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ABSTRACT

Strongly varying input content to modern flat panel displays
makes highly adaptive algorithms mandatory. On the one
hand, low quality content is dominated by coding artifacts
and therefore strong artifact reduction can increase image
quality. On the other hand, too strong processing removes
image details in high quality video. These contrary optimiza-
tion criteria cannot be fulfilled easily by simple processing
strategies. This paper proposes a framework utilizing differ-
ent artifact reduction algorithms while their output is con-
trolled by objective quality measures selecting the most suit-
able algorithm at run-time. Thus, a dynamic selection of the
optimal processing for each input scenario over a wide qual-
ity level is possible. Integrating a feedback loop and applying
the process again can further enhance the output quality.

1. INTRODUCTION AND RELATED WORK

Over the last few years, the format diversity of input sources
to high definition displays has strongly increased. On the
one hand, highly compressed video from handheld devices
or web portals with dominating artifacts and poor detail level
must be handled. On the other hand, high definition con-
tent or even 4K resolution video featuring a lot of details
and very few artifacts must be processed as well. Without
highly adaptive processing, high quality aspects like remov-
ing artifacts while preserving sharpness and detail level can-
not be fulfilled. In general, static and adaptive filter algo-
rithms [1] ,[2], trainable filters [3], [4], and iterative recon-
struction techniques [5], [6], [7] can be distinguished with
respect to their adaptivity and flexibility. Whereas static fil-
ters cannot even discriminate artifacts and details, adaptive
filters carry out an image or alternatively an artifact analy-
sis and switch between several processing modes. Trainable
filters are based on an off-line optimization process with the
objective to get optimal filter coefficients for image process-
ing tasks like scaling or artifact reduction. But the results
of this processing strongly depend on the training material,
and several filter coefficient tables may be required for dif-
ferent quality levels. A strategy to increase the adaptivity is
multiple algorithm blending which is depicted in Fig. 1 [7].
Several algorithms optimized for certain image features, e.g.
edges, textures, or homogenous regions, are applied to the
whole image, and then, based on an image analysis discrimi-
nating determined features, the best processing is chosen. In
the approach already described in [7], the image analysis is
only based on information of the input sequence and no out-
put control is carried out.

A further group of processing are iterative reconstruction
algorithms with image models to carry out image process-
ing tasks like artifact reduction [5]. These tasks are usually
solved by a global on-line optimization process. Thus, suit-
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Figure 1: Multiple algorithm blending [7]. The grey block
indicates a proposal to integrate image quality control.

able processing for a wide range of input qualities can be
achieved due to automatically adoption at run-time. In Fig.
2 a generalized flow diagram for this strategy is shown. But
the optimization approach can handle only rather simple fea-
tures due to limitations of the image models. Therefore com-
plex image features, especially present in high resolution se-
quences, cannot be described well and therefore may be re-
moved during processing. To overcome these limits, system
based improvements can be introduced, e.g. by applying con-
tent adaptive processing and concentrate the optimization to
regions where the internal image model is fulfilled [7].

The contribution of this paper is a framework to determine
the potentially best processing for each input quality by intro-
ducing image quality measures to control the reached output
quality. Fig. 1 and 2 show solutions how these measures can
be used to improve the performance. Instead of relying on
information about the input sequence only, the output is con-
trolled and the best processing is selected based on this con-
trol unit (Fig. 1). The limited mathematical model in iterative
optimization techniques (Fig. 2) can be improved by check-
ing the quality after each iteration, stopping the process if an
objective quality degradation is reached. As will be depicted
later, not only optimal parameter settings for each algorithms
but the optimal execution order of several algorithms can be
determined at run-time. This paper is organized as follows:

e The proposed framework, its components and the deriva-
tion of an optimization function is described in section 2.
Detailed validation and theoretical assumptions will be
given to guarantee a good output quality.

e Several application scenarios, e.g. switching between al-
gorithms on different levels like pixel or sequence level
are presented in section 3.

e An evaluation of this framework compared to state-of-
the-art processing is given in section 4.

e The results of this paper are summarized in section 5.

621



Quality
Measurement

Initial
input

Image Analysis Processing

)

Figure 2: Iterative reconstruction algorithm. The grey block
shows how image quality control can be integrated.
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Figure 3: Block diagram of general framework for our sys-
tem concept.

2. FRAMEWORK FOR QUALITY CONTROLLED
PROCESSING

This section deals with a system overview describing each
component. Because the quality selection function is a cru-
cial part of the system and its performance, it will be pre-
sented in detail. Mathematical optimization functions must
fulfil certain mathematical constraints. Thus, a validation of
the function based on extensive measurements and theoreti-
cal considerations are discussed afterwards.

