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ABSTRACT

This paper proposes markerless human motion capture us-
ing a 3D articulated computer generated (CG) model of the
human body. The method of estimating human body pos-
ture is based on 2D matching between human silhouettes ex-
tracted from camera images and model silhouettes projected
onto the corresponding camera planes in virtual space. Can-
didates for human model silhouette are generated using a
Monte Carlo filter-based algorithm, and the normalised core-
weighted XOR distance is introduced to calculate the like-
lihood rate between silhouettes. Experimental results show
the feasibility and effectiveness of the proposed method for
achieving markerless human motion capture.

1. INTRODUCTION

The demand for human motion capture is increasing in vari-
ous applications such as advanced human-machine interface
systems, visual communications, virtual reality applications
and video game systems. Computer vision technology is in-
creasingly being expected to be used for sensing human in-
formation [1], and the use of contact-type sensors or markers
to obtain motion parameter information would no longer be
required. As a result, there have been many studies of human
motion capture using computer vision [2, 3, 4]. The authors
have also proposed real-time methods of human motion cap-
ture from images captured by CCD cameras [5, 6].

In this paper, markerless human motion capture using 3D
articulated human body model is proposed. The proposed
method is based on 2D matching between human silhouettes
extracted from input images captured by CCD cameras in
actual space and silhouettes of a 3D human model projected
onto the corresponding camera planes in virtual space. To
generate candidates for the human model silhouette, a Monte
Carlo filter (MCF) [7], which is a robust filtering technique
based on a Bayesian framework, is introduced. In the fitting
between the observed human silhouette and the candidate sil-
houette, XOR (exclusive or) distance [8] is used for a precise
comparison of the two silhouettes. To improve the estimation
accuracy with respect to body parts such as arms and legs,
which are thin, a cost function based on weighted distance
functions with equal weight on the shape skeleton obtained
from the silhouette is considered. In section 2, an algorithm
for 3D human body posture estimation in human motion cap-
ture is described. In section 3, computational experiments on
estimating 3D human body postures are presented. In section
4, experimental results of markerless human motion capture
using an actual multi-camera system are presented.

2. HUMAN MOTION CAPTURE SYSTEM

2.1 Outline of Human Motion Capture
Figure 1 shows an overview of our proposed human mo-
tion capture system based on multiple cameras in both ac-
tual space and virtual space. The approach to human motion
capture proposed here is based on the projection of human
silhouettes, in which the human silhouettes correspond to
human body areas in the images. The human silhouette is
typically extracted by calculating the difference between the
background image and the input image at each pixel and then
thresholding the difference at that pixel. The thresholded im-
age, in which each pixel has a value indicating whether it is
the human silhouette or the background, is called a silhouette
image. The proposed human motion capture method consists
of three processes: human silhouette extraction using back-
ground subtraction, generation of the 3D CG human model
postures as candidates and calculation of silhouette matching
between the human silhouettes and the CG human model sil-
houettes. Here, the candidates for human body posture are
generated using a CG model in parallel. The posture of the
CG model that has the highest matching rate indicates the
estimated human body posture.

2.2 Human CG Model
For 3D human body posture estimation, the articulated hu-
man body model shown in Fig. 2 is introduced. The hu-
man model is designed manually using a 3D graphics soft-
ware Poser and LightWave 3D (D-Storm, Inc.). The model
has 10 joints, indicated by circles in Fig. 2, and consists of
11 segments representing the head, upper half of the body,
lower half of the body, upper arms, lower arms, upper legs
and lower legs. In the model, limits are introduced on the
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Figure 1: Configuration of actual and virtual multi-camera
systems for human motion capture.
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Figure 2: Articulated 3D CG human model.

joint angles to constrain the body posture. The shape of the
CG model is determined in advance by measuring the shape
of a subject captured by a CCD camera in actual space.

To generate a variety of body postures, a state space
model of joint angles is introduced, and an MCF-based con-
trol algorithm is applied to the model to control the joint
angles. Assuming the second-order difference of the joint
angles is 0, the state space model for the j-th joint ( j =
1,2, · · · ,10) with noise is defined as follows.

x j(k +1) = Fx j(k)+Gw j(k) (1)
y j(k) = Hx j(k)+v j(k) (2)

Here xT
j(k) = [φx(k) φx(k−1) φy(k) φy(k−1) φz(k)

φz(k−1)], φi(k) is the joint angle with respect to the i-th
axis (i = x,y,z), k is the sampling number and w j(k) and
v j(k) are noise process vectors. The system matrix, distur-
bance matrix, and observation matrix are defined as follows:
F = [Fi j] where F11 = F33 = F55 = 2, F12 = F34 = F56 = −1,
F21 = F43 = F56 = 1 and otherwise is 0, G = [Gi j] where
G11 = G32 = G53 = 1 and otherwise is 0, H = [Hi j] where
H11 = H23 = H35 = 1 otherwise is 0.

