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ABSTRACT

An improved frequency tracker is proposed for the recently
introduced self optimizing narrowband interference canceller
(SONIC). The scheme is designed for disturbances with
quasi-linear frequency modulation and, under second-order
Gaussian random-walk assumption, can be shown to be sta-
tistically efficient. One real-world experiment and several
simulations show that a considerable improvement in distur-
bance rejection may be achieved with the new algorithm.

1. INTRODUCTION

Consider the problem of cancellation of a nonstationary nar-
rowband disturbance d(t) acting at the output of unknown
complex-valued linear stable single-input single-output sys-
tem governed by

y(t) = Kp(q
−1)u(t −1)+ d(t)+ v(t) (1)

where t = . . . ,−1,0,1, . . . denotes discrete time, q−1 is
the backward-shift operator q−1u(t) = u(t − 1), y(t) is
the system output, u(t) is the cancellation signal, v(t)
is a wideband noise and Kp(q

−1) is the transfer func-
tion of a stable linear plant (often called secondary path),
Kp(q

−1) = ∑∞
n=0 h(n)q−n, ∑∞

n=0 |h(n)| < ∞, Kp(e
− jω) 6=

0,∀ω ∈ [−π ,π).
Since elimination of harmonic disturbances may be im-

portant to maintain process quality, the problem was solved
by many authors, under different assumptions and using dif-
ferent approaches. For instance, when a reference sensor can
be placed close to the source of the disturbance, an adaptive
feedforward controller based on a variant of filtered-x least
mean squares (FX-LMS) algorithm is usually the solution of
choice [1]. When such a signal is not available, the problem
is more difficult. Then, one of the most common solutions is
based on the combination of the FX-LMS algorithm with the
internal model control (IMC) architecture. Other successful
approaches are based on the internal model principle [2] or
phase-locked loops [3] – for a more complete overview of
the existing approaches see e.g. [4].

A new approach, based on coefficient fixing and adap-
tive gain scheduling, has been introduced recently [5], [6].
Unlike numerous previous attempts, it requires little or no
prior knowledge of the plant. Furthermore, due to parsimo-
nious controller parameterization, introduction of additional
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excitation into the loop is not necessary, even when the plant
varies over time.

The simplified version of the xSONIC (extended self-
optimizing narrowband interference canceller) control algo-
rithm, presented in [6], consists of two loops. The inner loop,
which computes the cancellation signal, takes the form

d̂(t + 1|t) = e jω̂(t|t−1)[d̂(t|t −1)+ µ̂(t)y(t)]

ω̂(t + 1|t) = Ω[Y (t)]

u(t) = −
d̂(t + 1|t)

kn
, (2)

where d̂(t + 1|t) is the one-step-ahead prediction of the dis-
turbance, ω̂(t + 1|t) is the one-step-ahead prediction (based
on the available observation history Y (t) = {y(i), i ≤ t}) of
the unknown and possibly time-varying instantaneous fre-
quency of the disturbance ω(t), and kn is the nominal (as-
sumed) gain of the plant at the frequency ω̂(t|t − 1), usu-

ally different from the true plant’s gain Kp(e
− jω̂(t|t−1)) (prior

knowledge of the plant improves cancellation results; when
no such information is available, one may simply set kn = 1,
see [6]). Finally µ̂(t) is a complex-valued adaptation gain.
Inclusion of a complex gain is an important feature of the
proposed approach, as it allows one to counterbalance any
discrepancy between the plant and its nominal model.

The second, outer loop, adjusts µ̂(t) so as to: 1. Compen-
sate differences between the plant and the assumed nominal
gain. 2. Match the closed loop’s bandwidth to the rate of
nonstationarity of the system. It takes the form

z(t) = e jω̂(t|t−1)
[
(1− cµ)z(t −1)−

cµ

µ̂(t)
y(t −1)

]

r(t) = ρr(t)+ |z(t)|2

µ̂(t) = µ̂(t −1)−
y(t)z∗(t)

r(t)
(3)

where cµ > 0 is a small positive constant and ρ ∼= 1, 0 < ρ <
1, is the forgetting constant which decides upon the effective
adjustment memory length.

