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Abstract— In this paper a novel analytical approach to approx-
imate and correct the bias in 2D localization problem is proposed.
This new method mixes Taylor series and Jacobian matrices to
determine the bias, and leads to an easily computed analytical
bias expression. Importantly, we compare the proposed approach
with a well-cited previous method using simulation data. Further
we apply our method to bearing-only localization algorithms.
Monte Carlo simulation results demonstrate that the proposed
method performs satisfactorily when the underlying geometry
makes the localization problem reasonable. Furthermore the
proposed method performs better than the comparison method
and also is effective over a larger area. Although the method is
presented in detail for bearing-only localization algorithms, the
analysis methodology is also valid for other kinds of localization
algorithms.

I. INTRODUCTION

Recently, there has been increasing interest in techniques
for determining location of targets in different application
fields. For instance, in environmental applications, such as
forest fire detection and flood detection, sensing data without
knowing the sensor location is meaningless. Again, accurate
location of targets is also required in military operations, such
as battlefield surveillance and monitoring friendly forces [1].
Therefore, many localization algorithms have been proposed
in recent years, see e.g. [2-4, 14-15].

In most practical situations, noise in measurement data is
inevitable. Hence the true position of the target cannot be
obtained. And frequently if not generally, any position estimate
will be biased. Therefore in order to obtain a better estimates
of the target it is desirable to correct the bias, assuming it
is computable, or approximately computable. However rather
few works concentrate on the bias problem. Doğançay et al. [5]
develop a bias compensation algorithm to reduce the position
estimation bias. The simulation examples illustrate the signif-
icant bias reduction of the proposed algorithm. Nevertheless
this bias compensation algorithm is not generic: the method
is only applicable to TDOA localization.

In [6], an introduction to tensor algebra is given with a
few examples in estimation theory. One of the applications of
tensor algebra addressed in the paper treats the bias in non-
linear systems with a noisy observable. The method expands
the non-linear function which maps measurements to target
positions to second order in the noise using a Taylor series.
The expected value of the second order term is considered as
the analytic expression of bias, and the concepts are illustrated
to obtain the bias in the Cartesian coordinates of a target
where noisy range and bearing measurements (from a single
point) are given. However the main focus of [6] is how to
use tensor algebra, rather than bias analysis. Therefore there
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is no systematic analysis and detailed simulation for the bias
problem.

Gavish and Weiss [7] examine the performance of two well
known bearing-only location algorithms, viz. the maximum
likelihood and the Stansfield estimators. Analytical expres-
sions are derived for the covariance matrix of the estimation
error and the bias, which permit performance comparison for
any case of the two algorithms. In order to obtain the analytical
expressions for bias, the first derivative of the maximum
likelihood cost function is expanded by a Taylor series. Three
expansions of different orders were obtained separately. The
final expression for the bias involves the variance of the
measurement noise and the derivatives of the cost function.
Additionally, the analytic expression of the bias is independent
of the localization algorithm. However the derivation involves
truncating three different Taylor series expansions which may
lead to imprecise results.

In this paper, we present a general method to reduce the
position estimation bias in 2D localization algorithms. To
obtain an analytic expression for the bias, a Taylor series
is used to expand the localization mapping g (which maps
the measurements to position estimates) to a certain order.
Though using more terms of Taylor series may lead to higher
precision, it also will result in more complicated calculation.
We conjecture that the expansions beyond second-order offer
negligible improvement. In many situations the correction
using terms to second-order is completely adequate. However
more terms will be used in a future study. The expected value
of the second-order term, which involves derivatives of g, is
considered as the bias. Generally, however, to compute the
derivatives of g analytically is very difficult. In contrast, to
calculate the inverse mapping of g (call it f ) and its derivatives
is much easier. Therefore we substitute the derivatives of f
for the derivatives of the localization mapping g by using the
Jacobian matrix of f , leading to an easily calculated analytic
expression for the bias. In this paper we will apply our method
by way of example to bearing-only localization algorithms,
though the proposed method in this paper is generic. To
illustrate the performance of our method, we compare it with
the GW (Gavish and Weiss [7]) method based on simulation.
The main reason for selecting the GW approach as the
comparative method is that, like our algorithm but unlike most
other bias correction methods such as the approach proposed
by Doğançay, the GW method is generic, i.e. in principle it can
be used for many types of localization algorithm. Moreover,
various simulation results on the GW method in [7] show that
the analytical expression of bias can calculate the bias very
well in certain situations. The Monte Carlo simulation results
in our paper verify that the proposed method performs better
than the GW approach.

