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ABSTRACT
In this paper, we present a new partial update NLMS adaptive filter-
ing algorithm for improving the performance of stereophonic acous-
tic echo cancellers. The proposed partial update approach brings
about a low interchannel coherence, independent of the location of
the source in the transmission section which in turn increases the ro-
bustness to source positions as well as the convergence rate of adap-
tive filters in this application. Simulation results verify the increase
in performance of the proposed algorithm over other partial update
algorithms.

Index Terms— stereophonic acoustic echo cancellation, mis-
alignment, partial update

1. INTRODUCTION

There is an increasing interest for employing multi-channel sound in
audio communication systems in order to achieve better audio per-
ception. Examples of such systems are teleconferencing systems and
hands-free telecommunication hand-held devices. One of the prob-
lems that should be solved in such systems is the suppression of the
multi-channel acoustic echo. Multi-channel acoustic echo cancella-
tion has issues that make it considerably more difficult to overcome
than the monophonic case. The fundamental problem is the exis-
tence of a mismatch between the impulse responses of the adaptive
filters and those of the acoustic paths of the receiving room. This
so-called misalignment problem [1] leads to a residual echo in the
system as well reduces the robustness of the adaptive filters to the
abrupt changes in the acoustic paths of the transmitting room, i.e.,
the paths from the talker to the microphones. As a result, such prob-
lems lead to a performance degradation of the conferencing systems
that is in conflict with high quality communication requirements. It
has been shown in [1] that the misalignment problem is due to the
high interchannel coherence between the transmitted signals from
the transmission to the receiving room.

To date, a variety of methods have been proposed to address the
misalignment problem by reducing the interchannel coherence be-
tween the transmitted signals in case of stereophonic acoustic echo
cancellation (SAEC). Such algorithms include methods that perform
preprocessing on the input stereophonic signals, such as adding or
modulating small quantities of independent noise to each input chan-
nel [2] and comb filtering [3]. It is important to note that although
decorrelating the transmitted signal is important to achieve high con-
vergence for the adaptive filters, algorithms proposed recently are
aimed at minimizing the distortion introduced by such preprocess-
ing methods. These algorithms include adding a nonlinear function
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of the signal of each channel to that of the same channel [1] [4] [5],
time-varying all-pass filtering of the stereophonic signals [6], and the
application of input-sliding technique to SAEC [7]. Yet one of the
most popular technique to achieve decorrelation without adversely
degrading the audio quality is the addition of a small nonlinearity to
each channel [1]. Although the above methods yield improvements
in the estimation of the true room impulse response (RIR), they have
a key limitation in terms of audio degradation. This is because they
act on the signals that are directly sent to the listeners in the receiving
room, and hence in order to achieve a high degree of decorrelation,
the stereophonic perception or quality is often sacrificed [8] [9].

More recently, new algorithms have been developed to achieve
signal decorrelation in the weight updating process of adaptive fil-
ters, such as employing a two-channel adaptive lattice structure [10]
and using an exclusive-maximum (XM) nonlinear tap-selection
based adaptive algorithms [11]. Among the above methods, the XM
tap-selection based algorithm [11] has shown to achieve high conver-
gence with lower complexity compared with those techniques men-
tioned above. In this algorithm, coefficients update are performed
only on a set of exclusive filter coefficients for which the total en-
ergy of their corresponding taps is maximized such that the coher-
ence between the two channels then is minimized by the exclusivity
constraint across both channels.

In this paper, we propose a new partial-update algorithm which
improves the convergence performance of the adaptive filters in
SAEC. The proposed algorithm exploits the advantages of the XM
nonlinear (XMNL) tap-selection algorithm and we extend its de-
velopment in order to have a better convergence performance. To
achieve this, the proposed partial update algorithm replaces some of
the XM selected taps with some specified unselected taps to reach to
a lower level of interchannel coherence. This process is performed
based on a proposed criterion that is a function of the interchannel
coherence which in turn give rise to an improvement in convergence
performance of adaptive filters.

