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ABSTRACT
This paper presents a detailed comparison of the performance
of two auditory based feature extraction algorithms for auto-
matic speech recognition (ASR). The feature sets are Zero-
Crossings with Peak Amplitudes (ZCPA) and the recently in-
troduced Power-Law Nonlinearity and Power-Bias Subtrac-
tion (PNCC). Standard Mel-Frequency Cepstral Coefficients
(MFCC) are also tested for comparison. Although front-ends
have been compared in previous papers, this work focuses on
two of the most promising algorithms for noise robustness.
The performance of all features is reported on the TIMIT
database using a HMM system. It is found that the PNCC
features outperform MFCC in clean conditions and are robust
to noise. ZCPA performance is shown to vary widely with
filterbank configuration and frame length. The ZCPA perfor-
mance is poor in clean conditions but is the least affected by
white noise. PNCC is shown to be the most promising new
feature set for robust ASR in recent years.

1. INTRODUCTION

The typical speech recognition system consists of two main
elements, a front end processor and a recognition engine.
The front end processing is referred to asfeature extraction.
The task of feature extraction is to obtain a compact repre-
sentation of a speech signal that compresses the useful in-
formation into a small number of measures or coefficients.
The information held by the coefficients must be sufficient to
allow different elements of speech to be distinguished from
one another. Typically this information is about the distribu-
tion of energy in the different frequency bands of the signal
and how these vary with time. Conventional features such as
Mel Frequency Cepstral Coefficients (MFCC) perform this
task effectively in ideal operating conditions. However, it
is well established that their performance degrades severely
when there is a mismatch between the training and testing
conditions, typically due to background noise [1]. Humans
have an impressive ability to recognise speech even in the
most adverse environmental conditions. Thus an approach
to achieving robust ASR is to use an understanding of hu-
man speech processing in feature extraction. Such features,
which can be based on physiological or perceptual aspects
of human speech processing, are referred to as auditory fea-
tures.

In this paper, the performance of an established au-
ditory feature type, Zero-Crossings with Peak Amplitudes
(ZCPA), with several filterbank configurations, along with a
recently developed one, Power-Law Nonlinearity and Power-
Bias Subtraction (PNCC), are evaluated in clean and noisy
conditions. The performance of standard MFCC features are

included for comparison. Results are reported on the TIMIT
database with the recognition engine provided by the HMM
Tookit (HTK).

2. ZCPA FEATURES

ZCPA features were first proposed by Kim [1] as a adapta-
tion of the Ensemble Interval Histogram model [2]. The mo-
tivation is to model the neural firing patterns of the human
cochlea. In the proposed model, the speech signal is filtered
with a set of auditory filters, then the output of each filter
is passed through a zero-crossing detector. The distance be-
tween adjacent upward going zero-crossings is used to give
a frequency estimate. The resulting frequencies are collected
in a histogram, with the weight of each histogram entry be-
ing given by a non-linear compression of the peak amplitude
between the zero-crossings. The histograms across all filter
channels are then summed to produce the feature vector. A
schematic for the algorithm is shown in Figure 1.
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Figure 1: ZCPA extraction scheme

2.1 Auditory Filters

The auditory filterbank aims to simulate the frequency se-
lectivity behaviour of the human cochlea. It comprises of
multiple channels with bandwidth and spacing determined
by some non-linear scale. In this paper three different audi-
tory filters were evaluated.

2.1.1 Cochlear Filterbank

A carefully designed cochlear filterbank replicating the basi-
lar membrane response was presented by Seneff in [3], as
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part of her synchrony / mean-rate model of speech process-
ing. The evaluated filterbank had 36 channels with a band-
width of approximately 0.5 Bark and centre frequencies from
130 to 3400kHz. An implementation of Seneff’s model in
Matlab included as part of an ‘Auditory Toolbox’ for Mat-
lab by Slaney [4] was used in this evaluation. Its frequency
response is shown in Figure 2.
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Figure 2: Seneff’s Cochlear Filterbank Frequency Response

2.1.2 ERB Filterbank

An Equivalent Rectangular Bandwidth (ERB) filterbank can
be viewed as a cochlear filterbank providing a more simple
modelling of the basilar membrane response than Seneff’s
filterbank. Slaney’s Auditory Toolbox includes an ERB fil-
terbank implementation which was used in this evaluation.
The filterbank evaluated had 16 filters with centre frequen-
cies ranging from 200Hz to 3400Hz. The bandwidth and
spacing of adjacent channels is equal on the ERB scale.