The rest of the paper is organized as follows. We propose
the new bias-correction approach in Section II. The results of
Monte Carlo simulations are provided in Section III. Section

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1816



IV summarizes the results and comments on future work.

II. BIAS ANALYSIS IN LOCALIZATION ALGORITHMS

In this section we will first formulate the localization prob-
lem. Then a novel bias-correction method will be presented in
subsection B. All analysis is done in two-dimensional space.

A. Problem Statement
In two-dimensional space, the bearing-only localization

problem can be formulated as follows. Suppose there is an
emitter or target whose coordinate vector is x = (x1, x2)T =
(x, y)T . Suppose further a set of bearing measurements Θ =
(θ1, θ2, ..., θN )T (N denotes the number of anchors) can be
obtained from a number of anchors at known positions. In the
noiseless case we have

Θ = f(x) (1)

where f = (f1, ..., fN ) denotes the mapping from the target to
the measurements. The function f is assumed (as is reasonable)
to be obtained analytically according to the geometric relation-
ship between the target and anchors. Localization amounts to
inverting f .

In practice, however, there will be noise in measurements.
Therefore the mapping from target position to measurements
can be described by a nonlinear equation as follows:

Θ = f(x) + δΘ (2)

where δΘ = (δθ1, ..., δθN )T denotes the noise in measure-
ments, which is assumed to be zero-mean Gaussian with
N ×N covariance matrix S = diag(σ2

θ1
, ..., σ2

θN
).

When the number of anchors is more than or equal to
three (N ≥ 3), equations (1) and (2) will be overdetermined.
In other words, there will generally be no solution to the
equation (2) except in the noiseless case. In order to obtain
an approximate position estimate, various methods have been
presented such as maximum likelihood, least squares, etc [8,
12]. No matter what type of method is used, the main idea of
these approaches is similar: transform the localization problem
to be an optimization problem as follows.

x̂ = arg min
x

Fcost-function(x,Θ) (3)

By solving the above optimization problem (which is often
computationally difficult) we obtain the estimated position x̂.

B. A Novel Method
1. Three Anchors Situation

A scenario with three anchors (N=3) and one target is
analyzed in this subsection. The analysis will be restricted
to Cartesian coordinates in this paper. However, the proposed
approach is independent of the choice of coordinates.

Assume f1, f2 and f3 (which together form a vector func-
tion f in II.A) are the mappings from target to measurement
data. We can obtain the following equations according to the
simple geometric relationships (shown in Fig. 1). Here we
only take f1(θ1 = f1) for example while f2(θ2 = f2) and
f3(θ3 = f3) have the similar forms.

θ1 = f1(x, y) =π + actan(
x− x1

y − y1
)(mod2π) (4)

where (x, y) denotes the position of target, while (x1, y1)
denotes the known positions of anchor 1. Furthermore θ1,

Fig. 1. Geometry of the three anchors situation

Fig. 2. Introduce One Variable

θ2 and θ3 (together forming a measurement vector Θ =
(θ1, θ2, θ3)T as in II.A) are angle measurements from each
anchor to the target, relative to a global direction (i.e. North).

The method we are proposing will involves the inverse
mapping of fi and the Jacobian matrix of the inverse mapping.
However in the noisy case which means the true values of the
θi are replaced by noisy values, the equation set f1, f2 and
f3 will be generically unsolvable, since it is overdetermined.
In other words the number of scalar measurements is larger
than the number of unknowns. Therefore we do not have an
inverse mapping of fi and thus cannot use the Jacobian matrix
of the inverse mapping. In order to solve the overdetermined
problem, here we propose an approach based on least squares
method to introduce an extra variable into the mapping set.