2. STEREOPHONIC ACOUSTIC ECHO CANCELLATION

Figure 1 shows the stereophonic acoustic echo canceller for a typical
teleconferencing application. For simplicity, we consider only one
microphone in the receiving room, since a similar analysis can be
applied to the other channel [1]. As can be seen, stereophonic signals
u1(n) and u2(n) are received by the microphones of the transmission
room. These signals are generated by the sound source s(n) via RIRs
g1(n) and g2(n) in the transmission room. These received signals
are then transmitted to the loudspeakers in the receiving room which
produce an echo signal y(n) given by

y(n) = hT
1 u1(n)+hT

2 u2(n)+w(n) , (1)
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Fig. 1. Stereophonic acoustic echo cancellation for teleconferencing appli-
cation.

where hi = [hi,0,hi,1, . . . ,hi,L−1]T is the ith channel receiving room
RIR, ui(n) = [ui(n),ui(n−1), . . . ,ui(n−L+1)]T , i=1, 2 and w(n) is
the noise of the receiving room’s microphone. To address the SAEC
problem, two adaptive filters are employed to estimate h1 and h2
in order to reduce the stereophonic acoustic echo. The error signal
between the echo signal and its estimation is thus given by

e(n) = y(n)−
[
ĥT

1 (n)u1(n)+ ĥT
2 (n)u2(n)

]
, (2)

where ĥi(n) = [ĥi,0(n), ĥi,1(n), . . . , ĥi,L−1(n)]T , i = 1, 2, is the vector
of adaptive filter coefficients for the ith channel.

2.1. Review of the Exclusive-maximum Nonlinear NLMS algo-
rithm
One of the most recent algorithms proposed for SAEC is the
exclusive-maximum nonlinear normalized least-mean-square algo-
rithm (XMNL-NLMS) [11]. This algorithm incorporates the non-
linear preprocessor [1] and a tap-selection scheme that reduces the
interchannel coherence by selecting an exclusive set of filter coeffi-
cients to update for each channel. The degradation due to this tap-
selection is then minimized by jointly maximizing the L2 norm of
the selected tap-inputs across both channels.

The XMNL-NLMS algorithm can be described by an NL pre-
processor operating on tap-input vectors u1(n) and u2(n) such that
the transmitted signals x1(n) and x2(n) are given by

x1(n) = u1(n)+0.5α{u1(n)+ |u1(n)|} , (3)
x2(n) = u2(n)+0.5α{u2(n)−|u2(n)|} , (4)

where α controls the amount of non-linearity and a value of α = 0.5
offers a good compromise between speech quality and convergence
rate of the NLMS algorithm [1]. The weight update for XMNL-
NLMS is performed by

ĥ(n+1) = ĥ(n)+
µ∥∥x(n)
∥∥2 + ε

e(n)x̃(n), (5)

where ĥ(n) = [ĥT
1 (n) ĥT

2 (n)]T and x̃(n) = [x̃T
1 (n) x̃T

2 (n)]T such that
the sub-selected tap-input vector x̃i(n) is defined by

x̃i(n) = Qi(n)xi(n), (6)

and xi(n) = [xi(n),xi(n−1), . . . ,xi(n−L+1)]T . In addition Qi(n) =
diag{qi(n)} is a L× L tap-selection matrix where elements in the
L×1 vector qi(n) are given by

q1,u(n) =
{

1 pu ∈ {M maxima of p(n)}
0 otherwise , (7)

q2,v(n) =
{

1 pv ∈ {M minima of p(n)}
0 otherwise , (8)

p(n) = |x1(n)|− |x2(n)|, (9)
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Fig. 2. Selected tap-inputs x̃1(n) and x̃2(n) for the XMNL-NLMS algo-
rithm when the source is in {4.5,1,1.5} m.

given that u,v = 1, 2, . . . ,L represent element u of q1(n) and element
v of q2(n), |xi(n)| = [|xi(n)|, |xi(n− 1)|, . . . , |xi(n− L + 1)|]T and
0 < M ≤ L, such that a good convergence rate is achieved when
M = 0.5L.

2.2. Disadvantage of the XMNL-NLMS
One of the problems that has not been considered for XMNL-NLMS
is its robustness to the source position in the transmission room.
Simulations show that when the source is directly in-front-of the mi-
crophone pair centroid, XMNL-NLMS decorrelates the two stereo-
phonic signals x̃1(n) and x̃2(n) efficiently and thus outperforms the
full-update NL-NLMS. On the contrary, the convergence rate of
XMNL-NLMS is reduced significantly when the source is located
away from the centroid of the microphone pair. This is due to the
reduction in its ability to decorrelate the stereophonic signals effec-
tively. In order to gain further insights into the degradation in con-
vergence performance of XMNL-NLMS with respect to the position
of the source, we note that when the talker is in-front-of the micro-
phone pair centroid, most of the selected taps in x̃1(n) are greater
than zero whereas for the other channel, most of the taps in x̃2(n)
are smaller than zero.

