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ABSTRACT included for comparison. Results are reported on the TIMIT
This paper presents a detailed comparison of the perforenandatabase with the recognition engine provided by the HMM
of two auditory based feature extraction algorithms fooaut Tookit (HTK).
matic speech recognition (ASR). The feature sets are Zero-
Crossings with Peak Amplitudes (ZCPA) and the recently in- 2. ZCPA FEATURES
troduced Power-Law Nonlinearity and Power-Bias Subtrac- ] )
tion (PNCC). Standard Mel-Frequency Cepstral Coefficientd CPA features were first proposed by Kim [1] as a adapta-
(MFCC) are also tested for comparison. Although front-enddion of the Ensemble Interval Histogram model [2]. The mo-
have been compared in previous papers, this work focuses éiation is to model the neural firing patterns of the human
two of the most promising algorithms for noise robustnesscochlea. In the proposed model, the speech signal is filtered
The performance of all features is reported on the TIMITW'th a set of auditory filters, th_en the output of ei_iCh filter
database using a HMM system. It is found that the PNC@S Passed through a zero-crossing detector. The distance be
features outperform MFCC in clean conditions and are robud¥veen adjacent upward going zero-crossings is used to give
to noise. ZCPA performance is shown to vary widely with@ frequency estimate. The resulting frequencies are ¢etlec
filterbank configuration and frame length. The ZCPA perfor-in @ histogram, with the weight of each histogram entry be-
mance is poor in clean conditions but is the least affected bid given by a non-linear compression of the peak amplitude

white noise. PNCC is shown to be the most promising nevP€tween the zero-crossings. The histograms across all filte
feature set for robust ASR in recent years. channels are then summed to produce the feature vector. A

schematic for the algorithm is shown in Figure 1.
1. INTRODUCTION

The typical speech recognition system consists of two main
elements, a front end processor and a recognition engine.
The front end processing is referred tofeature extraction. ‘ filterbank ‘

The task of feature extraction is to obtain a compact repre; l o i o) ] l ,,,,,, () l
sentation of a speech signal that compresses the useful in= | e ) 2 ()]
formation into a small number of measures or coefficients. | | L crosines

The information held by the coefficients must be sufficient to:® lmwl Fn) lui fuln) iluj A l:m..__:”(,ﬂ
allow different elements of speech to be distinguished from .-

one another. Typically this information is about the disiri () el ()
tion of energy in the different frequency bands of the signal
and how these vary with time. Conventional features such as
Mel Frequency Cepstral Coefficients (MFCC) perform this
task effectively in ideal operating conditions. However, i
is well established that their performance degrades sigvere ZCPA feature vector
when there is a mismatch between the training and testing
conditions, typically due to background noise [1]. Humans
have an impressive ability to recognise speech even in the
most adverse environmental conditions. Thus an approach
to achieving robust ASR is to use an understanding of hu2.1 Auditory Filters
man speech processing in feature extraction. Such featur
which can be based on physiological or perceptual aspe

7ZCPA | ZCPA ‘ R ':‘ ZCPA
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Figure 1: ZCPA extraction scheme

€fhe auditory filterbank aims to simulate the frequency se-
fh h . ferred di fCFéctivity behaviour of the human cochlea. It comprises of
of human speech processing, are referred to as auditory fegytipie channels with bandwidth and spacing determined

tures. . by some non-linear scale. In this paper three different-audi
In this paper, the performance of an established algory filters were evaluated.

ditory feature type, Zero-Crossings with Peak Amplitudes
(ZCPA), with several filterbank configurations, along with a .
recently developed one, Power-Law Nonlinearity and Powerg'l'1 Cochlear Filterbank

Bias Subtraction (PNCC), are evaluated in clean and nois# carefully designed cochlear filterbank replicating theiba
conditions. The performance of standard MFCC features adar membrane response was presented by Seneff in [3], as
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part of her synchrony / mean-rate model of speech processvenly on the Bark scale from 200Hz to 3400Hz. Filter band-
ing. The evaluated filterbank had 36 channels with a bandwidths were equal to 2 bark - reported to be an optimal spac-
width of approximately 0.5 Bark and centre frequencies fronming by Gajic [5]. The frequency response of this filterbank is
130 to 3400kHz. An implementation of Seneff's model in shown in Figure 4

Matlab included as part of an ‘Auditory Toolbox’ for Mat-
lab by Slaney [4] was used in this evaluation. Its frequency
response is shown in Figure 2.

