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ABSTRACT

As a basic tool for deriving sparse representation of a color image
from its atomic-decomposition with a redundant dictionary, this
paper presents a new kind of shrinkage, viz. color shrinkage, which
utilizes inter-channel color cross-correlations directly in the three
primary color space. Among various schemes of color shrinkage,
this paper particularly addresses the hard color-shrinkage, a natu-
ral extension of the classic hard-shrinkage, and shows the advan-
tages over the existing shrinkage approach where the classic hard-
shrinkage is applied after a non-redundant color transformation.
Moreover, to mitigate defects of the existing shrinkage approach,
this paper presents a new simple color-shrinkage scheme that ap-
plies the classic hard-shrinkage together with a redundant color
transformation instead of a non-redundant color transformation.
Furthermore, this paper applies our color-shrinkage schemes to
color-image denoising in the tight-frame Haar wavelet transform
domain, and experimentally demonstrates their superiority over the
existing shrinkage approach.

1. INTRODUCTION

The sparse image-coding with a redundant dictionary, e.g. a frame,
yields useful image-representation, by which efficient image resto-
ration such as image denoising and image deblurring is success-
fully achieved [1]. Moreover, recently, in the field of the neurosci-
ence, the working hypothesis that in a brain sensory signals are
compactly represented by the sparse coding has rapidly been gain-
ing ground [2]. The classic shrinkage methods such as the hard
shrinkage and the soft shrinkage are basic tools by which sparse
representation of a scalar image is derived from redundant atomic-
decomposition of the image. Although the classic shrinkage meth-
ods are very simple, they efficiently yield desirable sparse-
representation of a scalar image. However, since for a vector-
valued image such as a primary color image, there are intensive
inter-channel color cross-correlations, the classic shrinkage meth-
ods do not necessarily provide its desirable sparse-representation.
As a basic tool with which desirable sparse-representation of a
primary color image is produced, the authors have been devising a
new kind of shrinkage, named color shrinkage, that utilizes inter-
channel color cross-correlations directly in the three primary color
space [3], [4], [S]- This paper particularly addresses a new color-
shrinkage scheme named hard color-shrinkage, which is a natural
extension of the classic hard-shrinkage, and shows its superiority
over the existing shrinkage approach that applies the classic hard-
shrinkage together with a non-redundant color transformation such
as the opponent color transformation. Moreover, to remedy draw-
backs of the existing shrinkage approach, this paper presents a new
simple color-shrinkage scheme that uses the classic hard-shrinkage
together with a redundant color transformation instead of a non-
redundant color transformation. Furthermore, this paper applies our
color-shrinkage schemes to color-image denoising in the tight-frame
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Haar wavelet transform domain, and experimentally demonstrates
their superiority over the existing shrinkage approach.

2. SPARSE CODING AND HARD SHRINKAGE

Let d; a dictionary atom with unit /* norm defined in the N-
dimensional space R, and let the total number M of the dictionary
atoms much larger than N. A dictionary matrix D is defined by
arranging the M dictionary atoms, d;, d,,", d;, into a horizontally-
long matrix form. Let the dictionary matrix D a full-rank matrix, i.e.
Rank (D) = N. On the above assumption, the problem of represent-
ing a scalar image x € R" as a linear combination of the redundant
dictionary atoms {d;} is formulated as an under-determined linear
simultaneous equation:

D-¢o=x. (1)
Given x, its coefficient vector @ necessarily exists, but it is not
uniquely determined. The best coefficient vector @ should be
selected from the linear manifold S (D, x) of solution vectors of the
equation D¢ = x. If the dictionary D is proper for representing
meaningful image features, those features will be almost com-
pletely represented as a linear combination of a few dictionary
atoms; whereas visually meaningless entities such as noise cannot
be accurately represented with a few dictionary atoms. Therefore,
the linear combination of the fewest dictionary atoms will give the
most appropriate coefficient vector ¢°”, and the problem of seeking
for this solution is referred to as the sparse image-coding problem,
which is formulated as the well-known matching-pursuit (MP)
optimization problem of minimizing the /° norm of ¢ subject to Do
= x. However, in most cases, the image x is contaminated with
noise, and we should make allowance for representation errors; the
sparse image-coding problem is usually formulated as the MP ap-
proximation (MPA) problem [1]:

z, subject to H(pHO <R. )]

