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ABSTRACT 
We consider the design of M-channel orthonormal filter 
banks using polynomial matrix EVD techniques. Modifica-
tions are proposed to a time-domain, polynomial EVD tech-
nique, known as SBR2, which enables it to be applied effec-
tively to the task of FIR paraunitary filter bank design for 
use in subband coding. This algorithm is compared to a 
well-known benchmark FIR compaction filter design 
method. We show that higher coding gains are obtainable 
with our technique for a small number of algorithm itera-
tions. 

1. INTRODUCTION 

Orthonormal filter banks have been extensively studied for 
subband coding [1]-[11]. Subband coding has been exploited 
in an increasing number of applications, including digital 
communications, image and audio coding [6], noise reduc-
tion and channel coding [11]. For the case where the order of 
the filters is unconstrained, it is known that a principal com-
ponent filter bank (PCFB) exists and is an optimal orthonor-
mal (paraunitary) filter bank for this problem [2], [3]. This is 
also true when the filter orders are constrained to be not 
greater than the number of subband channels. In this case, the 
Karhunen-Loeve transform (KLT) or the singular-value de-
composition (SVD) provide the optimal solution. The PCFB 
also exists for the special case of the two-channel filter bank. 
However, in general, it is believed that the PCFB does not 
exist for the intermediate case where order-constrained fil-
ters, i.e. finite impulse response (FIR) filters, are used [7]. 

A number of authors have proposed methods for the de-
sign of suboptimal (near-optimal) constrained-order or-
thonormal filter banks [4]-[10]. A common approach has 
been to calculate an optimal FIR compaction filter [4]-[6], 
[8],[10],  for a given input power spectral density (PSD), then 
use an appropriate completion strategy to construct the filter 
bank, such as that in [5]. Typically, the filter is chosen to op-
timise a specific objective function, such as coding gain or 
energy compaction. As a consequence, all such methods re-
quire the numerical optimisation of non-linear and non-
convex functions. Moulin et al. [5] formulate the FIR com-
paction filter design problem as a semi-infinite linear pro-
gramming problem. Kirac and Vaidyanathan propose a more 
efficient way of obtaining FIR compaction filters in [6], 

called the window method. In [8], Tuqan and Vaidyanathan 
proposed a semi-definite programming method based on a 
state-space description of the compaction filter, and was 
shown to be globally optimal. However, this algorithm is also 
computational more costly and complex than the window 
method.  A drawback with all these techniques is that they 
suffer from the ambiguity caused by the non-uniqueness of 
the FIR compaction filter. In essence, different compaction 
filter spectral factors lead to different filter banks, which in 
turn yield different performances. As such, all such spectral 
factors need to be tested for their performance [10]. 

Other authors have presented paraunitary filter bank de-
sign methods in the context of signal subspace analysis of 
broadband signals [12], [13]. In [12], the fixed degree 
parameterisation proposed by Vaidyanathan [1] is exploited. 
An alternative design can be obtained by generalisation of 
the eigenvalue decomposition (EVD) to polynomial matrices, 
as proposed in [14], [15]. This algorithm is called the second 
order sequential best rotation (SBR2) algorithm. It has been 
successfully used in applications where the EVD has tradi-
tionally been employed, including subspace decomposition. 
In this paper, we present a novel method of designing or-
thonormal filter banks for subband coding that uses an adap-
tation of the SBR2 algorithm. A more thorough treatment of 
the new algorithm is left for a journal publication. 
 