Figure 2 shows an illustrative example of the XM selected taps
x̃1(n) and x̃2(n) when the source is in-front-of the microphone pair
centroid. For clarity, we show only the first 100 samples of the two
tap-input vectors x̃1(n) and x̃2(n) each of length 512 samples. As
can be seen, most of the selected taps in the first channel correspond
to elements in x1(n) being greater than zero whereas for the sec-
ond channel, most of the active taps correspond to elements in x2(n)
are smaller than zero. This is due to the intrinsic effect of NL pre-
processing which increases the magnitude of the positive elements
in u1(n) based on (3) and the negative elements in u2(n) based on
(4). As a result of XM tap-selection on this NL preprocessed sig-
nals x1(n) and x2(n), the XM tap-selection criterion is utilized ef-
ficiently to decorrelate input vectors x1(n) and x2(n) and conse-
quently, good convergence performance is achieved. We note that for
this source location, the modest degradation in weight update due to
tap-selection does not significantly offset the benefits brought about
by the efficiently decorrelation due to the exclusivity criterion. On
the other hand, when the source is away from the centroid of micro-
phone pair, the effect of NL preprocessing on the XM tap-selection
reduces and the similarity between x̃1(n) and x̃2(n) increases. This
increases the cross-correlation between x̃1(n) and x̃2(n) which in
turn reduces the convergence rate for the XMNL-NLMS algorithm
compared to NL-NLMS.

3. PROPOSED PARTIAL UPDATE NLMS ALGORITHM

We propose a new partial update nonlinear NLMS (PUNL-NLMS)
algorithm to further improve the convergence rate of XMNL-NLMS.
We propose to achieve high convergence rate when the source is
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away from the microphone pair centroid by considering those tap-
inputs that produce a low interchannel coherence while prevent-
ing a significant loss of the total tap-input energy to the weights.
The weight update for our proposed PUNL-NLMS algorithm is per-
formed by

ĥ(n+1) = ĥ(n)+
µ∥∥x(n)
∥∥2 + ε

e(n)x̆(n), (10)

where x̆(n) = [x̆T
1 (n) x̆T

2 (n)]T is the newly selected set of elements
of the tap-input vectors x(n) = [xT

1 (n) xT
2 (n)]T which are deter-

mined by a new criteria defined in the following.
In order to ease the evaluation, we define some preliminaries as

follows

x̃i,p(n) = 0.5{x̃i(n)+ |x̃i(n)|} , (11)
x̃i,n(n) = 0.5{x̃i(n)−|x̃i(n)|} . (12)

As can be seen, the non-zero elements of x̃i,p(n) and x̃i,n(n) include
only positive and negative elements of the tap-input vectors x̃i(n)
respectively such that x̃i(n) is obtained using the XM tap-selection
criterion described in (6). In a same manner we define the following
for the NL processed received signals given by

xi,p(n) = 0.5{xi(n)+ |xi(n)|} , (13)
xi,n(n) = 0.5{xi(n)−|xi(n)|} . (14)

The aim of our partial update algorithm is therefore to reduce
the interchannel coherence of the x̃i(n) efficiently while at the
same time minimizing the energy loss to the weights during the
tap-selection process for weight adaptation. We can achieve this
by firstly removing elements of the XM tap-input vector x̃i(n) that
have significant interchannel coherence and subsequently replacing
these elements with other elements of the tap-input vector xi(n)
not selected by the XM preprocessor. In addition, these newly
selected elements should not have any significant effect on the
interchannel coherence in comparison to the rest of the unselected
taps in xi(n). The second procedure is done to compensate the loss
of input energy to the weight update algorithm during the removal
process described in the first step. These procedures in turn help
the decorrelation effect of nonlinear preprocessing in the adaptive
filtering process. To illustrate the above proposed approach, we first
define

k1(n): the number of non-zero elements of x̃1,n(n)
k2(n): the number of non-zero elements of x̃2,p(n)
r(n): the number of replaced tap-inputs from {x̃1,n(n), x̃2,p(n)} in
x̆(n).
It should be noted that r(n) is always less than or equal to
k1(n) + k2(n). We propose to employ a new criteria to reduce the
interchannel coherence in comparison to full-update algorithm and
XM tap-selection algorithm. This measure is defined as the ratio
between the number of replaced tap-inputs from both channels in
x̆(n) and the number of non-zero elements in x̃1,n(n) and x̃2,p(n),
i.e.,

ϕ =
r(n)

k1(n)+ k2(n)
. (15)

We also define the following

γ1(n) = k1(n)ϕ , (16)
γ2(n) = k2(n)ϕ . (17)

We will use γi(n) to represent the number of elements being removed
from x̃i(n) in order to build x̆i(n). To achieve a reduction in inter-
channel coherence between x̃1(n) and x̃2(n), instead of considering

M largest elements of p(n) to produce x̃1(n) and M smallest ele-
ments of p(n) to produce x̃2(n) - as defined in (6)-(9), we first obtain
M− γ1(n) largest elements of p(n) to compute x̆1(n) and M− γ2(n)
smallest elements of p(n) to compute x̆2(n). As such, we have used
only a percentage of the elements of x̃i(n) to generate x̆i(n). This
percentage depends on the amount of ϕ .