The version of xSONIC presented in [6] was fitted with
a general-purpose frequency tracker

ω̂(t + 1|t) = ω̂(t|t −1)+ ηg(t)

g(t) = Arg

[
d̂(t + 1|t)

d̂(t|t −1)e jω̂(t|t−1)

]
(4)

where Arg[ · ] denotes principal argument of a complex num-
ber and η > 0 denotes a small adaptation gain.
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This paper introduces an improved frequency tracker for
the xSONIC controller and presents its analysis. The original
scheme (4) is extended by inclusion of estimation of local
frequency rate. The reason for such an upgrade is the fact
that frequency of many real-world disturbances varies in an
approximately piecewise-linear manner [7]. Exploiting this
feature leads to more accurate tracking of frequency which,
in turn, improves the quality of disturbance rejection.

The analysis of the proposed tracker shows that, for
Gaussian random-walk frequency rate changes, it is a statisti-
cally efficient estimation procedure. Furthermore, numerous
simulation experiments confirm that the resulting xSONIC
controller is robust to modeling errors, i.e., it performs well
even if the underlying assumptions are not fulfilled.

2. THE PROPOSED ALGORITHM

2.1 Improved frequency estimator

The proposed frequency tracking scheme takes the form

α̂(t + 1|t) = α̂(t|t −1)+ ηαg(t)

ω̂(t + 1|t) = ω̂(t|t −1)+ α̂(t + 1|t)+ ηωg(t)

g(t) = Arg

[
d̂(t + 1|t)

d̂(t|t −1)e jω̂(t|t−1)

]
(5)

where α̂(t + 1|t) is the one-step-ahead prediction of the fre-
quency rate α(t) = ω(t)−ω(t − 1), while ηα and ηω are
small gains satisfying the condition 0 < ηα ≪ ηω . Note that
for ηα = 0 and under zero initial conditions, (5) reduces to
(4).

Compared to e.g. the state-of-the art multiple linear fre-
quency tracker (MFT-L) [8], the proposed algorithm is very
simple. Rather unexpectedly, this tracker outperforms MFT-
L in many aspects. The analysis of MFT-L, performed in [8],
showed that it nearly reaches the so-called posterior Cramér-
Rao bounds (PCRB) [9], which hold for frequency and fre-
quency rate tracking and limit the efficiency of any tracking
scheme (the classical Cramér-Rao bound does not apply to
systems with random parameters). The loss in performance,
ranged from 1% to 7% for frequency tracking and from 9%
to 28% for frequency rate tracking. Moreover, the optimal
settings for MFT-L were found to depend on the tracking ob-
jective (frequency or frequency rate). We will show that the
algorithm (5) is able to reach both bounds, and that it reaches
them simultaneously.

2.2 Analysis of the Algorithm

To avoid unnecessary complications, our discussion will be
carried for the constant-amplitude (|d(t)| = a0) disturbance
model

d(t + 1) = e jω(t)d(t)

ω(t + 1) = ω(t)+ α(t + 1)

α(t + 1) = α(t)+ wα(t + 1) , (6)

where ω(t) and α(t) denote the local frequency and fre-
quency rate (trend), respectively, and wα (t) is the one-step
change of frequency rate. Furthermore, we will assume that
v(t) is a zero-mean complex Gaussian circular white noise

with variance σ2
v , and that wα(t), independent of v(t), is a

zero-mean Gaussian white noise with variance σ2
α .

The latter assumption means that frequency obeys a
second-order random walk model

(1−q−1)2ω(t) = wα (t) (7)

which can be considered a stochastic extension of a linear
frequency modulation scheme1, where

ω(t) = ω0 + ∆ωt . (8)

In a short time frame both models yield similar frequency
trajectories. The advantage of the stochastic approach over
the much simpler deterministic case stems from the fact that
it incorporates modeling noise. This makes the stochastic
model more “realistic”.

It is clear that, in order to reject disturbance (6), one
should generate such a narrowband signal u(t) which – after
passing through the plant – will destructively interfere with
d(t). Suppose that the frequency varies sufficiently slowly.

The output of the plant Kp(q
−1), excited by u(t), can then be

approximated using a simple scale-and-shift model

Kp(q
−1)u(t −1)∼= kpu(t −1) (9)

where kp = 1
T ∑t

n=t−T+1 Kp(e
− jω̂(t|t−1)) is the average fre-

quency response of the plant in the local analysis window
[t −T + 1,t] of width T .