 
 
Fig. 1.  (a) M–channel uniform, maximally decimated filter bank 
and (b) its polyphase representation. 
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2. OPTIMAL FILTER BANKS 

An M–channel subband coder is shown in Fig. 1(a) and its 
polyphase form is shown in Fig. 1(b). This is a maximally 
decimated uniform filter bank; our discussions are limited to 
this type of subband coder. We further assume that the filter 
bank is orthonormal, i.e., the matrix ۳(݁௝ఠ) in Fig.1(b) is 
unitary for all ߱. In other words, ۳(ݖ) is paraunitary [1], i.e. 
(ݖ)۳෨(ݖ)۳ = ۳෨(ݖ)(ݖ)۳ = ۷, where ۳(ݖ) is an ܯ × -poly ܯ
nomial matrix and ۳෨(ݖ) = ۳ு(ିݖଵ). If ۴(ݖ) is chosen such 
that ۳(ݖ)(ݖ)۴ =  ,߬ ఛ۷, for some constant c and integerିݖܿ
then the subband coder is a perfect reconstruction filter 
bank. That is, with no subband-processing, (ݐ)ݕ = ݐ)ݔ − ߬) 
for all ݐ, ߬ ∈ ℤ. 

A PCFB offers an optimal solution to two subband cod-
ing problems. Firstly, assuming optimal bit allocation, it is an 
optimal orthonormal subband coder in the sense of maximis-
ing the well-known coding gain [2]: 

ܩ  =
∑(ܯ/1) ௟ଶெߪ

௟ୀଵ
(∏ ௟ଶெߪ

௟ୀଵ )ଵ/ெ , (1)  

where ߪ௟ଶ = ,{ଶ|(ߤ)௟ݒ|}ܧ 1 ≤ ݈ ≤  is the variance of ,ܯ
-denotes the expectation op {∙}ܧ ,(ݖ)the output of ℎ௟ :(ݐ)௟ݒ
erator and ߤ = -denotes the low-rate time index. Sec ݐܯ
ondly, it minimises the reconstruction error for a proper 
subset of the set of subband channels. Vaidyanathan has 
shown that the outputs of a PCFB simultaneously satisfy:  
(i) Strong decorrelation. The subband signals, ݒ௟(ݐ), are 

decorrelated at all relative time lags, i.e., 

∑൛߃  ߤ)௠ݒ(ߤ)௟ݒ + ߬)ఓ ൟ = 0,  (2)  

for ݈ ≠ ݉ and all ߬. 
(ii) Spectral majorisation. Let the PSD of ݒ௟(ݐ) be denoted 

as ௟ܵ௟(݁௝ఠ). For all ߱, the set { ௟ܵ௟(݁௝ఠ)} has the prop-
erty, 

 ଵܵଵ(݁௝ఠ) ≥ ܵଶଶ(݁௝ఠ) ≥ ⋯ ≥ ܵெெ(݁௝ఠ), (3)  

where the subbands are numbered such that ߪ௟ଶ ≥ ௟ାଵଶߪ . 

3. POLYNOMIAL MATRIX EVD 

Correlation between signals is a type of redundancy which 
can be exploited to achieve compression. If the signals are 
only correlated at zero relative time lag, then the KLT (or 
SVD) can be used to decorrelate the signals. The decorrela-
tion process converts the form of the redundancy from cor-
relation between the signals to disparity between the signal 
powers. At this stage, it is possible to achieve compression 
by discarding low power channels. 

In the case of an M-channel filter bank (depicted in Fig. 
1(b)), provided the input samples are uncorrelated over any 
lag |߬| <  so that the subband channels are uncorrelated for ܯ
any relative delay, the matrix ۳(ݖ) required for the 
KLT/SVD is a unitary matrix applied to the vector (ݐ)ܠ. The 
orthogonality condition implies that the transformation is 
energy preserving. 

However, if the subband signals are correlated for lags 
߬ ≠ 0 in (2), decorrelation by a unitary matrix is not suffi-
cient for accurate signal subspace estimation; and strong 
decorrelation is necessary. To achieve this, the transformation 
applied must be a matrix of polynomials (a bank of FIR fil-
ters), as represented by ۳(ݖ). It is desirable to have a suitable 
polynomial matrix EVD (PEVD) algorithm to generate a 
transformation of the form: (ݖ)܁ =  where ,(ݖ)۶෩(ݖ)܀(ݖ)۶
 is an estimate of the cross-spectral density matrix for (ݖ)܀
the input signals and (ݖ)܁ is approximately diagonal and 
provides an estimate of the cross-spectral density matrix for 
the transformed signals. Such a ۶(ݖ) can be found by the 
SBR2 algorithm [15]. 

