18th European Signal Processing Conference (EUSIPCO-2010)

Aalborg, Denmark, August 23-27, 2010

TEST TOKEN DRIVEN ACOUSTIC BALANCING FOR SPARSE ENROLLMENT
DATA IN COHORT GMM SPEAKER RECOGNITION

Jun-Won Suh and John H. L. Hansen

Center for Robust Speech Systems (CRSS)
Erik Jonsson School of Engineering and Computer Science
University of Texas at Dallas, Richardson, Texas, USA

email:jxs064200Q@utdallas.edu,

ABSTRACT

In this study, we address the problem of sparse train/test
data for in-set/out-of-set speaker recognition. Sparse en-
rollment data presents a unique challenge due to a lack of
acoustic space coverage. The proposed algorithm focuses
on filling acoustic holes and fortifying the acoustic infor-
mation using the claimed speaker’s test token histogram.
This scheme is possible by using a GMM model to classify
the speaker phone information at the feature level. Paral-
lel GMM training with EM using the most occurring (top)
and least occurring (bottom) acoustic feature is called “Top-
Down Bottom-Up (TDBU)”, and the method employing the
acoustic token histogram of test token using the TDBU is
called “TDBU using Test Token Histogram (TTH)”. Since
TTH provides test data histogram information, the most oc-
curred (top) parts in test data fortify the its discriminat-
ing ability using same acoustic tokens in enrollment data.
The less occurred (bottom) part in test data provide acous-
tic hole information so that the mismatched acoustic hole be-
tween enrollment and test data can be filled in chance. The
TDBU-TTH method is evaluated using telephone conversa-
tion speech from the FISHER corpus with 5 second train
sets. The TDBU-TTH improves on average 2.17% absolute
EER over the TDBU, and an average 4.03% absolute EER
improvement over GMM-UBM baseline using 2 second test
data. The proposed algorithm improvement is a noteworthy
stage to compensate for both sparse enrollment data and lim-
ited test data.

1. INTRODUCTION

In many scenarios, effective speaker recognition is necessary
with short enrollment utterances (5 second) and/or short test
utterances (2~6 second). System performance degrades dra-
matically with such short enrollment/test data. In this study,
we focus on how to fill the acoustic sparseness using a for-
mulated acoustic token histogram information of the test data
and an acoustically close speakers’ data. The sparse en-
rollment data results in a unique challenge due to a lack of
acoustic phone coverage in the speaker space compared with
longer conversational speech data. Therefore, it is highly
probable that phoneme mismatch exists between the limited
trained acoustic space and input test sequence. We called this
phenomenon “acoustic holes” in the acoustic model space.
This work has focused on filling acoustic holes using sparse
train/test sets.

In-set/out-of-set problem consists of two main parts,
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closed-set speaker identification and open-set speaker veri-
fication. Speaker recognition can be applied in these search
applications by classifying the target group of speakers (in-
set) and the other non-interest speaker group (out-of-set)[3].
Audio search and speaker diarization is also useful applica-
tion of in-set/out-of-set for searching target speakers in fa-
mous speeches or news audio streams. The extended appli-
cation can be employed for identifying speakers in a multi-
speaker conversation, or for a system that grants security ac-
cess for a specific group in organizations.

Acoustic tokens can be transcribed along a temporal data
stream using a Speaker Independent GMM (S.I.GMM). The
GMM represents the most common characteristics of the
available speaker data[1, 2]. The goal here is to balance the
acoustic distribution of enrollment/test data for each in-set
speaker without knowledge of the input phoneme sequence.
The transcribed speaker’s acoustic phoneme-like segments
histogram provides the necessary knowledge of what needs
to be filled in the speaker model as acoustic holes. The pro-
posed system attempts to achieve a major speaker model im-
pact by employing an acoustic token histogram of the test
data(such a histogram matching scheme has not been at-
tempted in the literature for small enrollment data sets; yet
there is a parallel idea seen for large train/test sets based on
keyword codebooks[4]). If the test data is shorter than the
enrollment data, the proposed algorithm focuses on fortify-
ing the expected acoustic token in the test stage. Since the
input test stream is labeled the Gaussian mixture index using
the S.I. GMM as that used for the in-set train data, it is possi-
ble to balance the test data with the available in-set train data
and associated cohort speaker data. Therefore, it is not nec-
essary to fill the acoustic holes of the train space if the test
data is absent in those locations. For other cases, the longer
test data provides further information of acoustic coverage
than the enrollment data. A proposed parallel GMM train-
ing solution based on the EM algorithm using the data from
most occurring and least occurring acoustic features called
“Top-Down Bottom-Up (TDBU)” is developed. Also, em-
ploying the acoustic phoneme-like token histogram of the
test data using the TDBU is called “TDBU using Test Token
Histogram (TTH)”. This approach incorporates the acoustic
information of the test data so that the resulting model fills
the acoustic holes and fortifies the expecting acoustic tokens
using the parallel training strategy.