Consider a three dimensional space, with axes correspond-
ing to the three bearing measurements. Assume a surface
(shown in Fig. 2) consists of points which correspond to sets
of noiseless measurements. According to the least squares
method, the cost function has the form

Fcost-function(x,Θ) =
3∑

n=1

(fn − θn)2 =
3∑

n=1

δθ2
n (5)

The least squares method, in fact, attempts to find a point
(f1(x, y), f2(x, y), f3(x, y)) on the surface corresponding to a
set of noisy measurements (off the surface) to minimize the
distance between the two points.

Assume, in Fig. 2, the black point denotes a set of noisy
measurements, and the white point is the corresponding point
on the surface1. The black point must be on the normal

1Sometimes the corresponding point is not unique. At that time we assume
further information can be obtained to resolve this ambiguity.
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vector to the surface passing through the white one. The
distance between the two points can be denoted as ε‖u‖ =√

δθ2
1 + δθ2

2 + δθ2
3 , where u is a normal vector at the white

point and ε is a coefficient to ensure that the length of ε‖u‖
agrees with the distance between the white point and black
point. The normal vector u can be calculated as follows.

At the white point we can obtain two tangent vectors v1
and v2 as follows.

v1 = (
∂f1

∂x
,
∂f2

∂x
,
∂f3

∂x
)T , v2 = (

∂f1

∂y
,
∂f2

∂y
,
∂f3

∂y
)T (6)

By cross multiplying the two vectors, we can obtain a
normal vector u = v1 × v2.

Note that f1(x, y), f2(x, y) and f3(x, y) can be readily
written down according to simple geometric relationships.
Therefore a new set of functions F1, F2, F3 (which together
form a vector function F) parameterizing a noisy measurement
vector can be obtained through moving from any point on
the surface, defined by f1, f2 and f3 along the normal vector
for some distance ε‖u‖. The new set of functions determine
equations which are no longer overdetermined because an
extra variable ε has been introduced. Different x, y and ε give
different points.

To sum up we have the the new mapping F : R3 → R3

from target position to measurements as follows.

Θ = F(x, y, ε) = f(x, y) + εu (7)

Suppose the inverse mapping of F = (F1, F2, F3) is G =
(G1, G2, G3), with the Gi localization mappings. Thus we
have:

x = G1(θ1, θ2, θ3) (8)

y = G2(θ1, θ2, θ3) (9)

ε = G3(θ1, θ2, θ3) (10)

It can be verified that there are derivatives of any order of
G1, G2 and G3. If θ1, θ2 and θ3 are noiseless, then ε will
be zero. Else, suppose they represent noisy values θ̃i, due to
a noise δθi. Now we can expand G1, G2 and G3 about the
point (θ̃1, θ̃2, θ̃3) by Taylor series. Suppose the Taylor series
is truncated to second order. For example,

x + δx=G1(θ̃1, θ̃2, θ̃3)
=G1(θ1 + δθ1, θ2 + δθ2, θ3 + δθ3)

=G1(θ1, θ2, θ3) + [
∂G1

∂θ1
δθ1 +

∂G1

∂θ2
δθ2 +

∂G1

∂θ3
δθ3]

+
1
2!

(δθ1
∂

∂θ1
+ δθ2

∂

∂θ2
+ δθ3

∂

∂θ3
)2G1(θ1, θ2, θ3)

By taking the expected value of the above equation we
can obtain an approximation for the expected value of δx
as in terms of derivatives of G1 and the measurement noise
variances:

E(δx) =
1
2
(σ2

θ1

∂2

∂θ2
1

+σ2
θ2

∂2

∂θ2
2

+σ2
θ3

∂2

∂θ2
3

)G1(θ1, θ2, θ3) (11)

E(δy) can be obtained in the same way. Here E(δx) and
E(δy) are considered as the bias. The tensor form of the bias
can be obtained in [6]. There is however a serious practical
difficulty with this approach, as we now explain.