3.1 Sequential Best Rotation Algorithm 
The SBR2 algorithm constitutes a simple scheme for gener-
ating polynomial (FIR) paraunitary matrices to achieve the 
strong decorrelation of multiple channels. The structure of 
the filter bank produced by the technique is an immediate 
generalisation of the paraunitary matrix decomposition 
found by Vaidyanathan in [1]. For the 2 × 2 case, the 
paraunitary matrix may be expressed as, 

(ݖ)۶  = (ݖ)௅ିଵ ۾(ݖ)௅ ۾  (ݖ)଴۾…
= (ݖ)௅ିଵ઩ఛಽషభۿ(ݖ)௅઩ఛಽۿ   (4) (ݖ)଴઩ఛబۿ…

where ۾ ℓ(ݖ) = -is an elementary paraunitary ma (ݖ)ℓ઩ఛℓۿ
trix composed of a 2 × 2 unitary matrix ۿℓ and a polyno-
mial matrix ઩ఛℓ(ݖ) = ቂ1 0

0 -ఛℓቃ for which the integer paݖ

rameter ߬ℓ can be negative or positive. The SBR2 algorithm 
operates in an iterative manner. At each step, the algorithm 
applies a generalised similarity transformation given by: 
(ݖ)ᇱᇱ܀ =  .(ݖ)෩ℓ۾(ݖ)܀(ݖ)ℓ۾

This elementary paraunitary transformation constitutes 
one stage of the SBR2 algorithm designed to zero the domi-
nant off-diagonal coefficient of (ݖ)܀. The algorithm contin-
ues by making the substitution ܀ᇱᇱ(ݖ) ←  ,In practice .(ݖ)܀
this iterative process is repeated until the magnitude of the 
dominant off-diagonal coefficient, หݎ௡௣(߬ℓ)ห, of (ݖ)܀ is suffi-
ciently small, at which point the polynomial matrix is de-
clared to be diagonal. The polynomial matrix generated by 
(4) is paraunitary since each stage is paraunitary. The algo-
rithm intrinsically aims to perform PEVD on the (sample) 
cross-spectral density matrix (ݖ)܀. 

3.2  Alternative Cost Function 
The SBR2 tends to strongly decorrelate signals with large 
power at the expense of signals that have relatively lower 
power. This limits the extent to which strong decorrelation 
and spectral majorisation is performed. This problem can be 
alleviated by the use a cost function which is proportionately, 
equally sensitive to changes in any of the signals, such as the 
coding gain measure in (1). Hence, we use (1) as our cost-
function but base it on sample statistics. A thorough treat-
ment of this cannot be provided here due to limited space. 
We call this is the modified SBR algorithm. 
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4. CROSS-SPECTRAL COVARIANCE ESTIMATION 
FOR DEMULTIPLEXED SIGNALS 

The SBR2 algorithm can be classed as a ‘blind’ technique 
since it does not use knowledge about the signals or the 
mixing matrix. Furthermore, its formulation is not based on 
knowledge of the input signal statistics save for the minor 
requirement that the mean value of the signals is zero. 
Therefore, the performance of the filter bank it designs de-
pends on the accuracy of its estimate of the true space-time 
covariance matrix for input signals. 

The modified SBR2 algorithm, introduced in Sect. 3, can 
be used directly to construct an ܯ × -paraunitary polyno ܯ
mial matrix ۳(ݖ) =  (ݖ)ܠ for the demultiplexed signals (ݖ)۶
in Fig. 1(b). The output subband signals from ۳(ݖ) may be 
expressed as (ݖ)ܞ =  However, if the input signal .(ݖ)ܠ(ݖ)۳
 is stationary, this scheme can be improved upon. In this (ݐ)ݔ
case, the statistics of the demultiplexed input signal are such 
that the cross-spectral density matrix (ݖ)ۯ is pseudocircu-
lant. Knowledge of this structure is implicitly exploited by 
conventional filter bank design algorithms, such as the win-
dow method. In the following we investigate the structure of 
-with a view to improving the covariance matrix esti (ݖ)ۯ
mate. 