@™ :=arg min|D- ¢ —x
0

The MPA problem of (2) is an NP-complete problem, is not a
convex optimization problem, and hence is hard to solve. However,
its sub-optimal solvers have been proposed. Among them, the al-
ternate-projection (AP) solver [6] is the most basic. The AP solver
alternately iterates the two projections: 1) the orthogonal projection
Ps p, x) (@) of @ onto the linear manifold S (D, x), and 2) the projec-
tion Py (@) of @ onto the 2 ball L° (R): = {@ | [|p[<R} with a
radius R. The projection P o) (@) is easily computed by selecting,
from among the M elements of @, R elements with large magnitude
in the magnitude-decreasing order and keeping them unchanged,
and by annihilating the other elements to be null simultaneously.
This amounts to applying the classic hard-shrinkage to the M ele-
ments of @. Let {¢, ¢, -, dy } the sequence of M elements of @
lined up in the magnitude-decreasing order, a threshold parameter
4 of the hard shrinkage will be determined as a value satisfying the
inequality |@pi1] < 1 < |¢l, and thus the projection Pop (@) will
amount to applying the hard shrinkage HT with the threshold pa-
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rameter y to the M elements, @;, ¢, =, @y, of @, as follows:
o, i |el>u,
HT (g5 p) = ,
However, the projection Pz (@) is not necessarily unique, be-

cause of the non-convexity of the I° ball L° (R). If |gg1| = | 4al, then
the projection will not be uniquely determined.

)

3. FROM SHRINKAGE TO COLOR SHRINKAGE

The classic shrinkage methods such as the hard shrinkage are de-
rived as a solution of the optimization problem:
2
} “)
, A>0;

If the parameter p in (4) is set to p = 0, p = 1 and p = 2, then the
optimal solution of (4) will be the hard shrinkage HT (x; (2/4)"),
the soft shrinkage ST (x; 1/4) and the linear shrinkage LS (x; A),
respectively. The linear shrinkage LS (x; 4) is defined by
LS(x;/l)::ﬂ~x/(2+ﬂ), ®)

but it is not useful for the sparse coding of a scalar image.

To utilize interdependence among the three primary color
channels for the shrinkage, we introduce into (4) the # norms of
color differences and the # norms of color sums among atomic-
decomposition coefficients of the three primary color signals, and
thus we formulate the optimization problem [3], [4], [5]:

f)::mgnE(p), p::(r,g,b)T (6)
E(p):=|r "4p o r-g|"+ B |r+gl”
+a-lg=b"+p:|g+b]" +a-lb—r]"+B-|b+r

+ A -(r—ru)z/2+/1G -(g—g[,)2/2+/18 ~(b—bo)2/2
where p, = (75, Zo» b,)"is an input color vector and p = (, g, b)'is
an output color vector. The five parameters, a, f, and 4, (p =R, G,
B), are set to satisfy >0, f>0,and 4,> 0 (p =R, G, B).

In (6), the ° norms of the three components of p operate to
suppress their irregular variations caused by additive noise. The
norms of color differences such as » — g operate to preserve identi-
cally-varying variations in which the two color signals change in
phase with each other; whereas the / norms of color sums such as r
+ g operate to preserve oppositely-varying variations in which one
color signal increases while the other color signal decreases [7].
For most of natural color images, the occurrence probability of the
identically-varying variations is considered higher than that of the
oppositely-varying variations, and hence the two parameters, «, £,
are usually set so that the inequality & > £ may be satisfied. The
last three terms of /2 norms in (6) are the data-fidelity terms, and
the three parameters, Az, Ag, A, are referred to as the shrinkage
parameters.

Three different color-shrinkage methods are derived as a solu-
tion of the optimization problem of (6) [3], [4], [5].

1) Hard color-shrinkage: It is natural extension of the hard shrinkage,
and is an optimal solution in the case of p = 0. The hard color-
shrinkage is constructed as a non-iterative algorithm that computes
the energy values of E for all of its finite feasible solutions and then
chooses one feasible solution giving the minimum energy value.

2) Soft color-shrinkage [3], [4]: It is natural extension of the soft
shrinkage, and is an optimal solution in the case of p = 1. The soft
color shrinkage is constructed as an iterative algorithm.

3) Linear color-shrinkage [5]: It is natural extension of the linear
shrinkage, and is an optimal solution in the case of p = 2. The linear
color shrinkage is constructed as a solution of a linear simultaneous

%:=argmin F(x), F(x):= {‘x‘l’ +§-‘x—xo

x, :Input, x:Output.