It is important, at this stage, to note that the rest of the elements
in x̆i(n) are zero. Such null elements are expected to cause signifi-
cant degradation in convergence performance due to the energy loss
in the tap-input vector [11]. In order to address this, we define vec-
tors t1(n) and t2(n) as

t1(n) =
(
IL×L−Q1(n)

)
x1,p(n) , (18)

t2(n) =
(
IL×L−Q2(n)

)
x2,n(n) . (19)

such that t1(n) is an L× 1 vector containing positive elements that
are not selected by the XM preprocessor of channel 1 and the rest
of its elements are zero, while t2(n) is an L× 1 vector containing
negative elements that are not selected by the XM preprocessor of
channel 2 and the rest of its elements are also zero. Using vectors
t1(n) and t2(n), we compensate for such energy loss by adding γ1(n)
number of elements that belong to the set of the elements of t1(n)
to x̆1(n). In a similar manner to the second channel, we add γ2(n)
number of elements that belong to the set of the elements of t2(n)
to x̆2(n). In order to maximize the tap-input energy to adaptive fil-
ters and at the same time to minimize the interchannel coherence
between x̆1(n) and x̆2(n), the selected elements of the t1(n) should
correspond to elements having the largest values and the selected el-
ements of the t2(n) should correspond to elements having the small-
est values.

Using these definitions, the tap-input vector to the NLMS algo-
rithm x̆i(n) is achieved using

x̆i(n) = Bi(n)xi(n), (20)

where i = 1, 2 is the channel index and Bi(n) = diag{bi(n)} is a
L× L tap-selection matrix such that elements in the L× 1 vectors
bi(n) are given by (21) and (22) shown on the next page, given that
u,v = 1, 2, . . . ,L and b1,u(n) and t1,u(n) represent uth element of
b1(n) and t1(n) respectively and also b2,v(n) and t2,v(n) represent
vth element of b2(n) and t2(n) respectively.

It can be seen that with ϕ = 0, the proposed PUNL-NLMS algo-
rithm is equivalent to XMNL-NLMS since γ1(n) and γ2(n) defined
in (18) and (19) are equal to zero and hence we have x̆i(n) = x̃i(n).
On the other hand, with increasing ϕ , the effect of nonlinear prepro-
cessing becomes more significant since elements in x1(n) that are
selected for generating x̃1(n) often have positive amplitudes. At the
same time, elements in x2(n) that are selected for generating x̃2(n)
often have negative amplitudes. As we will show by simulation in
the next section, through the use of ϕ , the amount of interchannel
coherence is reduced and consequently the convergence of the adap-
tive filter is robust to each source location in the transmission room.
In the next section we also show the effect of ϕ on the interchannel
coherence and convergence rate of adaptive filter.

4. SIMULATION RESULTS

For evaluation purpose, we consider the specifications of the simu-
lated environment in SAEC as follows. The dimensions of the re-
ceiving and transmission rooms were 5× 7× 3 m and 6× 5× 4 m
respectively. The microphones were positioned at {4,1.2,1.5} m
and {5,1.2,1.5} m in the transmission room. In addition, two loud-
speakers were placed at {1,6,2.5} m and {4,6,2.5} m while the
microphone was at {3,4,1.5} m in the receiving room. We vary
the position of the source starting from the front of the array cen-
troid at coordinates {4.5,1.0,1.5} m to the front of the right micro-
phone at coordinates {5,1.0,1.5} m. All the room RIRs are gener-
ated synthetically using the method of images [12] such that they are
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b1,u(n) =
{

1 pu ∈ {M− γ1(n) maxima of p(n)} or t1,u(n) ∈ {γ1(n) maxima of t1(n)}
0 otherwise , (21)

b2,v(n) =
{

1 pv ∈ {M− γ2(n) minima of p(n)} or t2,v(n) ∈ {γ2(n) minima of t2(n)}
0 otherwise . (22)
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Fig. 3. Interchannel coherence versus ϕ when the source is at
{4.6,1.0,1.5} m.

of length L = 512 and Lg = 512. We use of two kinds of input source
signal, the first being a colored signal that is produced by filtering a
wight Gaussian noise (WGN) through an FIR filter with coefficients
[0.3574, 0.9, 0.3574] [13] and the second one is a male speech sig-
nal with sampling rate 22050 Hz. A white Gaussian noise w(n) was
added in all simulations to the desired signal with SNR=30 dB. We
also consider M = 0.5L in (7) and (8) for evaluating XMNL-NLMS
throughout this paper. First we evaluate the effect of ϕ on interchan-
nel coherence of the stereophonic signals. The interchannel coher-
ence between z1(n) and z2(n) is defined by

Cz1z2( f ) =
|Pz1z2( f )|2

Pz1z1( f )Pz2z2( f )
, (23)

where Pz1z2( f ) is the cross power spectrum between z1(n) and z2(n)
while f is the normalized frequency.