4.1 Cross-Spectral Density Matrix 
Consider the subband coder in Fig. 1(b). The blocked sam-
ples from the demultiplexer are 

(ߤ)ܠ  = ,(ߤ)ଶݔ,(ߤ)ଵݔ] …   (5) ்[(ߤ)ெݔ,

where ݔ௞(ߤ) = ݐܯ)ݔ + ݇ − 1), 1 ≤ ݇ ≤ -are the demul ,ܯ
tiplexed signals. We assume that the signal (ݐ)ݔ is wide-
sense stationary (WSS): A stochastic process, ߯(ݐ), is said to 
be WSS if and only if [1] {(ݐ)߯}ܧ = ݐ)߯}ܧ + ,ݐ ∀ ,{(߬  ∈
ℤ; and ݐ)∗߯(ݐ)߯}ܧ + ߬)} = -is the autoco (߬)ߙ where ,(߬)ߙ
variance function of ߯(ݐ). Note that we assume {(ݐ)߯}ܧ =
 .ݐ ∀ ,0

The ܯ × -cross-spectral density matrix for the demul ܯ
tiplexed signals is: 

(ݖ)ۯ  = ෍ A(߬)ݖఛ = ቎
ܽଵଵ(ݖ) ⋯ ܽଵெ(ݖ)
⋮ ⋱ ⋮

ܽெଵ(ݖ) ⋯ ܽெெ(ݖ)
቏

ఛమ

ఛୀఛభ

, (6)  

where ܽ ௟௠(ݖ) = ∑ ܽ௟௠(߬)ିݖఛஶ
ఛୀିஶ  and ܽ௟௠(߬) =

ܧ ቄݔ௟(߬)ݔ௠∗ ߤ) + ߬)ቅ are the cross-covariances between sub-
band signals. 

4.2 Parahermitian Nature of (ࢠ)࡭ 
It is easy to show that (ݖ)ۯ is parahermitian. We have that 
 

 
݈ܽ,݉(߬) = ∗݉ݔ(߬)݈ݔ൛ܧ ߤ) + ߬)ൟ 

= ∗݈ݔ(߬)݉ݔ൛ܧ ߤ) − ߬)ൟ
∗
 

= ܽ௠,௟
∗ (−߬)  

(7)  

 and      ܽ ௟,௠(ݖ) = ∑ ܽ௟,௠(߬)ିݖఛஶ
ఛୀିஶ = ෤ܽ ௠,௟(ݖ),   

therefore (ݖ)ۯ =  .(ݖ)෩ۯ

4.3 Pseudocirculant Matrices 
An ܯ ×  with entries (ݖ)ۯ cross-spectral density matrix ܯ
ܽ௟,௠(ݖ) is said to be pseudocirculant if there exists polyno-
mials ߮଴(ݖ),߮ଵ(ݖ), . . . ,߮ெିଵ(ݖ) such that [1] 
 

 ܽ௟,௠(ݖ) = ቊ
߮௠ି௟(ݖ), 1 ≤ ݈ ≤ ݉ ≤ ܯ

,(ݖ)ଵ߮௠ି௟ାேିݖ 1 ≤ ݉ < ݈ ≤   (8)  .ܯ

 
In words, (ݖ)ۯ is a circulant matrix except that the entries 
below the main diagonal are multiplied by ିݖଵ. 