FIR filterbank response
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Figure 2: Seneff's Cochlear Filterbank Frequency Responsg2 zero-Crossing and Peak Amplitude Detector

An upward going zero-crossing is assumed to signal a neural
, firing event on the basilar membrane. The intervals between
2.1.2 ERB Filterbank these events and the peak value across this interval isased t

An Equivalent Rectangular Bandwidth (ERB) filterbank canbuild a frequency histogram at the next stage. The output of
be viewed as a cochlear filterbank providing a more simpléhe mth filter channelsm(n), is passed into a zero-crossings
modelling of the basilar membrane response than Senefféetector. Each of (upward-going) zero crossings(i) is
filterbank. Slaney’s Auditory Toolbox includes an ERB fil- Passed to a peak detector and a frequency estimator. The
terbank implementation which was used in this evaluationP€akpm(i) is calculated by:
The filterbank evaluated had 16 filters with centre frequen- _
cies ranging from 200Hz to 3400Hz. The bandwidth and Pm(i) :Zm(i)<Tg|Xﬂ(i+l> {sm(m}
spacing of adjacent channels is equal on the ERB scale. -

The frequency response of the filterbank is shown in Fig2 3 Feature Histogram

re 3.
. In the final stage, the frequendy(i) between adjacent zero

crossings is calculated by:

ERB filterbank response
T v ™7

1

fn(l) = ———————=
) = o D 2

The entry for thejth bin of histogranhmy(n), wherel, is
the number of zero crossings for thmg, filter output, is then

given as:
Im—1

3 i ltn(i)

. log(pm(i) +1) if fm(i) € binj
where ; {fm(i)} = )
Figure 3: ERB Filterbank Frequency Response ¥itfm(1)} { 0 otherwise

The final histogranh(n) is given as the sum of the corre-
2.1.3 FIRFilterbank sponding entries in all sub-band histograms:

Despite the fact that cochlear filters are designed to rafelic M

a physiological response to speech, it has been reported tha h(n) = z hm ()

a filterbank of FIR filters can exceed the performance of the e

cochlear filters in a ZCPA implementation Kim [1]. Subse-

quent implementations [5, 6] use FIR filterbanks exclugivel The frequency computed from intervals between zero-
A filterbank was designed with 16 Hamming FIR filters of crossings can be seen as corresponding to the point of ex-
order 61. The centre frequencies of the filters were spreacitation on the membrane. This is the dominant frequency in
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that sub-band, and the peak value over its interval is an indi

cation of its power. Thus the resulting histogram represent _

the dominant energies in the signal, which hold important 5(mn) ( 1 min(mim,M)
m,n) =

phonetic information. The histogram was allocated 60 bins,
equally spaced on the Bark scale from 0 Hz to 4kHz. ADCT
of the final histogram is computed to decorrelate the feature

w(rrﬂn)) P(m,n)

=max(m—m,1)

Where P(m,n) is the original power of the frame,
3. PNCC FEATURES w(m', n) is the power normalization gain given by the ratio of

. ) _ ) the normalized power to the average power of a frame. The
This a recent feature extraction algorithm mtroduceo_l in [7_ normalized power is found from the power bias, which can
It can be seen as a variant on MFCC feature extraction Withe defined as the smallest power which makes the arithmetic
different stages of the conventional algorithm replacethwi mean to geometric mean ratio of the segment the same as that
auditory motivated elements. Firstly the triangular fth@nk o clean speech. Full details of the algorithm are given n [7
used by MFCC is replaced with a gammatone filterbank. Theq, smoothing purposes)(n, n) is averaged across a range
novel aspects of the algorithm are the use of a Power FUng channels specified byy. The value ofrny used was 5. The

tion Nonlinearity (replacing MFCC's log nonlinearity) and tota] number of Gammatone channd¥, was 40.
the use of Medium-Duration Power Bias Subtraction to sup-

press the effects of background excitation. A schematic is 4. PERFORMANCE EVAL UATION
given in Figure 5. ‘
4.1 Experimental Conditions