Figure 3 shows the mean interchannel coherence between
z1(n) = x̆1(n) and z2(n) = x̆2(n) across different frequencies when
the source is at coordinates {4.6,1.0,1.5} m. In this example x̆1(n)
and x̆2(n) are each of length 2000 samples containing the colored
signal as described before. In addition, Fig. 4 shows the mean in-
terchannel coherence across different frequencies for various source
positions ranging from {4.5,1.0,1.5} m to {5,1.0,1.5} m for five
different values of ϕ , using the above mentioned colored signal. As
can be seen from Figs. 3 and 4, the coherence reduces with increas-
ing ϕ . Note also that when the source is in the middle of the micro-
phone pair at {4.5,1.0,1.5} m, as shown in Fig. 4, the coherence is
low and does not vary with ϕ . For this case, the total number of non-
zero elements in x̃1,n(n) and x̃2,p(n) is negligible in comparison to
the total number of x̃1(n) and x̃2(n) respectively. More importantly,
we note that when the source is away from the centroid of the micro-
phone pair, the number of non-zero elements of {x̃1,n(n), x̃2,p(n)}
is high and XM tap-selection method reduces the interchannel co-
herence. In such situations our proposed partial update procedure
compensate the drawback of the XM tap-selection method giving a
lower average interchannel coherence as shown in Fig. 4.

In order to quantify the convergence rate of adaptive filters in
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Fig. 5. Convergence rate for NL-NLMS, XMNL-NLMS, and PUNL-NLMS
in terms of ϕ when the source is at {4.5,1.0,1.5} m.

SAEC, we use the normalized misalignment as

η(n) =
‖ĥ(n)−h‖2

‖h‖2 . (24)

We set the step-size for each algorithm such that the algorithms reach
the same steady-state. For this we consider the step-size for NL-
NLMS, XMNL-NLMS and the proposed PUNL-NLMS algorithm to
be equal to 0.8, 0.58 and 0.62 respectively. We then define quantity
T−10 as the inverse of the number of iteration required for normalized
misalignment to reach -10 dB. Figures 5, 6, 7 show the convergence
rate of NL-NLMS, XMNL-NLMS, and PUNL-NLMS correspond-
ing to three source positions {4.5,1.0,1.5} m, {4.6,1.0,1.5} m and
{5,1.0,1.5} m with respect to ϕ .

As can be seen from Fig. 5, the convergence of XMNL-NLMS
and the proposed PUNL-NLMS are comparable and are consider-
ably higher than NL-NLMS. Figures 6 and 7 show that when the
source is away from the centroid of microphone pair, the conver-
gence of XMNL-NLMS reduces and that this degradation is signifi-
cant when the source is at {5,1.0,1.5} m, as shown in Fig. 7. Based
on these three figures, we can see that in general for ϕ >> 0, we
have a better convergence behavior for the proposed PUNL-NLMS
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Fig. 7. Convergence rate for NL-NLMS, XMNL-NLMS, and PUNL-NLMS
in terms of ϕ when the source is at {5,1.0,1.5} m.

algorithm compared to both NL-NLMS and XMNL-NLMS and the
best behavior occurs when ϕ ≈ 1. Figures 8 and 9 compare the
convergence rate of three algorithms for speech signals when the
source is at {4.5,1.0,1.5} m and {5,1.0,1.5} m for ϕ = 1. As can
be seen, our proposed PUNL-NLMS algorithm achieves a higher
convergence rate for both stationary and non-stationary source sig-
nals achieving nearly 6 dB improvement of normalized misalign-
ment over XMNL-NLMS when the source is in front of the right
microphone.

5. CONCLUSION

In this paper, we presented a new approach for improving the con-
vergence rate of adaptive filters for SAEC. This approach is a partial
update method that selects taps with a criterion such that it maintains
the interchannel coherence to a minimum level for various source
positions in the transmission room. The advantage of the proposed
approach is verified with simulation using the NLMS algorithm.
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