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ABSTRACT

In this paper, we present optimization methods based
on second-order cone programming (SOCP) for wideband
beamforming arrays. A serious problem in the design of
wideband beamformers with optimized beam patterns is the
sensitivity in regard to sensor mismatch, sensor noise, and
sensor position errors. Especially in case of beam patterns
with high sidelobe attenuation, standard methods like lim-
iting the beamformer coefficient vector norm, or diagonal
loading of the sensor correlation matrix are not sufficient to
deal with sensor mismatch. Therefore, we use an adaptive
calibration of the array sensors. The adaptive calibration fil-
ters are trained during a setup phase, and use the same filter
structures as the fixed beamformer. After calibration, the fil-
ter coefficients are convolved with the optimized beamformer
coefficients. Experimental results show the improved perfor-
mance of arrays with microphones having rather large sensor
tolerances.

1. INTRODUCTION

Wideband beamforming arrays have many applications in-
cluding microphone arrays in the audio frequency range, and
beamformers for wideband wireless systems. The optimiza-
tion criteria for such systems may be different but most ap-
plications demand for a good beamforming behavior, and
an insensitivity against sensor mismatch, and sensor noise.
The latter properties are particularly needed in case of mi-
crophone arrays which normally use mismatched sensors.
Therefore, a robust design is inevitable, and sensor errors
must be considered to obtain a benefit from the beamformer
optimization.

There are several well known methods of robust beam-
former design [1]. However, these methods are not always
sufficient to implement optimized beamformers with mis-
matched sensors. At least in case of microphone arrays with
off-the-shelf sensors, a sensor calibration should be used. For
this purpose, we apply a straight forward procedure as pro-
posed in [2, 3].

Optimization of beamforming arrays using SOCP has
been studied in [4, 5, 6, 7]. In case of wideband arrays,
the mainlobe and sidelobe regions of the beam pattern are
optimized within a range of source directions, and within a
frequency band. The very large amount of constraints, how-
ever, may be prohibitive to find a feasible solution of the
optimization problem. Therefore, we propose to eliminate
the frequency dependence by optimization of the wideband

beam pattern instead. The wideband beam pattern shows the
dependence of the beamformer output on the direction of a
wideband source signal. With this approach, the computa-
tional demand is significantly reduced. In addition, an op-
timized design of 2- and 3-dimensional arrays with an in-
creased number of sensors is also feasible.
In section 2, we derive a framework for SOCP-based

optimization of linearly constrained minimum variance
(LCMV), and of weighted least squares (WLS) wideband
beamformers. Section 3 gives a brief description of the adap-
tive system used for automatic sensor calibration. Some rep-
resentative experimental results are discussed in section 4,
followed by a conclusion in Section 5.

2. FILTER-AND-SUM BEAMFORMER

Wideband beamformers may be implemented by processing
each sensor signal with optimized finite impulse response du-
ration (FIR) filters as shown in Fig. 1.

h1[n]
x1[n]

FIR

xm[n]

xN [n]

hm[n]

hN [n]

y[n]

Figure 1: Filter-and-sum beamformer using FIR filters with
real-valued impulse responses hm[n].

The beamformer output signal spectrum using filters with
length L real-valued impulse responses hm[n], m= 1,2, . . . ,N
is given by

Y (e jθ ) =
N

∑
m=1

Hm(e
jθ )Xm(e

jθ )

=
N

∑
m=1

L−1

∑
n=0

hm[n]e
− jθn

︸ ︷︷ ︸

Hm(e
jθ )

Xm(e
jθ ),

(1)

with FIR filter frequency responses Hm(e
jθ ), and sensor sig-

nal spectra Xm(e
jθ ) (frequency variable θ = 2π f

fs
, and sam-
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pling frequency fs). In the sequel, we will derive the beam-
former output power needed in the optimization cost func-
tion. We stack all real-valued impulse response vectors
hm = [hm[0], . . . ,hm[L−1]]

T
, m= 1, . . . ,N to the NL×1 vec-

tor h= [h1, . . . ,hN ]
T which must be found by the design pro-

cedures. In addition, the sensor signal spectra are combined

to N×1 vector x(e jθ ) = [X1(e
jθ ), . . . ,XN(e

jθ )]T . Applying
this vector notation, the beamformer output signal spectrum
in (1) can be expressed by

Y (e jθ ) = xT (e jθ )
(
I⊗eT (e jθ )

)