Note that while F can be analytically computed this is
almost certainly difficult or impossible for G. Furthermore,
when one considers for example a three dimensional problem
involving TDOA and angle data, the calculation of G and its
derivatives would be much harder again. In fact, in almost all
cases, it is much easier to obtain the derivatives of forward
mappings (F1, F2 and F3) and very difficult if not impossible
to obtain analytically the derivatives of G. Therefore we
consider how to use F1, F2, F3 and their derivatives to
compute the second derivatives of G, using a Jacobian matrix.

The following equations derive from one property of the
Jacobian matrix.

GJ =




∂G1
∂θ1

∂G1
∂θ2

∂G1
∂θ3

∂G2
∂θ1

∂G2
∂θ2

∂G2
∂θ3

∂G3
∂θ1

∂G3
∂θ2

∂G3
∂θ3


 , FJ =




∂F1
∂x

∂F1
∂y

∂F1
∂ε

∂F2
∂x

∂F2
∂y

∂F2
∂ε

∂F3
∂x

∂F3
∂y

∂F3
∂ε




(12)
where

GJFJ =




1 0 0
0 1 0
0 0 1


 (13)

Solving equation (13), we can obtain the analytical expres-
sions of ∂Gi

∂θj
(i = 1, 2, 3; j = 1, 2, 3) in terms of ∂Fi

∂x , ∂Fi

∂y and
∂Fi

∂ε for i = 1, 2, 3, and thus as analytical expressions in terms
of x, y and ε. For ease of exposition we use Gi

θj
to denote

the expressions of ∂Gi

∂θj
(i = 1, 2, 3; j = 1, 2, 3) as functions of

x, y and ε. Here we take ∂G1
∂θ1

for example. We can obtain the
following equation.

∂G1

∂θ1
= G1

θ1
(14)

Differentiating the equation (14) in respect to x, y and ε
respectively we can obtain an equation set as follows.




∂F1
∂x

∂F2
∂x

∂F3
∂x

∂F1
∂y

∂F2
∂y

∂F3
∂y

∂F1
∂ε

∂F2
∂ε

∂F3
∂ε


×




∂2G1
∂θ1

2

∂2G1
∂θ1θ2
∂2G1
∂θ1θ3


 =




∂G1
θ1

∂x
∂G1

θ1
∂y

∂G1
θ1

∂ε


 (15)

Note that the quantities on the right side of this equation
are all expressible analytically in terms of derivatives of the
Fi, and so as functions of x, y and ε. Hence by solving
the equation set (15), we can obtain a formula for ∂2G1

∂θ2
1

which only contains of the derivatives of F1, F2 and F3.
The formulas for ∂2G1

∂θ2
2

and ∂2G1
∂θ2

3
can be obtained in the same

way. Substituting these formulas for the derivatives of G1 in
equation (11) we can finally obtain the analytical expressions
for the bias in x (E(δx)) including only the derivatives
of F1, F2 and F3. This results in much easier calculation
than computing an analytic expression for G and obtaining
derivatives. The derivation of the analytic expression for
E(δy) is similar.

2. More than Three Anchors

When there are more than three anchors, the situation is
similar to the three anchors case except that the extra variable
ε is no longer a scalar. Instead it is a vector which can be
defined as follows.

ε = [e1, e2, ..., ei]T i = m− 2 (16)
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Fig. 3. Geometry in simulation

where ei denotes a coefficient to set correctly the moved
distance in each dimension of the normal, and m denotes the
number of anchors.

The calculations are a straightforward variation on those for
the three anchors situation. We omit the details here.

