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ABSTRACT
In this paper, a novel self-adjustable offset min-sum LDPC decod-
ing algorithm is proposed for ISDB-S2 (Integrated Services Digital
Broadcasting via Satellite - Second Generation) application. We
present for the first time a uniform approximation of the check
node operation through mathematical induction on Jacobian loga-
rithm. The approximation theoretically shows that the offset value
is mainly dependent on the difference between the two most unreli-
able inputs from the bit nodes and the algorithm proposed can adjust
the offset value according to the inputs during the iterative decod-
ing procedure. Simulation results for all 11 code rates of ISDB-S2
demonstrate that the proposed method can achieve an average of
0.15dB gain under the same Bit Error Rate (BER) performance,
compared to the Min-sum based algorithms, and consumes only
1.21% computation complexity compared to BP-based algorithms
in the best case.

1. INTRODUCTION
Low Density Parity Check (LDPC) code is an error correcting
code first discovered in 1963 by Gallager [1], and rediscovered by
Mackay and Neal in 1996 [2]. In Japan, a next generation satel-
lite broadcasting system named ”Integrated Services Digital Broad-
casting via Satellite - Second Generation (ISDB-S2)” was proposed
by NHK (Japan Broadcasting Corporation), and is currently under
the examination of Association of Radio Industries and Businesses
(ARIB) [3]. To ensure the transmission quality and high error cor-
rection capability, LDPC code is selected as the error correction
code for ISDB-S2 and is expected to achieve a Bit Error Rate (BER)
of 10−11.

LDPC code can be efficiently decoded through messages ex-
change between check nodes and bit nodes by performing check
node and bit node operations iteratively. Among decoding algo-
rithms, Belief Propagation (BP) algorithm, also known as Sum
Product algorithm, is well known for its good error correcting per-
formance. However it is not hardware-friendly due to the necessity
of implementing Hyperbolic functions [1]. Min-sum (MS) algo-
rithm approximates BP algorithm with easy hardware implementa-
tion but greatly degrades the error correcting performance [4].

Recently, many approaches have been proposed to trade off be-
tween the BER performance and hardware complexity. These ap-
proaches can be categorized as two kinds of schemes: MS-based
schemes and BP-based schemes. The MS-based schemes aim at im-
proving the error correcting performance of the MS algorithm by in-
troducing a multiplied or additive factor, i.e., Normalized Min-sum
(NMS) algorithm and Offset Min-sum (OMS) algorithm [5]. Later
on, some further derivatives of OMS algorithm appear, such as the
Degree-Matched Min-sum (DMMS) algorithm [6] which associates
the offset with the degree of the check node, and the Adaptive Offset
Min-sum (AOMS) algorithm [7] which adapts the offset according
to the most unreliable information sent from the bit nodes. BP-
based schemes, on the other hand, approximate the BP algorithm
by calculating the Hyperbolic function term by term using Jacobian
logarithm, such as Modified Min-sum (MMS) algorithm and Delta
Min (DM) algorithm [8, 9].
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Figure 1: Requirement for ISDB-S2 LDPC decoder

Generally, BP-based algorithms outperform MS-based algo-
rithms in BER performance, but they require larger hardware cost
due to the iterative term-based implementation, as shown in Figure
1. Specifically, for the LDPC codes in ISDB-S2, a maximum of 90
times of computation complexity is introduced compared to MS al-
gorithm, which directly increases the hardware overhead and power
consumption. As far as the high BER performance requirement of
practical ISDB-S2 application is concerned, MS-based algorithms
are not competent enough. On the other hand, the hardware and
power overhead of BP-based algorithms also limit their practical
usage for the highly parallel implementation of ISDB-S2 LDPC de-
coder. Therefore, a decoding scheme which can achieve a similar
BER performance as BP-based algorithms while maintaining the
low hardware cost, will become the trend of future LDPC decoder
design for next generation satellite applications.