︸ ︷︷ ︸

aH(e jθ )

h = aH(e jθ )h. (2)

I is the N×N identity matrix, ⊗ represents the Kronecker
product, H denotes conjugate transpose, and L×1 vector e is
defined by

e(e jθ ) = [1,e− jθ ,e− j2θ , . . . ,e− j(L−1)θ ]T . (3)

Using (2) with real-valued h and (A⊗B)T = AT ⊗BT , the
power spectral density (PSD) of the beamformer output sig-
nal results in

Sy(θ ) = E
{

Y (e jθ )Y ∗(e jθ )
}

= hT
(

I⊗e(e jθ )
)

Sxx(θ )
(

I⊗eH(e jθ )
)

h.

(4)

Sxx(θ ) = E{x(e jθ )xH(e jθ )} is the N × N sensor signal
spectral correlation matrix, and E{·} denotes expectation op-
eration. Applying Sxx(I⊗ eH) = Sxx ⊗ eH (note the di-
mensions of Sxx, I, e), and the Kronecker product property
(A⊗B)(C⊗D) = AC⊗BD, we finally get the PSD

Sy(θ ) = hT
(

Sxx(θ )⊗e(e jθ )eH(e jθ )
)

h. (5)

The output signal power of a wideband beamformer operat-
ing in a frequency band θ ∈ [θl,θu] is given by

Py =
1

2π

∫ θu

θl

Sy(θ )dθ +
1

2π

∫ −θl

−θu
Sy(θ )dθ

= hT
1

π

∫ θu

θl

ℜe
{

Sxx(θ )⊗e(e jθ )eH(e jθ )
}

dθ

︸ ︷︷ ︸

Rxx

h

= hTRxxh.

(6)

The NL×NL correlation matrix Rxx in (6) can be evalu-
ated in closed form for some types of sensor signal models
like uncorrelated sensor noise, diffuse noise fields, and di-
rectional noise fields (jammers). However, in most practical
situations we must approximate the integral inRxx by a sum
using a set of different frequencies θk, k = 1, . . . ,N f in the
desired frequency band [θl ,θu]:

Rxx ≈
1

N f
∑

θk∈[θl ,θu]

ℜe
{

Sxx(θk)⊗e(e jθk)eH(e jθk)
}

. (7)

The standard optimization of a beamformer is based on
the minimization of the output signal power from all direc-
tions under the constraint that signals from the desired direc-
tion (look direction) are maintained. Additional constraints

may be imposed regarding sidelobe attenuation, sensitivity
to uncorrelated sensor noise, and sensor position errors. The
input spectral correlation matrix Sxx (andRxx, respectively)
must be known in order to solve these optimization problems.
If we do not estimate Sxx adaptively or prior to the beam-
forming process, we can use the following model in (7):

Sxx(θ ) = Sd(θ )+Sn(θ )+Sdiff(θ )+Si(θ )

= Sd(θ )dd(e
jθ )dHd (e jθ )+σ2n I+Sdiff(θ )

+
I

∑
k=1

σ2k dk(e
jθ )dHk (e jθ ).

(8)

In this model, Sxx is composed of the spectral correlation
matrix Sd of the signal (with spectrum Sd(θ )) from the de-
sired direction, the spectral correlation matrix Sn of uncor-
related sensor noise, a diffuse noise field component Sdiff,
and the contribution of unwanted interferences (jammers).
The d-vectors in (8) depend on the wave field model used
to describe propagation of the desired signal, and the jammer
signals, respectively. Without knowledge of the actual wave
propagation, we may assume plane waves traveling towards
the array. The sensor signals are then delayed versions of the
source signals. In that case, the dd-vector in (8) is given by

dd(e
jθ ) =

[

e jθτ1(φd)
, . . . ,e jθτN (φd)

]T

, (9)

with desired direction φd . A similar equation holds for dk
of the k jammer directions in (8). The signal delays τm de-
pend on the array layout. In case of a one-dimensional array
with sensors aligned on the x-axis, the delays are τm(φ ) =
fs
c
xm cosφ , m = 1, . . . ,N, (sampling frequency fs, speed of
propagation c, x-coordinates xm, and azimuth φ ).
In the following, we will need the beamformer output

spectrum for the desired wideband source signal. Using

Sd(θ ) ≡ 1 and (2), we get Yd(e
jθ ) = aHd (e jθ )h with

aHd (e jθ ) = dTd (e
jθ )

(

I⊗eT (e jθ )
)

. (10)

(N×N identity matrix I, and vector e defined in (3)).