2.1 System overview

Fig. 1 and 2 already depict potential solutions how to
integrate image quality measures into known processing
schemes. By combining both approaches, the framework
in Fig. 3 can be obtained. Several processing strategies al-
ready used for artifact reduction, deblocking [7], regulariza-
tion [8], [7], and temporal filtering [9] are selected for pro-
cessing. The main reason for the selection of these three al-
gorithms is that they are suited to reduce different coding ar-
tifacts under certain situations. Blocking can be reduced by
spatial deblocking in still and moving sequences, temporal
filtering can remove it in moving sequences. Ringing can be
reduced by regularization and temporal filtering, and flicker
can strongly be reduced by temporal filtering. Because each
of these methods comprises an internal image analysis, blur
due to erroneous processing can for the most part be avoided.
The output of each algorithm is fed to an objective qual-
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Figure 5: Evaluation of each quality metric for MPEG-2
coded sequences over all quality levels.

ity measurement unit applying an optimization function de-
scribed in the next section. Based on the results of this opti-
mization function for each processing, the best processing is
determined for each input. After this selection process, the
result is fed back and the methods are applied again. The
implemented framework is flexible, allowing the selection
process on a pixel-by-pixel, frame-by-frame, or sequence-
by-sequence basis. If no improvements could be achieved by
processing in the actual iteration, the final output is obtained.

2.2 Implementation and validation of optimization func-
tion

Crucial for the performance of the artifact reduction frame-
work is the implementation of a suitable optimization or cost
function. To guarantee a unique solution, the function must
be convex with only one global optimum. Moreover, a good
reproduction of the human visual system and its quality per-
ception and in the best case even of a display model must be
achieved. One simple quality measure (e.g. PSNR or SSIM)
can only measure the overall quality and is not focussed on
(local) coding artifacts. Thus a combination of several met-
rics is necessary. Known from iterative optimization tech-
niques [5], a function with two blocks is chosen as illustrated
in Fig. 4: structural similarity index (SSIM, [11]) is used to
guarantee similarity between input and output sequence, and
specific artifact measures (blocking level [10], flicker level
[12], ringing measure) are used as constraint. In optimization
techniques, this second part is interpreted as image model.
Contrary to (global) optimization, no solving strategy is ap-
plied. The output after each iteration is only determined by
the processing of each algorithm. The function only evalu-
ates the results of each processing. As already discussed in
[11] SSIM correlates much better with the visual perception
than e.g. the PSNR and is used therefore.

Several options are possible to build up an optimization
function: non-linear combination (maximum, minimum),
fuzzy classification rules, Pareto optimality, or simple lin-
ear combination like weighted averaging. Because this pa-
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Figure 6: Blocking level measurement for quality levels 3
and 31 of *foreman’ sequence coded with MPEG-2.

per focuses on a general concept, the latter is chosen for
demonstration. To create a final optimization function, nor-
malization and/or distortion functions are necessary to fulfil
the mathematical prerequisites. After extensive tests the final
equation has been obtained:

f = SSIMm)rm —oaX {BLm)rm + RLnarm + FLn()rm} (1)
In this equation a higher value represents a better image qual-
ity. SSIM is measured using the processed result and the
(given) optimal reference. BL, RL, and FL are blocking,
ringing, and flicker level. norm represents a normalization
to scale each measure to the same dynamic range. « is a
weighting parameter controlling the selection process which
focus strongly on similarity to the input or on artifact reduc-
tion. Setting ¢ to 0.15 reaches a good compromise between
both properties. Fig. 5 and 6 depict results of the tests car-
ried out to determine this function. As can be seen in Fig.
5, each of the measures has a different range of values moti-
vating the normalization. As normalization, the output of the
measure between coded input and reference (uncompressed
raw material) is used in equation (1). Additionally it can be
observed that all measures behave nearly linear between each
quality step, so no distortion function (e.g. logarithm, expo-
nentional) is necessary. To determine these behaviors, sev-
eral sequences were coded with MPEG-2 at quality scales
from 1 (high quality) to 31 (poor quality). But the output
of the quality function can strongly vary locally. Fig. 6 il-
lustrates this for the blocking level of different frames of a
MPEG-2 coded sequence. The strong presence of blocking
in the intra frame coded pictures is especially visible in the
output of this measure which is less visible at higher qual-
ity levels. Because each of the chosen measures is computed
locally for every pixel and can then be summed up to a mea-
sure for a frame or the whole sequence, switching between
algorithms is possible on pixel, frame, and sequence level.
Because the optimal input quality is not available in every
scenario, e.g. if this framework is applied in a consumer de-
vice after decoding, the concept from equation (1) can only
be used to develop optimal signal processing chains or for pa-
rameter tuning and the like. To overcome these limit, SSIM
is measured using the processed sequence and the distorted
input. But the distorted input contains image features but also
artifacts and therefore the SSIM of 1 is not optimal. A solu-
tion to this problem is to introduce a deviation 6 and replace
the first term in equation (1) by a |6 — SSIM| term. This term

penalizes a SSIM value above and below &, overcoming the
problem that 1 is not optimal on the one hand and preventing
blur in case of a too strong deviation from the input on the
other hand:

f = |6 - SSIMnorm‘ + o X {BLnorm +RLyorm + FLnorm} (2)

