and is excellent and free of errors for both
methods and noise scenarios. Second, for SNR values be-
tween 5 dB and 30 dB the desired source is extracted with-
out errors, but the PI values, i.e. the suppression of the
undesired sources, of both methods increases for lower SNR
values. However, the novel BSE method has similar PI val-
ues for both noisy scenarios and above that better PI values
than the LP-BSE methods. Finally, when the SNR becomes
lower than 5 dB the novel BSE method outperforms the LP-
BSE method both on the PI value and the error rate.

From these observations we conclude that the novel BSE
method is more robust to noise than the LP-BSE method.
This robustness is obtained because we deal with the noise
in a very simplified manner. When correlation data is cor-
rupted by noise then we simply ignore that correlation data
instead of compensating for the noise contribution. In our
simulations the noise characteristics were assumed to be
known exactly for the LP-BSE methods. In practice, this
will not be the case and mismatches in the noise compen-
sation will lead to a performance reduction, while the novel
BSE method is insensitive for these mismatches.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a novel approach to BSE. This
novel method extracts the desired source signal by the ex-
ploitation of a priori information in the form of a NF-ROS
and a mold of the autocorrelation that belongs to the de-
sired source signal. We have shown by means of simulations
that the exploitation of a NF-ROS makes the method more
robust to noise than a linear predication based BSE method
and it exploits less a priori information.

Future research topics are as follows. If extra sensors are
available then they should be utilized for noise reduction.
Furthermore, mismatches in the a priori determination of
the mold should be accounted for in the algorithm and the
method should be extended such that the NF-ROS can be
determined blindly. Finally, BSE should be performed for
more complex, non instantaneous, mixing systems.
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