2.1 LCMVbeamformer design with sidelobe constraints

A beamformer design with an LCMV criterion is based on
the minimization of the beamformer output signal power Py
subject to linear constraints regarding the beamformer re-
sponses in certain directions. A special case of an LCMV de-
sign is a minimum variance distortionless response (MVDR)
beamformer which uses only one desired direction con-
straint. The optimization problem of an LCMV design can
be expressed with (6) by

h = argmin
h

hTRxxh subject to CTh = f . (11)

The constraintsCTh = f guarantee a distortionless response
in desired direction. In addition, we can include constraints
for spatial nulls in certain directions. As an alternative, how-
ever, the minimization of hTRxxh also gives rise to spatial
nulls, if we include jammer terms in the spectral correlation
matrix (see (8)). Therefore, we take into account only desired
response constraints in (11). Since signals from the desired
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direction are not to be distorted by the beamformer, the de-
sired response must be a signal delay for these signals:

Yd(e
jθ ) = aHd (e jθ )h = e− jθ

L−1
2

, ∀θ ∈ [θl,θu]. (12)

The delay of the desired signal is set to L−1
2
(FIR filter length

L) in order to avoid non-causal filters. Splitting (12) in real
and imaginary parts at N f different frequencies θk ∈ [θl ,θu],
the constraints in (11) can be rewritten as














ℜe{aHd (e jθ1)}
...

ℜe{aHd (e
jθNf )}

ℑm{aHd (e jθ1)}
...

ℑm{aHd (e
jθNf )}














︸ ︷︷ ︸

Ad

h =













cosθ1
L−1
2

...

cosθN f
L−1
2

−sinθ1
L−1
2

...

−sinθN f
L−1
2













︸ ︷︷ ︸

bd

. (13)

Using the method of Lagrange multipliers, the solution
of the optimization problem in (11) is

h = R−1
xxC

(
CTR−1

xxC
)−1

f , (14)

with CT = Ad , and f = bd .
With a wideband LCMV beamformer design, we have

only a limited control on the mainlobe, and on the sidelobe
behavior. Besides the obvious influence of array layout and
number of sensors, the directivity of the array pattern can
be improved to a certain extend by fine-tuning the diagonal
loading of correlation matrixRxx.
Improved array patterns are obtained with numerical

optimization techniques. By “improved” we mean that a
smaller mainlobe width, and/or a better sidelobe attenua-
tion can be achieved as compared to an LCMV design with
the same array layout. The obvious method to improve the
LCMV design is to include constraints on the sidelobe levels
[5, 6]. This results in the following optimization problem:

h = argmin
h

hTRxxh (15)

subject to Adh = bd (16)
∣
∣
∣a
H
φ j

(e jθi)h
∣
∣
∣ ≤ εi, φ j ∈ SLR, j = 1,2, . . . ,Nφs , (17)

where i = 1,2, . . . ,N f is the frequency index, and SLR de-
notes the side lobe regions of the desired beam pattern. The
sidelobe constraints (17) are given for N f frequency points in

[θl,θu], and for Nφs directions in SLR. Vector aφ j(e
jθi) is de-

fined similar to ad(e
jθi) in (10). Since wideband beamform-

ers like microphone arrays operate over a large frequency
band, the number of sidelobe constraints may be prohibitive
to obtain a feasible optimization problem. In order to alle-
viate this problem, we eliminate the frequency dependence
of the sidelobe constraints (17) by optimizing the wideband
beam pattern within the SLR. The wideband beam pattern
represents the beamformer output as a function of the direc-
tion of a wideband source signal. We can now reformulate
the optimization problem as follows:

h = argmin
h

hTRxxh (18)

subject to Adh = bd (19)
∥
∥Aφ jh

∥
∥ ≤ ε , φ j ∈ SLR, j = 1,2, . . . ,Nφs , (20)

where ‖·‖ is the Euclidean norm, and N f ×NL matrixAφ j is

given by

Aφ j =







aHφ j(e
jθ1)
...

aHφ j(e
jθNf )







. (21)

This optimization problem can be easily transformed to an
SOCP problem [8, 9, 10]. Implementation details of the op-
timization problem are documented in a MATLAB program
available at the author’s homepage. Nevertheless, the follow-
ing modifications of the optimization problem are useful in
practice:

1. The sensitivity of a beamformer design in regard to white
sensor noise may be significantly reduced by limiting the
beamformer white noise gain. This gain is approximately
determined by the norm of h (see (6) with Sxx = σ2n I).
Thus, an additional constraint ‖h‖ ≤ εh should be used
in the optimization problem.