Gammatone

Input Speech | Pre-Eraphasis STFT Nogmude Frequency The test corpus used to evaluate the performance of the fea-
ture types was the widely used TIMIT database [9]. The
HMM Toolkit (HTK) was used for creating the recognition
Mean ot Power Function| | |Medium-Duration engine. The TIMIT database was divided into training and
Normalization > Nonlinearity Power Subtraction . . .
testing subsets as recommended in the documentation.
The size of the ZCPA and PNCC frames was 50ms while
Figure 5: PNCC extraction scheme a 25ms frame length was used for MFCC. The step size in
both cases was 10ms. Each vector contained 36 coefficients:
12 static; 12 first-order dynamic; and 12 second-order dy-
3.1 Power Function Nonlinearity namic coefficients. Cepstral Mean Normalisation was ap-
The nonlinearity of the human auditory system has been weffi€d in each case. This resulted in 5 feature sets - MFCC,
established, and the use of a nonlinear function in feature e PNCC and ZCPA with three filterbanks denoted Seneff, ERB
traction methods is common. MFCCs pass the filter output&"d FIR. _
through a log nonlinearity. PNCC adopts a power function . Contéxt-independent monophone HMMs with 8 Gaus-
which aims to better model peripheral nonlinearities than #1&n mixtures were trained using features extracted fram th
log function. Taking a closer look at accurate auditory mod-{raining set. The test utterances were passed to the trained
els [8], the graph relating decibels to auditory nerve firingHMMSs and a phoneme level transcription was generated.
rate is S-shaped. For decibels below a certain threshadd, th ~ The testing procedure was carried out for clean speech
firing rate is almost constant. Above this the increase if-dec (the original TIMIT recordings) and for noisy speech (white
bels with firing rate is almost linear, until it reaches a satu Gaussian noise added to the recordings at SNRs of 10dB and
ration point. If a log nonlinearity is adopted then thereds n 0dB). No noise was added to the training material so that a
sult in large changes at the output of the log function. Withsimulated.
power function however - when the input level is close to _
zero, so too is the output level. This is what is observed if-2 Experimental Results

the human auditory system. The target function then will beecognition performance is measured by comparing the out-
close to zero up to a threshold, and then increase lineagly. Bt transcriptions to reference transcriptions. The messi
cause the dynamic behaviour of the output does not depetigkrformance used is phoneme-level accuracy, as defined by
critically on the input amplitude, this ideal piecewisedar  HTK in [10] and given by(1).
curve is approximated with an a MMSE-based best fit power
function. The power nonlinearity is described by the equa- L-D-S—1I
tion %accuracy = ———  x 100 (1)
L
y = x% wherelL is the total number of labels (phonemes) in the
. reference transcription®) is the number ofleletions, Sis

The best-fit value of the exponent was found taébe=  the number ofubstitutionsand! is the number oinsertions.

0.1 by [7]. Figure 6 shows the performance of each feature set for
clean speech and SNRs of 10dB and 0dB.

Itis clear that MFCC performance degrades significantly
This stage of the algorithm subtracts a ‘bias’ from the speecin noise, with its accuracy decreasing by 45% in 10dB white
segment that is assumed to represent an unknown level abise and by 74% in 0dB white noise. PNCC is the most ef-
background excitation. The adjusted povii{im,n) of the fective of the front-ends, with the highest accuracy in clea
mth channel andth frame is given by conditions and in both levels of noise. Its accuracy drops