In the following, we show that the true cross-spectral 
density matrix, A(z), of the demultiplexer outputs, (ݖ)ܠ, 
(see Fig. 1(b))  is a pseudocirculant matrix for a WSS input 
signal. A typical term from the true cross-spectral density 
matrix of (ݖ)ۯ ,(ݐ)ݔ, is: 
 

ܽ௟,௠(ݖ) ∝ ∑൛൫ܧ ఓఓିݖ(ߤ)௟ݔ ൯൫∑ ఓఓିݖ(ߤ)௠ݔ ൯ൟ  
 

 

= ܧ ቄ(∑ ݐܯ)ݔ + ݈ − ௧௧ିݖ(1 ) ×  

          (∑ ݐܯ)ݔ +݉− ௧௧ିݖ(1 ) ቅ  
(9)  

 
= ∑ ఛܧ ቄ∑ ݐ)ܯ)ݔ + ߬) + ݈ − 1)௧ ×  

ݐܯ)ݔ                                    +݉− 1) ቅ ఛିݖ .  
 

Hence 

 
ܽ௟,௠(ݖ) ∝ ∑ ݐ)ܯ])ܽ + ߬) + ݈ − 1] − ఛ   

ݐܯ]                       + ݉− ఛିݖ([1  
= ∑ ߬ܯ)ܽ +݉− ఛఛିݖ(݈ .  

(10)  

 
So, setting ߮௞(ݖ) = ∑ ߬ܯ)ܽ + ݇ − ఛఛିݖ(1 , we see that 
 .is pseudocirculant (ݖ)ۯ

4.4 Estimation of (ࢠ)ۯ 
Due to the pseudocirculant structure of (ݖ)ۯ, there is extra 
(useful) information about ܽ(ݖ) in the combination of re-
lated entries, which can be used to determine ܽ(ݖ). Given  
߬,ܶ ∈ ℤ,  0 ≤ ଵݐ ≤ ܶ, the sample autocovariance function 
for the input signal (ݐ)ݔ may be expressed as: 

(ݖ)ݎ  = ∑ ቂଵ
்
∑ ݐ)∗ݔ(ݐ)ݔ] + ߬)]்ିଵ
௧ୀ଴ ቃ ఛ௧భିݖ

ఛୀି௧భ ,  (11)  

The sample cross-spectral density matrix for the demulti-
plexed signals (ݐ)ܠ is given by 

(ݖ)܀  = ∑ ఛ௧భିݖ(߬)܀
ఛୀି௧భ   (12)  

where 

(߬)܀  = ெ
்
∑ ߤ)ୌܠ(߬)ܠ + ߬)்ିଵ
ఓୀ଴   ∈ ℂெ×ெ .  (13)  

The SBR2 algorithm can be modified to exploit the pseudo-
circulant structure of (ݖ)ۯ. The set of diagonally related 
elements of (ݖ)܀ are different estimates of the same true 
cross-covariance. Therefore, to improve the estimate of 
 averaging may be performed across the associated ,(ݖ)ۯ
coefficients in (ݖ)܀ – taking account of the delay between 
terms above the diagonal and those below. We define 
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߮௞(߬) =
ቀଵ
ெ
ቁ൫∑ ௟,௟ା௞(߬)ெି௞ݎ

௟ୀଵ +∑ +߬)௟,௟ା௞ିெݎ 1)ெ
௟ୀெି௞ାଵ ൯  (14)  

 
0 ≤ ݇ ≤ ܯ − 1, and a typical entry of the new (averaged) 
sample covariance matrix (ݖ)′܀ as 
 

௟,௠ ݎ
ᇱ (ݖ) = ൝

∑ ߮௠ି௟(߬)ିݖఛఛ , 1 ≤ ݈ ≤ ݉
∑ ߮௠ି௟ାெ(߬)ିݖఛିଵఛ , 1 ≤ ݉ < ݈.

  (15)  

 
The modified SBR2 algorithm can be applied to our im-
proved estimate of the cross-spectral density matrix. This 
combined system yields the SBR2 coder. A diagram of the 
process blocks constituting the SBR2 coder is shown in Fig. 
2. 
 

 
 
Fig. 2. The SBR2 coder. 
 