The frequency response of the filterbank is shown in Fig-
ure 3.
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Figure 3: ERB Filterbank Frequency Response

2.1.3 FIR Filterbank

Despite the fact that cochlear filters are designed to replicate
a physiological response to speech, it has been reported that
a filterbank of FIR filters can exceed the performance of the
cochlear filters in a ZCPA implementation Kim [1]. Subse-
quent implementations [5, 6] use FIR filterbanks exclusively.
A filterbank was designed with 16 Hamming FIR filters of
order 61. The centre frequencies of the filters were spread

evenly on the Bark scale from 200Hz to 3400Hz. Filter band-
widths were equal to 2 bark - reported to be an optimal spac-
ing by Gajic [5]. The frequency response of this filterbank is
shown in Figure 4
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Figure 4: FIR filterbank

2.2 Zero-Crossing and Peak Amplitude Detector

An upward going zero-crossing is assumed to signal a neural
firing event on the basilar membrane. The intervals between
these events and the peak value across this interval is used to
build a frequency histogram at the next stage. The output of
themth filter channel,sm(n), is passed into a zero-crossings
detector. Each ofI (upward-going) zero crossingszm(i) is
passed to a peak detector and a frequency estimator. The
peakpm(i) is calculated by:

pm(i) = max
zm(i)≤n<zm(i+1)

{sm (n)}

2.3 Feature Histogram

In the final stage, the frequencyfm(i) between adjacent zero
crossings is calculated by:

fm(i) =
1

zm(i+1)− zm(i)

The entry for thejth bin of histogramhm(n), whereIm is
the number of zero crossings for themth filter output, is then
given as:

Im−1

∑
i=1

ψ j { fm(i)}

where ψ j { fm(i)}=

{

log(pm(i)+1) if fm(i) ∈ bin j
0 otherwise

The final histogramh(n) is given as the sum of the corre-
sponding entries in all sub-band histograms:

h(n) =
M

∑
m=1

hm (n)

The frequency computed from intervals between zero-
crossings can be seen as corresponding to the point of ex-
citation on the membrane. This is the dominant frequency in
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that sub-band, and the peak value over its interval is an indi-
cation of its power. Thus the resulting histogram represents
the dominant energies in the signal, which hold important
phonetic information. The histogram was allocated 60 bins,
equally spaced on the Bark scale from 0 Hz to 4kHz. A DCT
of the final histogram is computed to decorrelate the features.

3. PNCC FEATURES

This a recent feature extraction algorithm introduced in [7].
It can be seen as a variant on MFCC feature extraction with
different stages of the conventional algorithm replaced with
auditory motivated elements. Firstly the triangular filterbank
used by MFCC is replaced with a gammatone filterbank. The
novel aspects of the algorithm are the use of a Power Func-
tion Nonlinearity (replacing MFCC’s log nonlinearity) and
the use of Medium-Duration Power Bias Subtraction to sup-
press the effects of background excitation. A schematic is
given in Figure 5.
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Figure 5: PNCC extraction scheme