In this case, a lower value represents a better image quality.
Further improvements are possible by weighting each term
depending on a global image analysis dividing the input se-
quence into edge, flat and textured regions, consider motion
perception or display models. With this information the per-
ception of the human visual system can better be modelled,
because artifacts are masked in specific regions (e.g. tex-
tures) and are strongly visible in flat regions. Moreover, the
erroneous detections of artifacts can be prevented by this pro-
cedure. E.g. ringing can only be present at edges surrounded
by homogenous regions. For normalization, either fixed val-
ues or a specific processing, e.g. described in [9], can be used
as reference material.

2.3 Theoretical considerations

For a validation of this framework concept, a theoretical
proof is essential to underlie the detailed measurements. In
contrast to off-line optimization techniques, not every possi-
ble parameter set is tested to obtain the output solution. In
our case, we propose the processing by several known al-
gorithms, temporal deblocking [9], spatial deblocking [10],
and spatial regularization [7] thus allowing only determinis-
tic step sizes determined by these algorithms. Because each
algorithm is subjectively tuned by its parameters and inter-
nal and adaptive image analysis, completely describing the
overall framework mathematically is very challenging. The
advantage of the additional quality measurement is that after
every step each processing is evaluated and the best one is
chosen. The iterative processing can be formulated mathe-
matically:

In+1 :f(Al(In)aAZUYl)’"')Am(ln)aln) 3)

A| to A, denote the algorithms used for processing of in-
put image I, at iteration step n and the output image I, is
a combination of every processed output by each algorithm
and the input image. Fig. 7 (a) depicts this selection pro-
cess for every pixel position. Convergence is reached when
no algorithm leads to an improvement and the image from
the previous iteration is bypassed. This convergence is guar-
anteed due to the assumption (based on extensive measure-
ments and the formulation of equations (1)-(3)) that f is con-
vex and thus only improvements are possible otherwise the
unprocessed input is selected. In certain scenarios a fixed it-
eration number is sensible to guarantee real-time processing
or to reduce hardware costs.

3. APPLICATION SCENARIOS

The framework can be used for several applications and lead
to improved solutions for artifact reduction: as a real-time
scenario in consumer electronics selecting the optimal
algorithm execution order for each sequence at run-time,
as a controlled off-line framework for optimization of the
best parameter settings, or as improved objective evaluation
function. The ’granularity’ of this framework can differently
be tuned to every scenario. The selection process can be
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applied on pixel level, frame level or sequence level. Using
pixel level and optimization function (1) is sensible to
determine the potentially best processing for every input
situtation providing a benchmark’ for other algorithms and
frameworks. Fig. 7 depicts a map illustrating the selection
process on pixel level. As can be seen, at certain positions
different algorithms are preferred over the other.

In Fig. 8 a selection process for the ’akiyo’ sequence
on sequence level is depicted. As can be seen, at first a
spatial deblocking is selected because major parts in this
sequence are still (background) and blocking is the most
annoying degradation in this sequence. Afterwards, spatial
regularization is applied further improving image quality,
mainly by reducing ringing artifacts at edges. Then, tem-
poral filtering is carried out several times reducing flicker
and remaining artifacts until no improvements regarding
the optimization function (1) are possible. The number
of iterations strongly depends on the input material and
varied between 3 and 15 in our experiments. For this
sequence, the optimization framework described in this
paper validates the proposed combination of deblocking
and regularization introduced in [7]. The strongest im-
provements are achieved by spatial deblocking in the first
iteration. After several iteration steps, only minor objective
improvements are possible.  Therefore, computational
effort can be saved by stopping before convergence of the
framework is reached. For other sequences and quality
levels, different algorithm execution orders will be the result,
e.g. with less temporal filter stages because there is less
temporal correlation between consecutive frames. Other
tasks like objective parameter optimization can directly be
applied to this framework by replacing the different algo-
rithms (regularization, deblocking, and temporal filtering)

Figure 9: *foreman’ sequence coded with Motion JPEG us-
ing quality scale 3 (a)-(c) and quality scale 19 (d)-(e). Input
(a), (d), STABLE [9] (b), (e), and proposed framework with
reference input (c), (f).

by one and the same method tuned with different parameters.