2. The mainlobe width of a wideband beamformer is nor-
mally larger at the low frequency end. As a consequence,
the sidelobe regions in a 3-dimensional beam pattern
are increasing with frequency. In principle, a wideband
LCMV beamformer with frequency independent main-
lobe widths may be designed by increasing superdirec-
tivity at lower frequencies. This can be achieved with a
frequency dependent diagonal loading of Sxx. However,
such a beamformer is less robust against sensor noise.
Consequently, frequency dependent sidelobe regions for
the computation of Aφ j in (21) should be used to reduce

the beamformer white noise gain.

2.2 Weighted least-squares beamformer design with
sidelobe constraints

Beamformers based on an LCMV design offer a sharp main-
lobe. This property is convenient, if the desired direction is
fixed, i.e. there are no substantial movements of the source.
In many situations, however, a broader mainlobe is desirable
to avoid a significant performance loss is case of look direc-
tion mismatch. In such cases, the beamformer design may be
based on the approximation of a desired beam pattern simi-
lar to the approximation of a spectral mask in an FIR filter
design. A well known technique is a weighted least-squares
(WLS) design which minimizes the following cost function
[7]:

J(h) =

Nφ

∑
n=1

N f

∑
k=1

Fnk |Ynk(h)−Dnk|
2
, (22)

with real-valued FIR filter coefficient vector h, and sets of
Nφ directions, and N f frequencies. The desired response over
these sets is denoted by Dnk, and the actual beamformer re-

sponse is given by Ynk(h) = aHn (e jθk)h = aHnkh in accordance
to (2). Weights Fnk may be used to emphasize mainlobe or
sidelobe behavior. Expanding the squared magnitude in (22),
and using the abbreviations

R =

Nφ

∑
n=1

N f

∑
k=1

Fnkℜe
{
anka

H
nk

}
(23)

q =

Nφ

∑
n=1

N f

∑
k=1

Fnkℜe{Dnkank} (24)
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results in

J(h) = hTRh−2qTh+ constant . (25)

Setting the gradient ∇hJ to zero in order to minimize J(h)
yields

h = R−1q, (26)

provided thatR is invertible. The WLS design method is ex-
tended in [7] by iterative procedures to obtain robust beam-
formers. As a computationally more efficient alternative,
we propose the following constrained optimization problem
which can easily be solved by SOCP:

h = argmin
h

hTRh−2qTh (27)

subject to
∥
∥Aφ jh

∥
∥ ≤ ε , φ j ∈ SLR (28)

‖h‖ ≤ εh. (29)

As mentioned in the previous section, we also include a norm
constraint on the FIR filter coefficient vector h to limit the
beamformer white noise gain. Further details can be found
in a MATLAB program available at the author’s home page.

3. ADAPTIVE SENSOR CALIBRATION

Optimized wideband beamformers are quite sensitive to a
mismatch in sensor transfer functions. In case of microphone
arrays, this means that we must use preselected sensors, or
some calibration procedure. A rather effective automatic cal-
ibration can be implemented with an adaptive filter in each
sensor channel [2, 3]. These filters compensate sensor toler-
ances by matching sensor transfer functions prior to normal
use of the array. We assume omnidirectional microphones
with no angle-dependent errors in the polar patterns. Such
errors cannot be compensated by the adaptive system we use
in cascade to the beamformer.
In the calibration phase, the array is exposed to a wide-

band signal like speech or noise coming from broad side.
The only requirement is an equal excitation of all sensors.
After the calibration phase, the beamformer FIR filter coeffi-
cients are convolved with the final coefficients of the adaptive
filters. During normal operation, there is no computational
overhead due to calibration.
The block diagram of the adaptive sensor calibration sys-

tem is shown in Fig. 2. The system is connected between
the sensor outputs sm[n] and the beamformer inputs xm[n].

x1[n]

x2[n]

xN[n]

s1[n]

s2[n]

sN[n]

delay

g1[n]

g2[n]

gN[n]

Figure 2: Adaptive filters for sensor calibration (channel 1 is
used as reference, gm[n], m = 2, . . . ,N are the filter impulse
responses after convergence).