Using (2) and (9), the system equation (1) can be rewrit-
ten as

y(t) ∼= d(t)−
kp

kn
d̂(t|t −1)+ v(t) = c(t)+ v(t) (10)

where c(t) = d(t)−
kp

kn
d̂(t|t −1) denotes the cancellation er-

ror. The quantity β = kp/kn, further referred to as modeling
error, will be assumed constant.

Let ∆ω̂(t) = ω(t) − ω̂(t|t − 1) and ∆α̂(t) = α(t) −
α̂(t|t − 1) denote the frequency tracking error and the fre-
quency rate tracking error, respectively. Additionally, let
x(t) = c(t)d∗(t) and z(t) = v(t)d∗(t). Note that z(t) is a zero-

mean circular white Gaussian noise with variance σ2
v a2

0. Us-
ing the approximating linear filter (ALF) method, introduced
in [10] for the purpose of analysis of adaptive notch filters,
one can arrive at the following approximations

x(t + 1) = (1− µβ )x(t)− µβ z(t)+ ja2
0∆ω̂(t)

∆α̂(t + 1) = ∆α̂(t)+ wα(t + 1)−ηαIm

{
µβ

a2
0

[
x(t)+ z(t)

] }

∆ω̂(t + 1) = ∆ω̂(t)+ ∆α̂(t + 1)

− ηω Im

{
µβ

a2
0

[
x(t)+ z(t)

] }
. (11)

3. TRACKING AND CANCELLATION
CAPABILITIES

Observe that any occurrence of β in (11) is always accompa-
nied by µ . Therefore, no matter what modeling error is, its
influence can be always ‘undone’ with the proper choice of

1Note that linear modulation (8) is governed by (1 − q−1)2ω(t) = 0,
which means that (7) can be regarded as a “perturbed” linear model, and
the resulting frequency modulation – as “quasi-linear”.
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the complex-valued gain µ . In [5] we show that such a com-
pensation actually takes place when the adjustment algorithm
(3) is used. Keeping this in mind, in the remaining part of our
analysis we will assume, without any loss of generality, that
β = 1.

Let xR(t) = Re[x(t)], xI(t) = Im[x(t)], zR(t) = Re[z(t)],
and zI(t) = Im[z(t)]. Note that zR(t) and zI(t) are indepen-
dent zero-mean Gaussian white noises with identical vari-
ances equal to σ2

v a2
0/2. Solving equations (11) with respect

to xR(t), xI(t), ∆ω̂(t), and ∆α̂(t), one obtains

xR(t) = F(q−1)zR(t)

xI(t) = G1(q
−1)zI(t)+ G2(q

−1)wα(t)

∆ω̂(t) = H1(q
−1)zI(t)+ H2(q

−1)wα(t)

∆α̂(t) = I1(q
−1)zI(t)+ I2(q

−1)wα (t) (12)

where

F(q−1) = −
µq−1

1− (1− µ)q−1

G1(q
−1) = −a2

0µ
[
q−1 +(ηα + ηω −2)q−2

+(1−ηω)q−3
]
/D(q−1)

G2(q
−1) = −a4q−1/D(q−1)

H1(q
−1) = −µq−1(1−q−1)

[
(ηα + ηω)−ηωq−1

]
/D(q−1)

H2(q
−1) = a2

0

[
1− (1− µ)q−1

]
/D(q−1)

I1(q
−1) = −µηαq−1(1−q−1)2/D(q−1)

I2(q
−1) = a2

0

[
1 +(µ −2)q−1

+(1− µ + ηω µ)q−2
]
/D(q−1)

and

D(q−1) = a2
0

{
1 +(−3 + µ)q−1

+
[
3 + µ(−2 + ηα + ηω)

]
q−2

+(−1 + µ−ηω µ)q−3
}

(13)

3.1 Frequency Tracking

Using basic facts from the linear filtering theory [11], one can
evaluate the steady-state mean-squared values of frequency
and frequency rate tracking errors:

E[|∆ω̂(t)|2] = J[H1(z
−1)]E[z2

I (t)]+ J[H2(z
−1)]E[w2

α (t)]

E[|∆α̂(t)|2] = J[I1(z
−1)]E[z2

I (t)]+ J[I2(z
−1)]E[w2

α(t)] (14)

where

J[X(z−1)] =
1

2π j

∮
X(z)X(z−1)

dz

z

is the integral evaluated along unit circle and X(z−1) is a sta-
ble proper rational transfer function.