Motivated by this challenging design task, we proposed a hy-
brid decoding scheme as an initial attempt for both high BER per-
formance and low hardware cost design. The algorithm improves
the OMS algorithm by a uniform approximation to the check node
computation while the approximation is derived through mathemat-
ical induction on Jacobian logarithm, adopted widely by BP-based
algorithms. It utilizes a self-adjustable offset based on the differ-
ence of the two most unreliable input values from the bit nodes. The
simulation results further demonstrate that the proposed method can
not only improve the BER performance compared to the MS-based
schemes with nearly no overhead in hardware cost, but also con-
sumes far less hardware than the BP-based schemes.

The rest of the paper is organized as follows. Section 2 intro-
duces the LDPC codes used in ISDB-S2. Section 3 describes LDPC
decoding algorithms in detail. Section 4 discusses the proposed al-
gorithm, its simulation result and hardware cost analysis, and finally
Section 5 concludes.

2. ISDB-S2 LDPC CODES

LDPC codes can be defined by a parity check matrix HMN , where
M and N are the number of rows and columns respectively. Defined
by ISDB-S2, the parity check matrices targeted in this work are 11
different ones with code rate ranging from 1

4 to 9
10 . The numbers of

columns (N) for all 11 codes are fixed as 44,880 and the numbers of
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rows (M) are related to the code rate. And all the LDPC codes are
structured QC LDPC codes, with a sub-block size of 374×374 [3].

3. LDPC DECODING ALGORITHMS
Generally, LDPC decoding can be performed by the Two Phase
Message Passing (TPMP) scheduling [2] or the layered scheduling
(shuffled scheduling) [10]. The latter one was proved to be efficient
for structured QC LDPC codes and converges two times faster than
TPMP schedule. We utilize this layered schedule to meet the high
performance requirement of ISDB-S2 application.

Layered LDPC decoding algorithm is mainly composed of
three operations, i.e., bit node operation, check node operation and
A Posteriori Probability (APP) update operation. Let αmn be the
message sent from check node m to bit node n, βmn be the message
sent from bit node n to check node m, and sumn be the APP message
of the bit node n of the codeword and be initialized as λn, which is
the Log-Likelihood Ratios (LLR) of the received codeword from
the channel. Then, the bit node operation, check node operation
and APP update operation of the BP algorithm can be expressed as
Equation (1), Equation (2) and Equation (3), respectively. Note that
A(m) is defined as A(m) = {n|Hmn = 1}.

βmn = sumn −αmn (1)

αmn = 2tanh−1( ∏
n′∈A(m)\n

tanh(
βmn′

2
)) (2)

sumn = βmn +αmn (3)

Since the check node function of BP algorithm is not hardware
friendly, varies researches have been done to approximate the BP
algorithm for better hardware implementation.

3.1 MS-based approximation
A simple approximation to Equation (2) is called Min-Sum algo-
rithm which uses the minimum magnitude of input β as a replace-
ment of the Hyperbolic functions, as shown in Equation (4).

αmn = ∏
n′∈A(m)\n

sign(βmn′)× min
n′∈A(m)\n

|βmn′ | (4)

Although MS algorithm can be easily implemented in hard-
ware, it suffers a large performance degrading which encourages
further researches to find better approximation based on the MS
algorithm. For instance, a normalization factor or offset factor is
applied to the MS algorithm, which forms the well-known Normal-
ized MS algorithm and Offset MS algorithm, as shown in Equation
(5) and (6) [5].

αmn = γ ∏
n′∈A(m)\n

sign(βmn′)× min
n′∈A(m)\n

|βmn′ | (5)

αmn = ∏
n′∈A(m)\n

sign(βmn′)×max( min
n′∈A(m)\n

|βmn′ |− ε,0) (6)

Note that the normalization factor γ and offset factor ε is not
subject to change during the decoding procedure. Some recent
progress claims that techniques to adjust the offset factor according
to either the degree of the check node (DMMS algorithm [6]) or the
minimum output data from the check node (AOMS algorithm [7])
can achieve better performance. However, DMMS requires signif-
icant computation power to determine the offset factor while the
AOMS lacks sufficient theoretical evidence to support its approxi-
mation.