This paper is organized as follows. Sec. 2 explains the
baseline system for evaluating the proposed algorithm. Sec.
3 presents motivation and a detailed procedure for develop-
ing the proposed algorithm. Next, an evaluation and results
of the proposed algorithm is presented with a comparison to



the baseline system in Sec. 4.2. Finally, conclusions and
future work is discussed in Sec. 5.

2. BASELINE SYSTEM
2.1 In-set/Out-of-set Speaker Recognition

Assume we are given a set of in-set (enrolled) speakers, and
an organized collected speaker data set X,,, corresponding to
each enrollment speaker S,,, 1 <n < Nj,,:. Let the data X
represent all outside non-enrolled speakers in the develop-
ment set. Each speaker dependent GMM A,,, {A, € A,1 <
n < Nin-set }» can be constructed with X, using the EM algo-
rithm. In the first stage, called (closed-set) speaker identi-
fication, we first classify X as one of the most likely in-set
speakers A*,

A*

argmax p(X|A,).

1<n<Nip-ser

In the second stage, called speaker verification, we verify
whether the observation X truly belongs to A* or not (i.e.,
accept/reject).

2.2 GMM-UBM Baseline

The most recognized text-independent system uses the Gaus-
sian Mixture Model (GMM) to represent the out-of-set model
for outliers (e.g. UBM), and to adapt a UBM to the speaker
in the in-set speaker model with Maximum A Posteriori
(MAP) estimation[1, 2]. A speaker model is represented by
M component Gaussians trained from the D dimensional ob-
servation vector x; sequence. A GMM is denoted as A, =
(Onms Ly Zom)» for m=1,....M and n = 1,...,N where
@y 1s the mixture weight of the mth component unimodal
Gaussian density, with each parameterized by a mean vector
W,,, and covariance matrix X,,,, which is assumed diagonal.

2.3 GMM Mixture Tagging(GMT)

The short amount of data requires exploiting information
from acoustically similar speakers. Additionally, indexing
the short amount of data enables us to supervise the data
usage. A GMM is employed to classify the acoustic space
represented by each Gaussian. The GMM is built with de-
velopment and in-set speaker data using the EM algorithm,
so we call this the S.I. GMM. The speech observation tokens
are tagged with the highest probability mixture of the S.I.
GMM. The test observation tokens are also labeled with the
mixture index of S.I.GMM.

2.4 GMM-Cohort UBM Baseline

The speaker dependent model is built with MAP using only
mean adaptation from the UBM in Sec. 2.2, where the re-
sulting GMM represents a translation of the same Gaussian
mixture densities of the UBM. The acoustic holes caused
by sparse in-set data are effectively filled with the Cohort
UBM]J3]. Since the cohort UBM is built with a reduced
number of speakers (5 speaker) versus the UBM develop-
ment speaker set (60 speaker), the resulting Gaussian mix-
ture density represents a more precise acoustic space for the
speaker phone information than the UBM. The cohort speak-
ers are selected from non overlapping with UBM develop-
ment speaker pool, the notation of cohort speaker’s observa-
tion sequence is defined by X;,1 < i < N.yjqep- The in-set
training speaker’s data is defined with X,,,1 < n < Njjger-
The speaker model using more cohort speaker data employs

573

more speaker traits, therefore the noble speaker measurement
are introduced below to select best speaker groups. Here,
the precise speaker similarity measure improves the overall
system[5].

A. Speaker Similarity Measure using KL divergence:

Step 1: Using GMT, build Mixture Tag (Mz;) histogram of
short duration (5 s) available training data for each en-
rollment speaker.

Step 2: Select potential cohort data to match enrollment
speaker histogram from Step 1.

a) Use Mixture Tagger to tag mixture index for all data
for potential cohort speaker. (318 potential develop-
ment speakers)

b) Select mixture tagged frames from each potential co-
hort speaker data to match Mixture Tag histogram
from Step 1. (This ensures, consistent acoustic repre-
sentation for input speaker and each potential cohort
speaker.)

¢) Move to Step 3 for training, Step 4 for distance mea-
surement.

Step 3: Build the GMM for enrollment and potential cohort
speakers.

a) Build GMM with EM algorithm for enrollment
speaker using 5 s data

b) Using data from each potential cohort speaker, that
has been matched to the Mixture Tag histogram, build
a GMM to test for cohort distance.