Based on an MCF, the state vector is updated as follows:

Step 1 Generation of particles {q(i)
j (0)}m

i=1 from an initial
distribution of state p0(x j).

Step 2 Generation of particles for system noise {w(i)(k)}m
i=1

from the system noise distribution.
Step 3 Calculation of particles representing the predicted

distribution {p(i)
j (k)}m

i=1 using the state space equation.
Step 4 Calculation of the likelihood rate of the particle

p
(i)
j (k) using the silhouette images (see section 2C). The

particle that has the highest likelihood rate is chosen as
the state vector x j(k).

Step 5 Calculation of the filter distribution’s particles
{q(i)

j (k)}m
i=1 by resampling the particles {p(i)

j (k)}m
i=1

with the probability Pr
[
q

(i)
j (k) = p

(i)
j (k)

]
. The proba-

bility distribution is defined so that the posture candidate
with a higher matching rate is more frequently selected.

Step 6 Return to Step2.

2.3 Model Matching with Silhouette Images

The normalised core-weighted XOR distance in the l-th cam-
era (l = 1,2, · · · ,n) is introduced as follows in order to calcu-
late the likelihood rate between the input silhouette and the

model silhouettes:

dl(S,T ) =
1

wb

{
∑

T (n)=1
D(S)+ ∑

T (n)=0

βD(Sc)
D(Sc)+D(Ss)

}
(3)

S is the silhouette image extracted from the input image, T
is the silhouette image of the human model, Sc is the silhou-
ette contour, Ss is the skeleton of the silhouette shape, the
function D denotes the distance transform, wb is the fixed
bounding window and n is the number of pixels in the win-
dow. The likelihood rate of the particle p

(i)
j at the l-th camera

is then obtained by applying the following Gaussian function
to the distance.

probi
j(l) =

1√
2πσ 2

l

exp
(
−

d2
l (Sl ,T i

l )
2σ2

l

)
(4)

When multiple cameras are used in the estimation, the total
likelihood rate is calculated by the following equation.

prob
i
j =

n

∏
l=1

probi
j(l) (5)

2.4 Human Body Posture Estimation
The human body posture estimation consists of three pro-
cesses. First, the model, which has the highest likelihood rate
for the combination of head, chest (upper half of body) and
waist (lower half of body), is selected. Next, one body part
is added to the model, and the model matching is calculated.
This estimation is undertaken for the right arm, left arm, right
leg and left leg in parallel. Then, a model of the whole hu-
man body is constructed by combining the candidates for
each body part, and the likelihood rate is re-evaluated with
respect to the whole body model. The candidate, which has
the highest likelihood rate, is defined as the estimation result.

3. COMPUTATIONAL EXPERIMENTS OF HUMAN
MOTION CAPTURE

To evaluate the feasibility of the proposed method, computa-
tional 3D human body posture estimation was examined ex-
perimentally. The estimation method was coded in C++ with
Direct X graphics system. In this computational experiment,
the target human motion was generated in virtual space using
a 3D human CG model, and input images were obtained by
projecting the human CG model onto virtual camera planes
instead of using images captured with CCD cameras. Six
cameras were used in the estimation. Three cameras at 120
degree intervals were arranged in the same horizontal plane
as the target CG model, and the other three, also arranged
at 120 degree intervals, were set to overlook the target CG
model from an angle of 45 degrees. In the MCF, the num-
ber of particles (human model) m was 4000. Two kinds of
motion were used in the experiment: walking in place (mo-
tion 1) and turning both hands in front of the body (motion
2). Motions 1 and 2 were expressed for 30 frames and 60
frames, respectively.