III. SIMULATION RESULTS

In this section the results of Monte Carlo simulations will
be provided. Some assumptions on the simulation will be
first noted. Next the comparison of the proposed method
and the GW method with two types of simulations will be
presented. The simulation results verify the proposed method
can correct the bias very well while performing better than
the GW method. Given space limitations we only illustrate
the simulation with three anchors. However the simulation can
be easily extended to more anchors and the simulation results
will remain similar.
• The three anchors are fixed at (0, 8), (0,−8) and (8

√
3, 0)

respectively (See Fig. 3).
• The measurement errors for θ1, θ2 and θ3 are produced by

independent Gaussian distributions (µ = 0 and σ2 = 1).
Though the simulations have been done in different level
of noise, we do not show the details here because of the
space limitation.

• All the simulation results are obtained from 5000 Monte
Carlo experiments.

Two types of simulation have been done. In the first type
we fix the value of y of the target at zero while changing the
value of x, i.e. we adjust the angle A (shown in Fig. 3) The
variation of angle A is from 15◦ to 300◦. Following are the
simulation results.

Fig. 4 illustrates the comparison of the average absolute
distance between the estimated position of target and the true
position in three situations: without a bias-correction method,
with the GW method and with the proposed bias-correction
method. Evidently, both the GW method and the proposed
method can reduce the localization bias for angle A ranging
from 30◦ to 140◦. Furthermore the curve denoting the results
with the proposed method is below the GW curve all the time,
which demonstrates the performance of the proposed method
is better than the GW method. However, when the angle A
is too large or too small neither the GW method nor our
method can work (see TABLE I). At that time the target is far
away from the three anchors. Quite apart from issues of bias
correction, localization algorithms cannot work satisfactorily
in these cases because the target and the three anchors can
be considered as nearly collinear [10, 13]. From TABLE I
(which shows average absolute error between true position and
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Fig. 4. Comparison of the GW method and the proposed method
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Fig. 5. Comparison of Experimental bias and analytical bias

Angle A (Degree) 15◦ 20◦ 245◦ 300◦
Without Bias-Correction Method 3.6257 0.3953 0.0125 0.1732

With the Proposed Method 6.1543 0.2629 0.0056 0.3042
With the GW Method 16.3051 0.53 0.0352 0.4763

TABLE I
COMPARISON OF AVERAGE ABSOLUTE ERROR WITH NO BIAS

CORRECTION, CORRECTION VIA THE GW METHOD AND CORRECTION VIA

THE PROPOSED METHOD

estimated position) we can also obtain that when the angle A
is 20◦, the proposed method is still effective while the GW
method is not. The proposed method continues to be effective
until the angle A is reduced to 15◦. Similar observation can be
made for when the angle A is 245◦ and 300◦. This shows that
the proposed method has a wider region of applicability than
the GW method. This also demonstrates that, from another
standpoint, the performance of the proposed method is better
than the GW method.

Fig. 5 depicts a comparison of experimental bias and
analytical bias. From 30◦ to 140◦, the analytical bias of the
proposed method is closer to the experimental bias than the
bias of the GW approach. This also verifies, from another point
of view, that the proposed method is more effective than the
GW method.

In the second type of simulation we set the value of x of
the target as 8 while adjusting the value of y, which means
the angle B (shown in Fig. 3) is changing : the variation of
the angle B is between 45◦ and 170◦.

Fig. 6 shows the comparison when angle B is changing.
From the figure we can see (conclude would also be very
appropriate) that the proposed approach can correct the bias
very well from 45◦ and 140◦ while the applicability region
of the GW method is only from 45◦ to 100◦. In all cases,
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Fig. 6. Comparison of the GW method and the proposed method
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Fig. 7. Comparison of Experimental bias and analytical bias

Angle B (Degree) 140◦ 160◦ 170◦
Without Bias-Correction Method 0.0907 0.7718 4.4474

With the Proposed Method 0.0012 0.1531 6.4083
With the GW Method 0.1402 1.7101 12.6213

TABLE II
COMPARISON OF AVERAGE ABSOLUTE ERROR WITH NO BIAS

CORRECTION, CORRECTION VIA THE GW METHOD AND CORRECTION VIA

THE PROPOSED METHOD

the performance of the proposed method is better than the
GW approach. Nevertheless, when the angle B is too large
our method is no longer effective (see TABLE II). At that
time, the target is in the far field and we can consider the
three anchors and the target as nearly collinear, which means
that localization may not be practically possible. Again from
TABLE II (which shows average absolute error between true
position and estimated position) we can obtain that the region
of applicability of the proposed method is larger than for the
GW. Further Fig. 7 illustrates the comparison of experimental
bias and analytical bias. Again, the comparison results also
demonstrate the better performance of the proposed method
than the GW method.