Step 4: Measure the distance between enrollment and po-
tential cohort speakers.

a) Find speaker distance between enrollment speaker
and potential cohort speakers.

b) Repeat for all development cohort speakers (318 in
our evaluation)

c¢) Select top number of cohort speakers so that closest
speakers are used first, and only Mixture Tag entries
that require hole filing data are used.

B. Build the GMM-Cohort UBM:

Step 1: Build the cohort GMM, A;;”h"” , with the EM al-
gorithm using the observation of top N ,u0,s sSpeakers for
each in-set speaker model A,. The system performance
using different cohort speaker is studied in [3].

Step 2: Using A" as the initial model, adapt the speaker
model via MAP using in-set training data, X,,.

3. PROPOSED ALGORITHM
3.1 Motivation

A speaker recognition system with sparse enrollment data
will have a difficult time in decoding a valid speaker’s iden-
tity given extremely short test data 2 s. The acoustic space
of a 5 s in-set speaker’s data is too sparse to effectively cover
the entire in-set speaker acoustic space. Acoustic holes from
sparse enrollment data are filled by exploiting an acousti-
cally similar cohort speakers’ phoneme data[3]. A previ-
ously proposed system “TDBU”[5] enables us to exploit the
specific speaker’s acoustic information to fill acoustic holes.
The motivation for this study exploits test token histogram
information so that in-set speaker model balances for each
test data. For exceptionally short test data (2 s), the speaker
model should not misrecognize the phones, which have been



trained for the enrollment stage. By providing test token his- [

togram information, the speaker model can be robust by as-
signing more weights on most occurring Gaussian index of
test tokens. A longer test utterance (6 s) than the training
in-set data can take advantage of deciding which acoustic in-
formation is filled, or needs to be filled. The speaker model
emphasized by greater acoustic histogram information than
in-set train data can provide superior system performance.

The short test observation can be instantaneously catego-
rized and quantized by indexing the most probable Gaussian
mixture to represent that part of the acoustic space. Con-
sequently, the emphasis on speaker modeling using the test
speaker’s acoustic token histogram information results in a
better representation of the in-set speaker model for various
amount of test data sequence. Note, the only down-side of
this approach is that new in-set models need to be generated
on-the-fly for new input test set sequences(a small price con-
sidering the challenge in 2-6 s train/test sets).

3.2 Top-Down Bottom-Up Speaker Modeling using Test
Token Histogram (TTBU-TTH)

The parallel training of TDBU focuses on training the most
occurring (top) and least occurring (bottom) enrollment
data[5]. Based on enrollment acoustic histogram, the TDBU
builds top model for focusing own training data and bottom
model for filling acoustic holes . The major difference in
using TTH is that it employs the acoustic token histogram
information of the test data. Since TTH provides test data
histogram information, the most occurring parts in the test
data fortify its discriminating ability using the same acoustic
phoneme-like tags as in the enrollment data. The least occur-
ring part in the test data provides acoustic hole information so
mismatched acoustic holes between enrollment and test data
can be filled. The speaker similarity measure was illustrated
in Sec. 2.4,and the most acoustically similar set of speak-
ers for each enrollment speaker n, 1 < n < N are selected
for each enrollment speaker. Finally, the overall procedure to
build the in-set speaker model is summarized as follows:

Step 1: Tagging mixture index on claimant’s feature obser-
vation (GMT, Sec. 2.3), make a histogram by counting
the most frequently occurring acoustic tokens (Top) and
the least occurring classes (Bottom).

Step 2: Select cohorts data to match histogram for both
classes.

Step 3: Construct cohort GMMs using EM algorithm as

top-cohort -
AP and Abottom-cohort for each enrolled speaker .

Do a speaker adaptation from initial model, A/’7<*""

and Abottom-cohort o construct the enrolled speaker model
AP and AL with the corresponding top and bottom
speaker data using MAP algorithm.

Step 4: Combine A;’” and A2 to build the final enroll-
ment speaker model.

4. EXPERIMENTAL RESULTS
4.1 FISHER Corpus

An evaluation is performed for in-set/out-of-set speaker
recognition with the telephone conversation corpus portion
of FISHER. This corpus is selected for minimizing the chan-
nel mismatch so that this study focuses on filling acoustic
holes using extreme sparse train(5 s)/test(2~6 s) data. A se-

Step 1

Step 3
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Figure 1: Block diagram of TDBU-TTH. Each step is de-
scribed in Section 3.2

lected set of 60 speakers comprise the in-set and out-of-set
speakers. We make three different groups of in-set/out-of-set
speakers to evaluate group size, 15in/45out, 30in/30out, and
45in/150ut. As the in-set size becomes larger, the increas-
ing confusability between in-set group causes worse system
performance than smaller in-set group. All 60 speakers are
devoted to the in-set or out-of-set groups, with 50 randomly
chosen combinations for three different groups. A second,
independent development set consists of 378 speakers hav-
ing 30 s of speech data. These speakers are to be used to
draw potential cohort data to fill acoustic holes. The analysis
window size is set to 20 ms with a 10 ms skip rate. Static
19-dimension Mel-Frequency Cepstral Coefficients (MFCC)
are extracted and used for statistical modeling. Silence and
low-energy speech parts are removed using an energy based
detection technique.