Symbolic expressions relating mean-squared errors
E[|∆ω̂(t)|2] and E[|∆α̂(t)|2] to the values of parameters µ ,

ηω and ηα , disturbance amplitude a2
0 and variance σ2

α are
very long and therefore they will not be shown here. Our fur-
ther discussion is based on the results obtained using MAT-
LAB Symbolic Toolbox and on numerical methods.

σ2
α µ ηω ηα E[|∆ω̂(t)|2] Simulation PCRB

10−8 0.104 0.050 0.0013 2.27 ·10−4 2.30 ·10−4 2.27 ·10−4

10−7 0.153 0.072 0.0027 7.43 ·10−4 7.65 ·10−4 7.43 ·10−4

10−6 0.224 0.103 0.0056 2.46 ·10−4 2.66 ·10−4 2.46 ·10−4

(a) SNR=0dB

σ2
α µ ηω ηα E[|∆ω̂(t)|2] Simulation PCRB

10−8 0.153 0.072 0.0027 7.43 ·10−5 7.44 ·10−5 7.43 ·10−5

10−7 0.224 0.103 0.0056 2.46 ·10−4 2.48 ·10−4 2.46 ·10−4

10−6 0.329 0.146 0.0115 8.36 ·10−4 8.39 ·10−4 8.36 ·10−4

(b) SNR=10dB

σ2
α µ ηω ηα E[|∆ω̂(t)|2] Simulation PCRB

10−8 0.224 0.103 0.0056 2.46 ·10−5 2.47 ·10−5 2.46 ·10−5

10−7 0.329 0.146 0.0115 8.36 ·10−5 8.37 ·10−5 8.36 ·10−5

10−6 0.482 0.203 0.0230 2.93 ·10−4 2.93 ·10−4 2.93 ·10−4

(c) SNR=20dB

Table 1: Optimal settings for a tracking of frequency. Com-
parison of predicted mean-squared error, simulation results
and PCRB.

Table I shows the values of the parameters µ , ηω and
ηα which minimize frequency tracking error for SNR =
10log(a2

0/σ2
v )∈ {0dB, 10dB, 20dB} (low, medium, and high

SNR) and σ2
w ∈ {10−8, 10−7, 10−6}. The settings were

found using exhaustive numerical search. Additionally, Ta-
ble I presents theoretical predictions of mean-squared esti-
mation errors (obtained by the ALF method), their actual val-
ues (obtained using simulations) and corresponding PCRB’s.
The simulation results were obtained by combined ensemble
averaging (50 realizations of {v(t), w(t)}) and time averag-
ing (t ∈ [20001,100000]). To ensure that steady-state was
reached, the results obtained for the first 20000 time steps
were discarded. The proposed algorithm was used with the
static plant Kp(q

−1) = 1. The nominal plant gain was set
equal to the true gain kn = kp = 1.

Table II shows similar results obtained for frequency rate
optimization.

The results gathered in Tables I and II are quite remark-
able. Not only is the proposed algorithm able to reach both
PCRB’s, but it also attains them for the very same parameter
settings. Simulations confirm almost-statistical efficiency of
(5). Minor discrepancies, none of which exceeds 0.5%, oc-
cur mostly for low SNR’s and large σα and may be attributed
to the phenomenon of large deviations (not covered by ALF
method).

3.2 Cancellation

The fact that the proposed frequency estimator can be made
statistically efficient is undoubtedly its strong point. How-
ever, our main interest lies in maximizing its disturbance re-
jection capability, i.e. in minimizing E[|c(t)|2]. This can also

be evaluated using ALF equations. Note that E[|x(t)|2] =
a2

0E[|c(t)|2] . Since w(t), zR(t) and zI(t) are independent, it
holds that

E[|x(t)|2] = J[F(z−1)]E[z2
R(t)]+ J[G1(z

−1)]E[z2
I (t)]

+ J[G2(z
−1)]E[w2

α(t)] . (15)
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σ2
α µ ηω ηα E[|∆α̂(t)|2] Simulation PCRB