3.1 Power Function Nonlinearity

The nonlinearity of the human auditory system has been well
established, and the use of a nonlinear function in feature ex-
traction methods is common. MFCCs pass the filter outputs
through a log nonlinearity. PNCC adopts a power function
which aims to better model peripheral nonlinearities than a
log function. Taking a closer look at accurate auditory mod-
els [8], the graph relating decibels to auditory nerve firing
rate is S-shaped. For decibels below a certain threshold, the
firing rate is almost constant. Above this the increase in deci-
bels with firing rate is almost linear, until it reaches a satu-
ration point. If a log nonlinearity is adopted then there is no
lower threshold. Thus small changes at a low power can re-
sult in large changes at the output of the log function. With
power function however - when the input level is close to
zero, so too is the output level. This is what is observed in
the human auditory system. The target function then will be
close to zero up to a threshold, and then increase linearly. Be-
cause the dynamic behaviour of the output does not depend
critically on the input amplitude, this ideal piecewise-linear
curve is approximated with an a MMSE-based best fit power
function. The power nonlinearity is described by the equa-
tion

y = xa0

The best-fit value of the exponent was found to bea0 =
0.1 by [7].

3.2 Medium-Duration Power Bias Removal

This stage of the algorithm subtracts a ‘bias’ from the speech
segment that is assumed to represent an unknown level of
background excitation. The adjusted powerP̃(m,n) of the
mth channel andnth frame is given by

P̃(m,n) =

(

1
2mr +1

min(m+mr ,M)

∑
m′=max(m−mr ,1)

w
(

m′
,n
)

)

P(m,n)

Where P(m,n) is the original power of the frame,
w(m′,n) is the power normalization gain given by the ratio of
the normalized power to the average power of a frame. The
normalized power is found from the power bias, which can
be defined as the smallest power which makes the arithmetic
mean to geometric mean ratio of the segment the same as that
of clean speech. Full details of the algorithm are given in [7].
For smoothing purposes,w(m′,n) is averaged across a range
of channels specified bymr. The value ofmr used was 5. The
total number of Gammatone channels,M, was 40.

4. PERFORMANCE EVALUATION

4.1 Experimental Conditions

The test corpus used to evaluate the performance of the fea-
ture types was the widely used TIMIT database [9]. The
HMM Toolkit (HTK) was used for creating the recognition
engine. The TIMIT database was divided into training and
testing subsets as recommended in the documentation.

The size of the ZCPA and PNCC frames was 50ms while
a 25ms frame length was used for MFCC. The step size in
both cases was 10ms. Each vector contained 36 coefficients:
12 static; 12 first-order dynamic; and 12 second-order dy-
namic coefficients. Cepstral Mean Normalisation was ap-
plied in each case. This resulted in 5 feature sets - MFCC,
PNCC and ZCPA with three filterbanks denoted Seneff, ERB
and FIR.

Context-independent monophone HMMs with 8 Gaus-
sian mixtures were trained using features extracted from the
training set. The test utterances were passed to the trained
HMMs and a phoneme level transcription was generated.

The testing procedure was carried out for clean speech
(the original TIMIT recordings) and for noisy speech (white
Gaussian noise added to the recordings at SNRs of 10dB and
0dB). No noise was added to the training material so that a
mismatch between training and testing conditions would be
simulated.

4.2 Experimental Results

Recognition performance is measured by comparing the out-
put transcriptions to reference transcriptions. The measure of
performance used is phoneme-level accuracy, as defined by
HTK in [10] and given by(1) .

%accuracy =
L−D−S− I

L
×100 (1)

whereL is the total number of labels (phonemes) in the
reference transcriptions,D is the number ofdeletions, S is
the number ofsubstitutions andI is the number ofinsertions.

Figure 6 shows the performance of each feature set for
clean speech and SNRs of 10dB and 0dB.

It is clear that MFCC performance degrades significantly
in noise, with its accuracy decreasing by 45% in 10dB white
noise and by 74% in 0dB white noise. PNCC is the most ef-
fective of the front-ends, with the highest accuracy in clean
conditions and in both levels of noise. Its accuracy drops
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Figure 6: Recognition Accuracy of different features in dif-
ferent environments, whereFIR, ERB andSeneff are ZCPA
features with FIR, ZCPA and Seneff cochlear filterbank con-
figurations respectively

by 47% from clean to 0dB white noise. All ZCPA front-
ends perform similarly, with Seneff’s cochlear filterbank be-
ing marginally the most accurate. They all perform poorly in
clean speech, but show impressive robustness, with the FIR
configuration dropping only 18% from clean to 0dB white
noise.