From the above simulation results we can observe that the
proposed method can correct the bias very well at least for
the noise level we have considered in most situations except
a near-collinear one. At that time, localization algorithms are
often less effective or noneffective. In other words the bias-
correction approach presented in this paper is consistent with
the applicability of localization algorithms. Furthermore, by
comparing with the GW method, we conclude that the pro-
posed method not only performs better than the GW method
in the same situation but also has larger applicability area.
More simulation has been done with different level of noise by

changing the variance of measurement errors, the simulation
results remain similar demonstrating the better performance
of our method than the GW method. Our conjecture for the
reason for better performance is that in the GW method
truncation of Taylor series occurs three times while we only
truncate the Taylor series once in our method. Using more
terms before truncation may lead to improved precision. More
analysis will be done in the future.

IV. CONCLUSION

An approach to reduce the bias in localization algorithms
is presented in this paper. The proposed method analytically
formulates the bias in an easy way mixing Taylor series and
Jacobian matrices. We analyze the proposed approach with
three and more anchors based on bearing-only localization
algorithms. However it is easy to extend the method to
other kinds of localization algorithms. For example, use of
the proposed method based on distance-measurements has
been studied in [11]. In addition we compare the proposed
method with the GW method based on simulation. Monte
Carlo experiments illustrate our method can correct the bias
very well except in the nearly collinear situation. At that time
the localization algorithms are often less effective or even
noneffective [10, 13]. Our future work is to further improve
the performance of the proposed method (such as via using
high order terms of a Taylor series) and try to extend it to
three dimensional space.
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[6] S. P. Drake and K. Doğançay. Some Applications of Tensor Algebra to
Estimation Theory. 3rd International Symposium on Wireless Pervasive
Computing, ISWPC 2008, 106-110, 2008.

[7] M. Gavish and A.J. Weiss. Performance analysis of bearing-only target
location algorithms. IEEE Transactions on Aerospace and Electronic
Systems, 28(3): 817-827, 1992.

[8] W. H. Foy. Position-Location Solution by Taylor-Series Estimation. IEEE
Transactions on Aerospace and Electronic Systems, AES-12(2): 187-194,
1976.

[9] J. L. Melsa and D. L. Cohn. Decision and Estimation Theory. McGraw-
Hill Inc., 1978.

[10] B. Fidan, S. P. Drake, G. Mao, B. D. O. Anderson and A. A Kannan.
Collinearity problems in passive target localization using direction finding
sensors. Processing of the 5th International Conference on Intelligent
Sensors, Sensor Networks and Information Processing, 2009.

[11] Y. Ji, C. Yu and B. D. O. Anderson. Bias-correction in localization
algorithms. IEEE Global Communication Conference, 2009.

[12] D. J. Torrieri. Statistical Theory of Passive Location Systems. IEEE
Transactions on Aerospace and Electronic Systems, 20(2): 183-198, 1984.

[13] Y. Ji, C. Yu and B. D. O. Anderson. Geometric Dilution of Localization
and Bias-Correction Methods. ICCA 2010. Accepted.

[14] S. Guolin, C. Jie, G. Wei, K.J.R. Liu. Signal processing techniques
in network-aided positioning: a survey of state-of-the-art positioning
designs. IEEE Signal Processing Magazine, 22(4):12-23, 2005.

[15] A. Amar and A. J. Weiss. Localizaion of Narrowband Radio Emitters
Based on Doppler Frequency Shifts. IEEE Transactions on Signal Pro-
cessing, 56(11): 5500-5508, 2008.

1820