Figure 3 shows examples of human body posture esti-
mation in each camera, and Fig. 4 shows the averaged esti-
mation errors for the sequence shown in Fig. 3. Here, the
averaged estimation error is the mean of the Euclidean dis-
tance between the target and the estimation result in all the
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Figure 3: Estimation results (top: target posture, bottom: estimated posture with the highest likelihood, left to right: frame k
= 1, 7, 13 and 19).
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Figure 4: Averaged estimation error.
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Figure 5: Feature points of the human body.

human body feature points Pq (q = 1,2, · · · ,14), which are
shown in Fig. 5. In Fig. 3, the top panel contains pictures of
the sequence of target posture, and the bottom panel contains
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Figure 6: Overview of multi-camera system.

of the sequences of estimated postures that have the high-
est likelihood. As these figures show, at the beginning of
the estimation (frame 1), posture estimation is unstable, and
the likelihood is low. This is because the estimation in the
first frame is like a random estimation. However, the likeli-
hood converges after the second frame due to the MCF, and
posture estimation is successful. Even though self-occlusion
of the limbs in the target motion sequences occurs in some
of the silhouette images obtained from each camera’s view-
point, the human body’s posture can be estimated success-
fully in every frame. These results show the feasibility and
effectiveness of the proposed estimation method of human
motion capture.

4. MOTION CAPTURE EXPERIMENT USING A
MULTI-CAMERA SYSTEM

To evaluate the efficiency of the proposed human motion cap-
ture, estimation experiments using the multi-camera system
[5] shown in Fig. 6 were carried out. The multi-camera
system consists of a server-client system. The communica-
tion between the server (Dell Precision Workstation 650, In-
tel(R) Xeon CPU 3.2GHz, 3.50GB RAM, Windows XP SP3)
and clients (Dell Precision 390, Intel(R) Core 2 Duo CPU
2.66GHz, 512MB RAM, Windows XP SP3) are achieved by
using socket communication with TCP/IP, a local 1000Base-
T network and Winsock2 programming. Images from CCD
cameras (IEEE 1394 camera Dragonfly2, Point Grey Re-
search, Inc.) were digitised into the client computers with
a 640-by-480 pixel resolution via an IEEE 1394 interface in
real time (frame rate of 60 Hz). Six hexagonally arranged
cameras are used in the system. Three cameras are located
near the ceiling, and other three are set at middle height. The
measured space in front of the cameras is 2[m]×2[m]×2[m].
The cameras were calibrated using Microsoft’s easy camera
calibration tool [9]. The silhouette image is extracted by
using background subtraction in each client computer con-
nected to each camera and is then transferred to the server.
As a reference for the proposed motion capture method, the
movement of the subject is simultaneously measured by opti-
cal (infrared ray) motion capture (OptiTrackTM FLEX:V1007,
ARENATM Motion Capture Software, NaturalPoint, Inc.).

To apply the proposed method to actual images, the vir-
tual camera parameters of the DirectX graphics system (i.e.
location and posture in virtual space, direction vector of the
gaze point, rotation of the camera, angle of view) must be de-
fined so as to correspond to the actual cameras of the multi-
camera system. The virtual camera parameters are estimated
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Figure 8: Averaged estimation error.

by searching for the parameters that make a well-known cali-
bration pattern captured by the virtual camera match with the
calibration pattern captured by the actual cameras. To search
for matching parameters, a genetic algorithm is used.

In the experiments, the motions were the same as in the
computational experiments: the motion 1 was walking in
place, and the motion 2 was turning both hands in front of
the body. In the MCF, the numbers of particles m were 9000
and 16000 for estimating motions 1 and 2, respectively. Fig-
ure 7 shows examples of human body posture estimation in
each camera, and Fig. 8 show the averaged estimation errors
for the sequence shown in Fig. 7. Here, the averaged estima-
tion error is defined by the mean of the Euclidean distance
between the 3D coordinates of all the human body’s feature
points measured by optical motion capture and the 3D coor-
dinates estimated by the proposed method. In Fig. 7, the top
figures show the sequence of input images, and the bottom
figures are the sequences of estimated postures that have the
highest likelihood. As these figures show, at the beginning of
the estimation (frame 1), posture estimation is unstable: how-
ever, posture estimation is successful after the second frame
due to the MCF. The average estimation error is about 0.1 m.
These results show the feasibility of the proposed estimation
method to achieve markerless human motion capture in an
actual system.

5. CONCLUSIONS

This paper proposed a markerless human motion capture sys-
tem based on 2D matching between human silhouettes ex-
tracted from camera images captured by multiple cameras
and 3D articulated human CG model silhouettes projected
onto the corresponding virtual camera planes. A Monte
Carlo filter-based algorithm was proposed to generate can-
didates for the human model silhouette, and the normalised
core-weighted XOR distance was introduced to calculate the
likelihood rate between silhouettes. Computational experi-
ments of human body posture estimation and a human mo-
tion capture experiment using a multi-camera system con-
firmed the feasibility and effectiveness of the proposed mark-
erless human motion capture system.
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