Output Feature

3.2 Medium-Duration Power Bias Removal
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Recognition Accuracy in clean and noisy conditions Recognition Accuracy (Fixed Vs Variable frame length)
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Figure 6: Recognition Accuracy of different features indif ~ Figure 7: Accuracy of Fixed vs Variable frame lengths
ferent environments, whefd R, ERB and Seneff are ZCPA

features with FIR, ZCPA and Seneff cochlear filterbank conf grouping phonemes

figurations respectively visv iyih eh ey ae aa aw ay ah oy ow uhuwer[rwy
n/f m n ng dx
sf jnchzssh

by 47% from clean to 0dB white noise. All ZCPA front- WF hhvfdhth

ends perform similarly, with Seneff’s cochlear filterbarde b S bpdtgk

ing marginally the most accurate. They all perform poorly in =1 Sil

clean speech, but show impressive robustness, with the FIR

configuration dropping only 18% from clean to 0dB white Table 1: Grouping of phonemes

noise.

As a fixed frame length was used for the ZCPA imple-
mentation, each histogram entry was divided by its frequenc 5. CONCLUSIONS

(prior to the nonlinear compression) to prevent biasing to-

wards higher frequencies. However, having a fixed framé\uditory features are clearly more robust than conventiona

length for each filter means that some accuracy may be lostMFCC features in the presence of white noise. PNCC fea-
particularly at lower frequencies where there are fewenzer tures are significantly more effective than any of the other

crossings in the 50ms frame window. To investigate howfeatures tested, with a high recognition accuracy in clean
a variable frame length would affect performance, this waspeech and relative robustness in noise. This supports Kim &

implemented and tested with the FIR filterbank. The framéStern’s work [7] which showed PNCC to outperform MFCC
lengthL; is given by(2). and Perceptual Linear Prediction (PLP) feature sets on the

DARPA Resource Management (RM1) database.
L - 40 5 ZCPA perform poorly in clean speech but show a high
= \/FT:] 2 level of robustness. Contradictory to previous suggestion
the FIR implementation did not provide superior perfor-
whereF; is the centre frequency of thig, filter. The  mance to the cochlear filterbanks. The best ZCPA result was
square root of this is taken to compress the longer framebserved by the most complex filterbank - Seneff’s. Adopt-
lengths while keeping the shorter frame lengths from becoming a variable vs fixed frame length gave widely different re-
ing unreasonably short. With the scaling factor of 40 and theults - both with advantageous trends - clearly this behgvio
given FIR centre frequencies, this resulted in frame lemgthmust be explored further. The ZCPA model has many vari-
of between 43 and 177ms. The results of this adaptation a@ble parameters. The scope of this paper covers a limited
compared with the original FIR implementation in Figure 7.number of optimisations (Using Gajic’s suggestions [5] as
The variable frame length provides significantly highenacc a starting point) However there are many further potential
racy in clean conditions but is less robust to noise as thd fixeadaptations possible which may bring about increased per-
frame length. formance - frame length, delta window, filterbank parame-
To provide more detailed results, a phonetic breakdowtters, histogram parameters, number of coefficients etc. It
of the performance was created. The 39 phonemes were ditust be questioned whether carrying out such exhaustive op-
vided into 5 groups, as proposed in [11], with an additionakimisations are justified given the superior performanag an
group for silences (sil). The 5 phoneme classifications areghe less complex nature of the PNCC algorithm.

vowels/semi-vowels (v/sv), nasals/flaps (n/f), strongdi These tests were run with context-independent mono-
tives (sf), weak fricatives (wf) and stops (st). The classifi phone HMMs. Further study should explore the relative
cation is shown in Table 1. improvements achieved by adopting context-dependent tri-

The breakdown in performance is presented in Figurephone models (the current standard in HMMs for ASR).
8,9 and 10. It is interesting that weak fricatives are recog-
nised with consistently low accuracy.t 40%) by all fea- Viewing the phonetic breakdown, the weak fricatives in
tures in all conditions particular appear to be responsible for a large part of tihe pe
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1972

Speech Corpus. Linguistic Data Consortium, Philadel-
phia, 1993.

S. Young et alThe HTK Book (for HTK version 3.2.1).
Cambridge University Engineering Department, 2002.
A. Halberstadt and J. Glass, “Heterogeneous acoustic
measurements for phonetic classification,” tech. rep.,
Spoken Language Systems Group, Massachusetts In-
stitute of Technology.