/J+‘g

P

equation with three unknowns, r, g, b, but is not useful for the sparse
coding of a color image. If the three shrinkage parameters are set
equal to each other, i.e. Az = Ag = A3, then the linear color-shrinkage
will amount to applying the classic linear-shrinkage separately to
each color component in the opponent color space.

4. HARD COLOR-SHRINKAGE

If the parameter p is set to 0 in (6), then the energy function E (p)
will not be convex with respect to p and its optimal solution will not
uniquely determined. However, one of its optimal solutions is easily
sought in the manner described below.
The energy function E (p) in (6) has the following nine plane
crevices passing through the origin (0, 0, 0):
{r=0,g=0,b=0,r=g,g=bb=r,r=—g,g=-b,b=-r}. (7)
On the nine plane crevices, E (p) appears as different bi-variable
quadratic polynomial functions. On each plane crevice, the opti-
mization problem of (6) can be converted into a two-variable op-
timization problem with the canonical form:

minG(x,y), ®
X,y
G(x,y) = ‘x‘o + 7")/‘0 + a"x—y‘o +,B"x+y‘0

e e (o) )2
; a'20, f/20, >0, 1, >0, 4,>0,

where (x,, y,) are inputs and (x, y) are outputs. The five parame-

ters, ', B, ¥, Ay, Ay, are uniquely determined from the original

five parameters a, £, Az, g, A5

The energy function G (x, y) in (8) has the following four lin-
ear crevices passing through the origin (0, 0):

{x=0,y=0,x=y,x:—y}. (9)

On the four linear crevices, the energy function G (x, y) appears as

different single-variable quadratic polynomial functions. The ori-

gin (0, 0) is a singular point common to all the linear crevices.

From these properties, we can enumerate all six feasible solutions

of (8), as follows.

0) Origin (0, 0): The origin is a feasible solution common to all
the four linear crevices.

1) Feasible solution in a 2-D region except the four linear crev-
ices: This corresponds to the case of {x #0,y #0,x #y, x # —y}.
In this case, the energy function G (x, y) has its minimum at (x, y)
= (x,, V), and its feasible solution is (x,, ¥,).

2) Feasible solution, except the origin (0, 0), on the linear crevice
x = 0: This corresponds to the case of {x =0, y # 0}, and its fea-
sible solution is (0, y,).

3) Feasible solution, except the origin (0, 0), on the linear crevice
y = 0: This corresponds to the case of {x # 0, y = 0}, and its fea-
sible solution is (x,, 0).

4) Feasible solution, except the origin (0, 0), on the linear crevice
x = y: This corresponds to the case of {x =y =1, ¢ # 0}. In this
case, the energy function G (¢, ¢) has its minimum at

t=s,:=(Ax, + 4,) /(A + 4 )
and its feasible solution is (s4, 54).

5) Feasible solution, except the origin (0, 0), on the linear crevice
x =—y: This corresponds to the case of {x =—y =1, t # 0}. In this
case, the energy function G (¢, —) has its minimum at

t=s :=(/1Xxu —ﬁ,yyo)/(/lx +ﬂy) s
and its feasible solution is (ss —ss).

Each feasible solution of (8) occupies its territory in the 2-D
space of the two input variables, x,, y,. In Fig. 1, in the two cases of
typical setting of the five parameters, o', £, ¥, Ay, Ay, in (8), we
show the territories of the six feasible solutions: {(0, 0), (x,, ¥,), (0,
Vo)s (X5, 0), (54, 54), (55, —55)}. Figure 1(a) corresponds to the case of

(10)
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{a’=0, p/ =0, y =1}, in which inter-variable cross-correlations
are not utilized, and hence only the four feasible solutions, {(0, 0),
(X0s V)5 (0, ¥,), (x5, 0)}, have their territories in the 2-D space, and
the territories coincide with those of the classic hard-shrinkage, i.e.
in this parameter setting the hard color-shrinkage amounts to the
classic hard-shrinkage. Figure 1(b) corresponds to the case of {a’ =

5, B’ =1, ¥’ =1}, where inter-variable cross-correlations are utilized,

and the territories of the six feasible solutions have their respective
complex shapes, especially near the origin (0, 0), and their shapes
depend on the setting of the five parameters, o', £, y, Ay, Ay.