5. SIMULATION RESULTS 

In this section, we present simulation results that quantify 
the data encoding performance of the SBR2 coder. The 
coding gain in (1) is used to assess its performance. We 
compare our algorithm to the window method [6]. 

The data simulated for the following experiments are 
based on examples given in [6], [5]. The algorithms were 
tested on an ARMA(5) input process with a PSD as repre-
sented by the dashed curve in Fig. 3. This type of process is 
regarded as a good model for many practical signals such as 
image and speech signals. The input signal (ݐ)ݔ was gener-
ated by filtering a binary phase-shift keying (BPSK) se-
quence with unit variance and zero mean of length 2000 
samples: each sample takes the value 1  with a probability 
of 1/2. The BPSK sequence was filtered with an order 5 
Yule-Walker IIR filter. The ARMA process had the follow-
ing poles and zeros: 

݌ = [0.1195,0.8990݁±௝ଶ.ଵସ଻ଶ, 0.8824݁±௝଴.ହହଽସ] 
ݖ = [±0.9992,−0.45416,1.0020݁±௝ଵ.ଷଷ଴ହ] 

Unless stated otherwise, experiments quantifying coding 
gain performances were repeated over 50 realisations and 
the mean over the trials were taken. The SBR2 coder was 
applied to the improved estimate of the cross-spectral den-
sity matrix, (ݖ)′܀, with entries as in (15), and with a win-
dow of length of 2ݐଵ + 1 = 41, as in (12), which produced 
the best results. 

Example 1: Frequency response. A comparison of the 
coding gain achieved by the SBR2 coder for ܮ = 11 and the 
window method for ܰ = 11 was made. For this dataset, the 
SBR2 coder achieves a coding gain of 1.46dB higher than 
that obtained using the window method. Fig. 3 shows the 
frequency response of the filters ℎଵ(ݖ) and ℎଶ(ݖ) produced 
by the SBR2 coder for ܮ = 11 as the solid curve and the 
dotted curve, respectively. It can be seen that the algorithm 
has designed a multiband compaction filter with passbands 
that coincide with the dominant signal energies, which is 
commensurate with high compaction gains. 

Example 2: Dependence on L. Fig. 4 gives a compari-
son of the coding gain performance between the two-channel 
filter bank designed using the window method and that pro-
duced by the SBR2 coder. The abscissa on this figure repre-
sents both the number of SBR2 iterations L and filter order N 
(window method). The dotted (horizontal) line represents the 
ideal coding gain. As expected, the maximum coding gain 
attained by the algorithms are below the ideal values. An 
important result is that, for the given input process, the filter 
banks constructed by the SBR2 coder generally attain a 
higher coding gain than those of the window method. 
 

 
Fig. 3. The frequency responses of a two-channel filter bank de-
signed by the SBR2 coder with ܮ = 11 for an ARMA(5) process. 

 
 

 
Fig. 4. Comparison of the coding gain performance of the window 
method and the SBR2 coder for the 2-channel case and the 
ARMA(5) process. 
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6. CONCLUSIONS 

In this paper, an adaptation of a polynomial matrix EVD 
algorithm, namely the SBR2 algorithm, has been proposed 
that takes advantage of the special structure of the subband 
covariance matrix to design multi-band orthonormal sub-
band coders. We also propose a new cost function for use 
with the SBR2 algorithm that improves the diagonalisation 
and data compression performances of the algorithm. 

The resultant algorithm, called the SBR2 coder, can 
converge to a solution that yields a perfect reconstruction 
filter bank which is approximately optimal for subband 
coding in a small number of iterations; the suboptimality of 
the algorithm diminishes as the number of steps increases. 
The SBR2 coder has been shown to outperform a well-
known algorithm, called the window method, for the two-
channel case and for a set of benchmark problems. 

It is envisaged that the SBR2 algorithm can be extended 
naturally for application to the problem of multichannel 
subband coding for applications such as MIMO digital 
communications using sensor arrays. 
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