Sensor channel 1 serves as a reference channel. Note that
impulse response g1[n] = δ [n−Nd ] represents a signal delay
by Nd samples in order to ensure causal adaptive filters. Af-
ter convergence of the adaptive filters, the filter coefficients
are kept constant to get the transfer functions

Gm(e
jθ ) =

Xm(e
jθ )

Sm(e
jθ )

=
H1(e

jθ )e− jθNd

Hm(e
jθ )

, m= 2, . . . ,N,

(30)

where Hm(e
jθ ) are the sensor transfer functions. As already

mentioned, all sensors are exposed to the same calibration
signal sc[n]. Therefore, the sensor spectra to be used in (30)

are Sm(e
jθ ) =Hm(e

jθ )Sc(e
jθ ). As indicated in (30), the sen-

sor transfer functions must be invertible, and thus must have
strict minimum phase. Our experiments show that in case of
microphone arrays, sufficient convergence is obtained with
adaptive FIR filters using the normalized least mean squares
(NLMS) algorithm.

4. EXPERIMENTAL RESULTS

In this section, we present representative examples of wide-
band beamformer designs. The design data used are suitable
for microphone array beamformers. However, other applica-
tions can be implemented by scaling frequencies, array lay-
out, and wave propagation model. The relative bandwidth of
microphone arrays is approximately a factor 2, and is much
larger than that of wideband arrays operating at sonar or ra-
dio frequencies. As a consequence, microphone arrays are a
special challenge for wideband beamformer designs.
The results are given for 1-dimensional, linear, uniform

arrays with N = 8 sensors, and a look direction of 0° (end-
fire). Extensions to other array configurations are straight
forward since the only modification of the design equations
concerns the d vector in (9). We use a frequency band from
400Hz up to 3200Hz, with 8kHz sampling frequency. Sen-
sor spacing is 5cm giving rise to an array size of 35cm. Typ-
ically, the FIR filter length of both the beamformer, and the
adaptive calibration filters is set to L= 50.
In order to investigate the influence of sensor errors, we

model microphone frequency responses by 4th-order recur-
sive filters approximating a typical magnitude response with
a 6dB decay below 700Hz, and a 2dB increase around 3kHz.
This response is randomly disturbed by small deviations to
obtain maximum amplitude and phase errors of approxi-
mately 2dB, and 10°, respectively. The exact shape of the
microphone frequency response is not important for adaptive
sensor calibration, as long as no deep notches or steep slopes
are present.
A result of an LCMV design improved by SOCP is shown

in Fig. 3. The beam pattern is obtained after a calibration
time period of 250msec. using a wideband noise signal com-
mon to all sensors. In addition, sensor noise (SNR = 30dB)
is included to show the wide noise behavior of the beam-
former. Ten different sets of sensors are used to obtain the
beam patterns. The patterns of the arrays with calibrated sen-
sors approximate the optimized pattern quite well. However,
the desired spatial null at 90° is barely visible. We observe
this property at nearly all fixed beamformer designs with real
sensors. The effect of using non-calibrated sensors is demon-
strated in Fig. 4. According to our experiments with different
design setups, it is nearly impossible to obtain a benefit from
sidelobe optimization without using calibrated sensors.
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Figure 3: Wideband beam patterns of N = 8 calibrated uni-
form arrays (LCMV+SOCP design).
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Figure 4: Wideband beam patterns of N = 8 non-calibrated
uniform arrays (LCMV+SOCP design).

A design result using the SOCP in (27)-(29) is shown
in Fig. 5 in case of arrays with adaptive sensor calibration.
Compared to Fig. 3, we obtain a flat mainlobe, and a much
higher sidelobe attenuation. However, arrays designed by
this method are more sensitive to uncorrelated sensor noise.
In addition, they are also more sensitive regarding mismatch
of sensor transfer functions (see Fig. 6).
More experimental results including the 3-dimensional

beam patterns of the examples can be found on the author’s
home page.

5. CONCLUSIONS

We have presented optimized design methods for wideband
beamformers based on SOCP. By approximating the wide-
band beam pattern directly, our approach offers a lower com-
putational complexity as compared to other methods. In
order to obtain an improved sidelobe behavior with mis-
matched sensors, we promote the use of an adaptive sen-
sor calibration scheme. Experiments show that the resulting
beam patterns are close to the optimized patterns of arrays
with ideal sensors.
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