10−8 0.104 0.050 0.0013 3.89 ·10−7 3.89 ·10−7 3.89 ·10−7

10−7 0.153 0.072 0.0027 2.67 ·10−6 2.69 ·10−6 2.67 ·10−6

10−6 0.224 0.103 0.0056 1.83 ·10−5 1.87 ·10−5 1.83 ·10−5

(a) SNR=0dB

σ2
α µ ηω ηα E[|∆α̂(t)|2] Simulation PCRB

10−8 0.153 0.072 0.0027 2.67 ·10−7 2.67 ·10−7 2.67 ·10−7

10−7 0.224 0.103 0.0056 1.83 ·10−6 1.84 ·10−6 1.83 ·10−6

10−6 0.329 0.146 0.0115 1.27 ·10−5 1.27 ·10−5 1.27 ·10−5

(b) SNR=10dB

σ2
α µ ηω ηα E[|∆α̂(t)|2] Simulation PCRB

10−8 0.224 0.103 0.0056 1.83 ·10−7 1.84 ·10−7 1.83 ·10−7

10−7 0.329 0.146 0.0115 1.27 ·10−6 1.27 ·10−6 1.27 ·10−6

10−6 0.482 0.203 0.0230 8.83 ·10−6 8.83 ·10−6 8.83 ·10−6

(c) SNR=20dB

Table 2: Optimal settings for a tracking of frequency rate.
Comparison of predicted mean-squared error, simulation re-
sults and PCRB.

σ2
w µ ηω ηα E[|c(t)|2] Simulation

10−9 0.076 0.068 0.0013 7.79 ·10−3 7.79 ·10−3

10−8 0.113 0.096 0.0026 1.17 ·10−2 1.17 ·10−2

10−7 0.169 0.133 0.0054 1.79 ·10−2 1.79 ·10−2

10−6 0.253 0.183 0.0110 2.76 ·10−2 2.77 ·10−2

Table 3: Optimal cancellation settings. Comparison of pre-
dicted mean-squared cancellation error and simulation re-
sults. SNR=10 dB, a2

0 = 1.

Again, due to excessive complexity, the symbolic expression
for E[|x(t)|2] will not be provided here.

Table III shows the values of µ , ηω , ηα which mini-

mize the mean-squared cancellation error for a2
0 = 1, SNR =

10log(a2
0/σ2

v ) =10 dB and σ2
w ∈ {10−9,10−8,10−7,10−6}.

Additionally, the table provides ALF-based evaluations of
E[|c(t)|2], and the actual cancellation results obtained by
means of computer simulation.

Observe almost perfect agreement between the ALF-
based evaluations and simulation results. Note also, that
settings which minimize the mean-squared cancellation er-
ror differ from those minimizing the mean-squared frequency
and frequency rate tracking errors.

3.3 Self-optimization penalty

So far, we have assumed that the gain µ is constant. To
measure performance losses introduced by xSONIC’s self-
optimization loop (3), all simulations from Section IV-B
were repeated with some modifications. To introduce model-

ing error, the nominal plant’s gain was altered to kn = 2e jπ/4.
The parameters ηω and ηα were set constant according to
Table III, while µ was automatically tuned using (3) with
cµ = 0.02 and ρ = 0.999.

The obtained results, summarized in Table IV, show
that performance degradation caused by self-optimization is,
from a practical viewpoint, very small (less than 0.5 dB in

the worst case). For σ2
w = 10−6 occasional large frequency

deviations, causing local error bursts, were observed. Such
cases were excluded from averaging.

σ2
w Auto-adjustment

off on

10−9 7.79 ·10−3 (-21.1 dB) 8.06 ·10−3 (-20.9 dB)

10−8 1.17 ·10−2 (-19.3 dB) 1.21 ·10−2 (-19.2 dB)

10−7 1.79 ·10−2 (-17.5 dB) 1.86 ·10−2 (-17.3 dB)

10−6 2.77 ·10−2 (-15.6 dB) 2.93 ·10−2 (-15.3 dB)

Table 4: Performance losses caused by self-optimization.
SNR=10 dB, a2

0 = 1.

0 0.05 0.1 0.15 0.2 0.25
Time [s]

Figure 1: First 250 coefficients of the estimated impulse re-
sponse of the controlled plant (secondary acoustic path, in-
cluding transport and processing delays).