On each plane crevice of E (p) in (6), there exists six feasible
solutions, but a certain feasible solution may coincide with other
feasible solutions. There necessarily exists a straight line common
to two different plane crevices, the line coincides with one of the
linear crevices, and on the linear crevice there necessarily exists
feasible solutions common to the two plane crevices. In addition,
the origin (0, 0, 0) is a feasible solution common to all the nine
plane crevices. Listing all feasible solutions without duplication,
we have 24 feasible solutlons in all, and we denote them by {c¢ ®:
=@®, g® p®y, =0, 23}. Table 1 shows all the feasible
solutions. When we exclude the three /’-norm terms of color sums
from E (p) in (6) by setting S to 0, its feasible solutions is limited
to the subset composed of fifteen feasible solutions, viz. {c B f=
0,,8,and k=12,-, 17}.

The shape of the territory occupied by each feasible solution
is complex, and depends on the setting of the five parameters.
Hence, a computational algorithm of seeking for the optimal solu-
tion is not constructed as a series of simple-thresholding opera-
tions. Instead, the hard color-shrinkage is constructed as the fol-
lowing computational algorithm.

[Computational Algorithm of the Hard Color-Shrinkage]

1) For each feasible solution ¢ ®, firstly we compute its energy
value E®: =E (¢ ®).

2) As the optimal solution, we select a feasible solution giving the
minimum energy value from among the 24 feasible solutions:

p:=arg min E(c"). (12)

(e k=0,1,---,23}

3) If there are plural feasible solutions giving the minimum energy
value, from among them we will select one feasible solution with
the fewest nonzero components. This rule is proper for the sparse
representation of color images. [End of the Algorithm]

5. HARD SHRINKAGE IN THE ORTHOGONAL
OPPONENT COLOR SPACE

The classic approach to the utilization of inter-channel color cross-
correlations for the shrinkage of atomic-decomposition coefficients
of a color image is to apply the classic shrinkage such as the hard
shrinkage after the non-redundant color transformation of the
atomic-decomposition coefficients. As the non-redundant color
transformation, this paper takes up the well-known opponent color
transformation, which is a kind of orthogonal color transformation.
The orthogonal opponent color transformation is defined by
) 11 1 r

o,|=|1 0 -1|-|g (13)

0y 1 2 1 b
Similarly in the case of the hard color-shrinkage, we can easily enu-
merate all feasible solutions of the classic hard-shrinkage in the
orthogonal opponent color space, in the following manner. By
firstly applying the hard shrinkage separately to the three compo-
nents of the orthogonal opponent color vector 0 = (0, 0y, 03)T and
then transforming the shrunken color vector into the three primary
color vector, all feasible solutions in the RGB primary color space
are enumerated. The hard shrinkage in the orthogonal opponent

0,

color space has its eight feasible solutions, {d(k): =(r ® g(k), b®); k

=0, -, 7}, which are shown in Table 2.

(xwyo) Yo
(0,0) ‘ol»x

4 (5959
5 (85, -S5)

0.0003

(xa’o)
0 (0,0)
1 & Y,)
2 0,y)
3 (x,0)
(0.3,)

1, Ax=10.0005, Ay =

Yo
(o] X,
(xa’o)
0 (0,0
1 (X2
2 0,y)
3 (x,0)
(0‘ 4 (54 55)
5 (55, -55)

b)a’=5,=1,y =1, x=0.0005, 1y=0.0003

Figure 1 — Territories of the six feasible solutions, (0, 0), (x,, ¥,), (0,
Vo)s (X5, 0), (54, 84), (55, —Ss5), of the canonical two-variable
optimization problem of (9).

@a'=0,5=0,y=

Table 1 — 24 feasible solutions {¢ ®: = (+®,
23} of the hard color-shrinkage.