4.2
4.2.1 Baseline System

Evaluations

Each in-set speaker model consists of 32 mixtures represent-
ing the short 5 s training data. The parameters for build-
ing GMM are set equal to every speaker model and train-
ing algorithm. The UBM model will reflect the out-of-set
speaker model or outlier, and it built with 60 randomly se-



lected speakers from among the 378 speaker development
set. The remaining 318 speakers are used to represent po-
tential cohort speaker pool to fill acoustic holes for the in-set
speaker, and we note that this 318 speaker set does not over-
lap with the 60 speakers used for the UBM. The top 5 cohort
speakers are selected from across all potential GMM-Cohort
UBM Baseline ,TDBU, and TDBU-TTH system. With these
selected cohort speakers, each in-set speaker cohort model
is built with 150 s of data (1 development/cohort speaker ~
30 s). This cohort model is then adapted with the 5 s in-set
training data via the MAP algorithm.

TDBU is first introduced in a previous study[5], and the
present TDBU-TTH training method was presented in Sec.
3.2. The primary difference is that the 5 s training data his-
togram is used to rank the mixture tagged data, as opposed to
using the test data histogram. Table 1 shows that the TDBU-
TTH improves in-set speaker recognition EER by an average
2.17% absolute over the TDBU, and an average 4.03% abso-
lute EER over the GMM-UBM Baseline system using only
2 s of test data. The impact of test histogram information is
superior than TDBU and baseline system.

Table 1: EER(%) performance comparison using 2s test data.

EER
15in/450ut | 30in/30out | 45in/150ut
GMM-UBM Baseline 30.62 31.27 31.55
GMM-Cohort UBM Baseline 32.96 32.10 30.43
TDBU 26.71 29.13 32.02
TDBU-TTH 25.27 26.77 29.30

4.2.2 TDBU-TTH

The proposed TDBU-TTH algorithm employs a cohort
speaker group of 5 speakers, the same size used for the
GMM-Cohort Baseline system. The most occurring (top)
and least occurring (bottom) GMM mixture size was fixed
at 16 based on heuristic results. The top/bottom GMM
is build with supervised data usage depending on test to-
ken histogram. The combined weight ratio is set to 7:3
for the top and bottom GMM speaker model for renormal-
ization of overall score weights. The final speaker model
combines the top model (fortifying expecting test tokens for
training model) and the bottom model (harvesting expect-
ing acoustic hole tokens). By supplying the mixture tagged
test data histogram information, the system performance im-
proves EER on average 2.34% over TDBU for 2 and 6 s
test data. Fig.2 shows that the equal error rate is reduced by
between 2.2%~6.49% absolute over the GMM-UBM Base-
line. Fig.2 also points that a smaller in-set group tends to
produce a lower equal error rate. The large in-set group in-
cludes more speaker traits into group so unknown speaker
or outliers would become a false acceptance speaker. This
fact increases the EER in larger in-set group. In summary,
the proposed method impacts system performance by focus-
ing the expected acoustic information, and harvesting unseen
acoustic knowledge collected at the feature frame level from
test data.

S. CONCLUSIONS AND FUTURE WORK

In this study, we have developed a novel strategy to ensure an
improved data training balance for an in-set speaker model
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Figure 2: Performance (in terms of EER(%)) of baseline
and proposed algorithm on FISHER, using in-set/out-of-set
speaker sizes of 15/45, 30/30 and 45/15.

using the expected acoustic information from an acoustic to-
ken histogram of 2 s test data. The TDBU-TTH strategy im-
proves acoustic hole filling, resulting from the limited in-set
speaker data. Evaluations were performed using the “land-
line telephone channel” from the FISHER corpus to avoid
handset variation, and focus on acoustic hole filling. The pro-
posed TDBU-TTH training method improves in-set speaker
recognition EER by 2.2~6.49% absolute with only 2~6 s of
test data. Future work could consider expanding the method
to normalize for handset variation effect from the FISHER
corpus so that cohort speakers can be selected from any cor-
pus.
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