4. EVALUATION AND RESULTS

In this section objective and subjective results of the frame-
work are presented. As already described, extensive tests
with different sequences (e.g. akiyo, foreman and football)
coded with different coding standards (MPEG-2, MPEG-4,
Motion JPEG) at quality scales 1 to 31 were carried out.
Moreover, the reachable performance compared to other ac-
tual approaches is described, mainly spatio-temporal image
content adaptive coding artifact reduction (STABLE) [9] and
texture preserving spatial regularization with deblocking as
pre-processing (TextPres) [7]. As depicted in literature, these
methods are comparable or sometimes even better than other
state-of-the-art coding artifact reduction algorithm. Fig. 9
shows results of different algorithms for a high quality (qual-
ity scale 3) and low quality (quality scale 19) sequence em-
phasizing the high flexibility of the proposed framework.
The results of our optimization framework measure the im-
age quality against the perfect (unprocessed) reference. The
other methods do not have this advantage and this fact must
be considered during evaluation of the superior performance
at both quality levels regarding artifact reduction but even de-
tail re-establishment. Up to a certain degree, an upper anchor
for benchmarking can be accomplished by the novel frame-
work. In comparison to this, the spatio-temporal image con-
tent adaptive artifact reduction, comprising spatial deblock-
ing, regularization and temporal multi-frame (motion com-
pensated) filtering strongly increases the performance com-
pared to the input sequence, but certain details cannot be re-
established because the optimal (input) case is not known and
must be estimated by internal assumptions within made by
from image models. Whereas for the low bit-rate case image
quality strongly improves due to artifact removal, in the high
quality input some image details are removed degrading the
quality. These subjective observations can be confirmed by
objective measures (SSIM, see Table I). The SSIM measure
is lower for the sequences processed by the spatio temporal
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Figure 10: Motion JPEG coded sequence ’foreman’ using
quality scale 19 (a), processed by TextPres [7](b), STABLE
[9] (c), and proposed framework with (d) and without (e)
ideal reference input.

Table 1: SSIM results for different algorithms for Motion
JPEG coded sequences. (P.w.r. = proposed framework with
reference, P.n.r. = proposed framework without reference)

Akiyo Akiyo Foreman Foreman
Q3 Q19 Q3 Q19
Coded inp. | 0.9812 0.9293  0.9632 0.8565
TextPres [7] | 0.9743 0.9434  0.9474 0.8731
STABLE [9] | 0.9748 0.9454  0.9481 0.8822
Pw.r. 0.9841 0.9605  0.9725 0.9157
Pn.r. 0.9735 0.9445  0.9443 0.8765

image content adaptive processing (STABLE) than for the
unprocessed but compressed input at quality scale 3. For the
lower quality, strong improvements are even objectively pos-
sible. For our proposed framework with the given reference
(P.w.r.) subjective and objective improvements are possible
for low and high quality validating the optimization frame-
work and its underlying mathematical function.

Fig. 10 compares the results of the proposed optimization
framework for two input cases. In (d) the optimal refer-
ence sequence is available (d) and in (e) it is not. As can
be seen, even if the reference is not available (e) a strong
improvement can be achieved compared to the unprocessed
input (a), but remaining blocking is clearly visible. For
benchmarking, results of the texture preserving regulariza-
tion (TextPres) (b) and spatio-temporal image content adap-
tive processing (STABLE) (c) are shown, too. If the refer-
ence is not available, the subjectively and for the low bit-rate
case optimized spatio-temporal processing (STABLE) out-
performs the framework presented in this paper. These re-
sults are confirmed by the SSIM measurements in Table I
which is remarkable because SSIM is one measure used in
the optimization process of the framework. The limits of this
framework can be explained by the fixed parameters 6 and «
determining the weighting between artifact measurement and
similarity to the given distorted output, with a predermined
deviation by 8 from the input content. If these parameters
are chosen adaptively, higher performance will be possible.

5. CONCLUSION

In this paper a highly adaptive coding artifact reduction
framework based on objective quality selection of a suitable
algorithm for every input scenario is presented. The flexi-
bility of this framework allows automatic tuning to input se-
quences with completely different quality. This is extremely
important for actual displays, to process both low bit-rate
content and HD well. Using this framework and its qual-
ity selection function, optimal parameter sets or alternatively
the optimal execution order of several algorithms can auto-
matically be determined. Depending on processing time and
costs, an iterative feedback loop can be integrated into the
framework with either a fixed number of iterations or com-
putation until convergence. Subjective and objective results
show a high image quality for this framework comparable
or in many cases superior to conventional methods without
quality measurement. Further applications of this framework
can be an improved objective evaluation for artifact reduc-
tion algorithms, because similarity to the original input on
the one hand and the degree of distortions on the other hand
are measured.
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