=(0,0,0); " =(r,g,5,)
@ =(r,g,0); ¢=(0,g,5); ¢=(r,0,)
¥=(r,0,0); ¢9=(0,g,0); ¢”=(0,0,5,)
& = (ttote) sty =(Aary + Ao, + 250, )/ (An + A6 + A5)
O = (ty,~ty,~15) sty = (Aal, = A8, = 4ab, ) (A + s + A )

g(k)’ b(k)); k=01,

" = (=0, t105 zm), o= (=Aar, + o8, = 25b,)] (P + 26 + 25)

0ty = 1) iy e+ )
e =(t,1,0); ¢ = (tu, 2b,), tl2=(/'LRrﬂ+/'LGga)/(ﬁ,R+,16)
= (0t t);3 "Sz(rg,twt”) o= (%8, +2sb,) (g + 2)
"V =(16,0.1)s €7 = (5 800115) g =(/13b0+/1xrg)/(,13+1k)
i O (tls, ~tb,) = (At~ 268, )/ (2 + Ag)
¢ =(0, 1, 1y); ¢ tos =) s o = (A&, = 5B, )/ (A6 + 1)

(e
(

= (_tzza 0, tzz) 5 e ~ly5 8> tzz) 5o Ip= (j’ﬁbo - ﬂ’Rro)/(j’B + ;LR)

In comparison with the feasible-solution set {c (k)} of the hard
color-shrinkage, the feasible-solution set {d ®} in Table 2 lacks
symmetry and balance in its structure. As shown in Table 1, the
feasible-solution set {c¢ ¥} has the three feasible solutions that ren-
der one output primary color value equal with its corresponding
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input color value and simultaneously force the other two output
primary color values to be equal with each other. On the other hand,
as shown in Table 2, the feasible-solution set {d ®} has only one
feasible solution having such a property. If the hard shrinkage in the
orthogonal opponent color space is applied to color-image denoising,
false color artifacts will be caused by this asymmetry and imbalance.

Table 2 — Eight feasible solutions {d ®. = (r(k), g(k), b(k)); k=0,1, -,
7} of the hard shrinkage in the orthogonal opponent color space.

d”=(0,0,0); a"=(r,g,.b,)

a¥ - 2.-8-b -1,+28,-b -1,-g, +2b,
3 ’ 3 ’ 3
a@ [ Ltb, 7, +b,
___________ 2 T 2 )
d(‘) rn_bn’ 0 ,_r;)+b{)
2 2
a4© = Sr,+2g,-b, r,+g,+b, —r +2g +5b,
6 ’ 3 ’ 6
d(7)={ru—2g0+bo -7, +2g,-b, ru—2gu+bu]
6 ’ 3 ’ 6

6. HARD SHRINKAGE IN THE REDUNDANT
COLOR SPACE

To remedy the asymmetry and the imbalance of the feasible-
solution set of the hard shrinkage in the orthogonal opponent color
space, this paper introduces a new color-shrinkage approach with
redundant color transformation. By modifying the orthogonal oppo-
nent color transformation of (13), this paper constructs new redun-
dant color transformation with symmetry about the three primary
colors, (7, g, b), which is defined by

@) (1 1 1

,
I -1 0

e | g (14)

q, 0o 1 -1 b

) (-1 0 1

Its left inverse color transformation, i.e. the least squares generalized
inverse transformation, is given by

Ao h
gl=31t 11 o) % (15)
b 1o -1 1)|%

94

Similarly in the case of the hard shrinkage with the orthogonal op-
ponent color transformation, we can easily enumerate all feasible
solutions of the new color-shrinkage approach that apply the hard-
shrinkage separately to the four redundant components of the color
vector q = (g1, 92, ¢3, 44)". The hard shrinkage in the redundant
color space of q has sixteen feasible solutions, {e ®: = +®, g®, b
(k)); k=0, -, 15}, which are shown in Table 3.

As shown in Table 3, the feasible-solution set {e ¥} is sym-
metric and well-balanced, but in trade-off between symmetry and
compactness the feasible-solution set {e ®} may be somewhat infe-
rior to the feasible-solution set {¢ ¥} of our hard color-shrinkage.
The hard shrinkage in the redundant color space is expected to
achieve shrinkage performance intermediate between our hard
color-shrinkage and the existing hard-shrinkage approach with the
orthogonal opponent color transformation.

Table 3 — Sixteen feasible solutions {e(k): =", g(k), b®) k=0,1,
-, 15} of the hard shrinkage in the redundant color space.