As a fixed frame length was used for the ZCPA imple-
mentation, each histogram entry was divided by its frequency
(prior to the nonlinear compression) to prevent biasing to-
wards higher frequencies. However, having a fixed frame
length for each filter means that some accuracy may be lost -
particularly at lower frequencies where there are fewer zero-
crossings in the 50ms frame window. To investigate how
a variable frame length would affect performance, this was
implemented and tested with the FIR filterbank. The frame
lengthL j is given by(2) .

L j =
40
√

Fc j
(2)

whereFc j is the centre frequency of thejth filter. The
square root of this is taken to compress the longer frame
lengths while keeping the shorter frame lengths from becom-
ing unreasonably short. With the scaling factor of 40 and the
given FIR centre frequencies, this resulted in frame lengths
of between 43 and 177ms. The results of this adaptation are
compared with the original FIR implementation in Figure 7.
The variable frame length provides significantly higher accu-
racy in clean conditions but is less robust to noise as the fixed
frame length.

To provide more detailed results, a phonetic breakdown
of the performance was created. The 39 phonemes were di-
vided into 5 groups, as proposed in [11], with an additional
group for silences (sil). The 5 phoneme classifications are;
vowels/semi-vowels (v/sv), nasals/flaps (n/f), strong frica-
tives (sf), weak fricatives (wf) and stops (st). The classifi-
cation is shown in Table 1.

The breakdown in performance is presented in Figures
8,9 and 10. It is interesting that weak fricatives are recog-
nised with consistently low accuracy (<≈ 40%) by all fea-
tures in all conditions
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Figure 7: Accuracy of Fixed vs Variable frame lengths

grouping phonemes
v/sv iy ih eh ey ae aa aw ay ah oy ow uh uw er l r w y
n/f m n ng dx
sf jh ch z s sh
wf hh v f dh th
st b p d t g k
sil sil

Table 1: Grouping of phonemes

5. CONCLUSIONS

Auditory features are clearly more robust than conventional
MFCC features in the presence of white noise. PNCC fea-
tures are significantly more effective than any of the other
features tested, with a high recognition accuracy in clean
speech and relative robustness in noise. This supports Kim &
Stern’s work [7] which showed PNCC to outperform MFCC
and Perceptual Linear Prediction (PLP) feature sets on the
DARPA Resource Management (RM1) database.

ZCPA perform poorly in clean speech but show a high
level of robustness. Contradictory to previous suggestions,
the FIR implementation did not provide superior perfor-
mance to the cochlear filterbanks. The best ZCPA result was
observed by the most complex filterbank - Seneff’s. Adopt-
ing a variable vs fixed frame length gave widely different re-
sults - both with advantageous trends - clearly this behaviour
must be explored further. The ZCPA model has many vari-
able parameters. The scope of this paper covers a limited
number of optimisations (Using Gajic’s suggestions [5] as
a starting point) However there are many further potential
adaptations possible which may bring about increased per-
formance - frame length, delta window, filterbank parame-
ters, histogram parameters, number of coefficients etc. It
must be questioned whether carrying out such exhaustive op-
timisations are justified given the superior performance and
the less complex nature of the PNCC algorithm.

These tests were run with context-independent mono-
phone HMMs. Further study should explore the relative
improvements achieved by adopting context-dependent tri-
phone models (the current standard in HMMs for ASR).

Viewing the phonetic breakdown, the weak fricatives in
particular appear to be responsible for a large part of the per-
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Figure 9: SNR 10dB
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Figure 10: SNR 0dB

formance degradation. Further study should consider meth-
ods to capture these phonemes more reliably. Considering
computational complexity, auditory features are more costly
to extract in general than conventional features. PNCC is far
more computationally efficient than ZCPA however.

Based on all considerations - PNCC are a more promising

development than ZCPA in achieving robust ASR.
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