3.4 Tuning guidelines

Evaluating roots of the polynomial (13), one can arrive at the
following (sufficient) stability conditions: µ < 1, ηω < 1,
ηα < 1 and ηα < µηω which shed some light on the is-
sue of tuning of the algorithm (5). The lower bound µmin

on µ can be evaluated by observing the steady-state behav-
ior of xSONIC equipped with the older version of frequency
tracker, i.e. by setting ηα = 0. Alternatively, the adaptation
law in (3) may be modified so as to prevent µ from taking too
small values. The gain ηα can then be set as ηα = f µminηω

where f plays a role of “safety factor”, e.g. f = 0.1.

4. REAL-WORLD EXPERIMENT

An acoustic experiment was performed using a standard lap-
top PC. The disturbance was generated by the left loud-
speaker, placed about 1 m away from the microphone. The
cancellation signal was generated by the second loudspeaker,
located approximately 30 cm away from the microphone
(which resulted in a 1 ms propagation delay). The system
operated at a sampling rate of 1 kHz.

Fig. 1 shows the first 250 coefficients of the estimated
impulse response of the plant (often referred to as the sec-
ondary acoustic path). Long transport delay, equal to almost
60 sampling intervals, was caused by the hardware (cheap
built-in soundcard) and operating system limitations (buffer-
ing effect).

An artificially generated sinusoidal signal with the in-
stantaneous frequency varying sinusoidally between 280 Hz
and 300 Hz, over a period of 20 s, was used as a distur-
bance. Under this scenario the largest frequency rate (defined
as a derivative of the instantaneous frequency with respect to
time) was equal to 3 Hz/s.

The following settings were used: cµ = 0.01, ρ = 0.999,
ηω = 0.005, ηα = 0.000005. The nominal model of plant
was kn = 1. Additionally, to reduce the risk of erratic behav-
ior during initial phase the maximum allowable values were
adopted for |µ̂(t)| and r(t), µmax = 0.15, rmax = 20 (see [6]
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Figure 2: Comparison of power spectral densities of the out-
put signal with (solid line) and without (dashed line) interfer-
ence cancellation.

for a discussion of advisable safety measures and possible
extensions).

Fig. 2 shows power spectral densities of the signal
recorded by the error microphone with and without distur-
bance cancellation, averaged over the period of 20s. The ob-
tained degree of improvement varied from 5 dB to 15 dB.

5. SIMULATION RESULTS

An extra set of simulations was arranged to check the im-
provement which can be obtained by using the scheme (5) in
place of (4).

The secondary path was modeled using the impulse re-
sponse of a real world acoustic plant. The variance of mea-
surement noise v(t) was set to σ2

v = 10−4 and the amplitude
of narrowband disturbance d(t) was a0 = 1. The nominal

model was equal to the true plant, kn(t) = Kp[e
− jω̂(t+1|t)].

To guarantee fair comparison, the gains η , ηω and ηα

of the compared schemes were tuned optimally using ex-
haustive numerical search. To reduce number of degrees of
freedom a fixed relation ηα = ηω/100 was adopted for the
proposed scheme. The two remaining parameters, cµ and ρ ,
were set to 0.005 and 0.999, respectively. Finally, to improve
transients and to reduce the risk of erratic system behavior,
the magnitude of µ̂(t) was limited to µmax = 0.025.

Frequency trajectory used in the comparison consisted
of ‘back-and-forth’ linear sweeps [each obeying ω(t +
1) = ω(t) ± ∆ω , where ∆ω denotes sweep rate] between
ωmin = 1.57 and ωmax = 1.88, separated by shorter constant-
frequency periods. The top plot of fig. 3 shows a fragment
of a frequency trajectory for a sweep rate equal to 10−4.

The results of the experiment, depicted in the bottom plot
of fig. 3, show that a considerable improvement (from 5 to
15 dB) may be expected with the new scheme.

6. CONCLUSIONS

An improved frequency tracker was proposed for the
xSONIC canceler. The new algorithm, albeit very simple,
is statistically efficient under Gaussian assumptions. Practi-
cal effectiveness of the resulting controller was demonstrated
with a real-world example and confirmed by simulations.
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Figure 3: Comparison of xSONIC controllers equipped with
two frequency tracking schemes: circles – scheme (4), di-
amonds – scheme (5). Top figure – fragment of frequency
trajectory for ∆ω = 10−4. Bottom figure – results.
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