3 3 3
em,[Zmbu 2g, +b, n,+g{,+b{,)
37 3 73
em_{rﬁg +b, 1,+2g, n,+2b,,]
37 3 703
Qo _[2te, nte,+b, g +20b,
37 3 73
em:[2':,+gu,n+2g~,bﬂj H(Mﬂj
S W E SN R/ A 33
©) (2}” +b r+2bﬂ)
= 2 &6
3 3

o9 =l & =b, =1,=8,+2b,
37 3 7 3
[ 2=8 b &= b,
3 3 3
o9 (=8 —1,+28,-b, b-g,
3 3 ~ 3

7. APPLICATION TO COLOR IMAGE
DENOISING

To remove signal-dependent noise of a color image taken with a
certain digital color camera with ISO 1600 sensitivity, the hard
color-shrinkage and the hard shrinkage with the redundant color
transformation are applied to wavelet coefficients of the three pri-
mary color channels. From a standpoint of a balance of simplicity
and efficiency, as the wavelet transform, this paper adopts the tight-
frame Haar wavelet transform with five multi-resolution layers. In a
digital color camera, the variance of signal-dependent noise not only
depends on signal intensity, but also differs among the three primary
color channels. The signal-dependent noise is well modelled as the
following additive noise model [8]:

F,,=S,+N,=S,+w,(S,):N,

.» P=R.G,B, (16)
F, ,: Noisy observation, S,: Signal, N,: Signal-dependent noise,
N,: Gaussian noise with zero mean and unit variance,
w,: Standard deviation of the noise N,,.
The function w, defines noise’s signal-dependency and determines
the standard deviation of noise; it can be measured in advance and
utilized for color-image denoising.

In the hard color-shrinkage at each pixel location the three
shrinkage parameters, Az, Ag, A, are set so that their values may be
inversely proportional to the noise variance:

A (k)ocl/a;n(k), p=R,G,B, 17)

P
0, 4(k): Standard deviation of noise at a pixel & for the color p.
According to the signal-dependent noise model of (16), o, ,(k) is
given by w,(S,), but the true noise-free color signal S, is unknown.
To cope with this difficulty, instead of S, we use scaling coefficients
of the noisy input color channels.
The denoising simulations are conducted on noisy test color
images, which are produced by adding artificial signal-dependent
noise equivalent to ISO 1600 sensitivity to the KODAK standard
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color images. Table 4 compares PSNR’s [dB] of denoised color
images for the color-image set of Fig. 2, among the five different
denoising methods: the wavelet denoising with our proposed hard
color shrinkage (HCS), the wavelet denoising with our proposed
color-shrinkage approach described in Sec. 6 (HS-RCT), the wave-
let denoising with the hard shrinkage in the orthogonal opponent
color space (HS-OCT), the non-local means method (NLM) [9], and
the 3D transform domain collaborative filtering method (CF) [10].
The HS-RCT and the HS-OCT utilize the noise’s signal-dependency
for denoising in the similar way to the HCS. Our proposed HCS
achieves the highest PSNR’s, and second to it our proposed HS-
RCT shows the highest PSNR’s.

Figure 3 shows portions of denoised color images given by the
HCS, the HS-RCT and the HS-OCT. The HS-OCT produces false
color artifacts as a side effect in the image regions of yellow flowers
and bluish metal parts; whereas our proposed methods, the HCS and
the HS-RCT, do not produce such false color artifacts, so that they
preserve original colors in those image regions more successfully.

8. CONCLUSIONS

As a basic tool for the sparse coding of a color image, we present
new hard color-shrinkage that utilizes inter-channel color cross-
correlations directly in the primary color space. Moreover, to sup-
press a false color artifact of the existing shrinkage approach, this
paper presents a new simple color-shrinkage approach that applies
the classic hard-shrinkage together with a redundant color trans-
formation instead of a usual non-redundant color transformation.
This paper applies our two different color-shrinkage schemes to
color-image denoising in the tight-frame Haar wavelet transform
domain, and experimentally demonstrates that our color-shrinkage
schemes suppress false color artifacts more successfully than the
existing shrinkage approach.
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Figure 2 — Set of the original noise-fre color images: from the left
to the right, No.1, No.2, No.3 and No.4.

Table 4 — Peak SNR’s [dB] of denoised images.

Image No.l|Image No.2] Image No.3|Image No.4
Noisytestcolor | ) 30 | 5108 | 2136 | 2115
image

Our new approach:
(HCS) 29.20 33.63 31.98 30.56

Our new approach
(HS-RCT) 28.97 33.35 31.47 30.31

Existing approach
HS.OCT 28.95 33.29 31.34 30.25
NLM [9] 27.14 31.91 30.56 29.37
CF[10] 26.92 3242 31.08 29.16

(e) Existing HS-OCT
Figure 3 — Portions of denoised color images.
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