3.2 BP-based approximation
We first denote a basic computation in the check node operation of
BP algorithm (Equation (2)) as function ⊗:

2 tanh−1(tanh
β1

2
× tanh

β2

2
) = β1 ⊗β2 (7)

Therefore, Equation (2) can be simplified as Equation (8).

2 tanh−1( ∏
n′∈A(m)\n

tanh(
βmn′

2
)) = βm1 ⊗βm2 ⊗ . . .⊗βmn′︸ ︷︷ ︸

|A(m)\n|

(8)
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Figure 2: Iterative calculation for row operation using BP-based
scheme

Equation (7), the primitive form of Equation (8), can be ex-
panded using Jacobian Logarithm (ln(ea +eb) = max(a,b)+ ln(1+
e−|a−b|)) twice as follows [8]:

β1 ⊗β2

=sign(β1)sign(β2)
(
(min(|β1|, |β2|)

+ f (|β1|+ |β2|)− f (|β1|− |β2|)
) (9)

where function f(x) is defined as f (x) = ln(1+ e−|x|).
Since f(x) is not hardware friendly, several works focus on the

approximation of Equation (9). An MMS algorithm is proposed in
[8] with Equation (10) as a substitution of Equation (9). Similarly,
a DM algorithm is proposed in [9] using Equation (11) to calculate
the parameter D in Equation (10).

β1 ⊗β2 = sign(β1)sign(β2)
(

max(min(|β1|, |β2|)−D,0)
)

where D =

 0.5 |β1 +β2| ≤ 1 & |β1 −β2| > 1
−0.5 |β1 −β2| ≤ 1 & |β1 +β2| > 1
0 else

(10)

D = max
(
(0.9− δ

2
),0

)
where δ =

∣∣|β1|− |β2|
∣∣ (11)

Equation (10) and Equation (11) are then applied iteratively for
the check node operation (Equation (8)). Figure 2 demonstrates
this iterative computation process for message αm1. In each iter-
ation, the ⊗ function of the intermediate result and a β message
is calculated. Therefore, for each α value, a total of (|A(m)| − 2)
⊗ computations are required. Since altogether there are |A(m)| α
values to be calculated in one row, the computation complexity of
the check node operation is proportional to |A(m)| × (|A(m)| − 2),
which is relatively large for some codes in ISDB-S2.

4. PROPOSED ALGORITHM
In this section, a novel self-adjustable offset min-sum algorithm is
proposed, in which a uniform approximation for the check node
operation of the BP algorithm is developed through mathematical
induction on Jacobian logarithm. The effectiveness of the proposed
approximation is demonstrated by the simulation results of all the
11 parity check matrices in ISDB-S2, showing a better BER perfor-
mance than MS-based schemes. The computation complexity and
area cost are also analyzed to further exhibit that the proposed algo-
rithm has much smaller hardware cost than the BP-based schemes.

4.1 Proposed approximation of BP algorithm
In order to reduce the computation complexity of check node op-
eration, we first consider a general case as shown in Equation (12).
Note that the general case is targeted here by considering n′ ∈ A(m)
rather than n′ ∈ A(m)\n in Equation (2). The exact calculation of
αmn will be explained after the uniform approximation is derived.

2 tanh−1( ∏
n′∈A(m)

tanh(
βmn′

2
)) = βm1 ⊗βm2 ⊗ . . .⊗βmn′︸ ︷︷ ︸

|A(m)|

(12)

Since function ⊗ holds commutative law, we can fairly assume
that |βm1| < |βm2| < .. . < |βmn′ |. Under this assumption, Equation
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(12) can be further expanded as Equation (13) through a mathemat-
ical induction based on Equation (9).

2 tanh−1 (
tanh(

βm1

2
) . . . tanh(

βmn′

2
)
)

≈sign(βm1) . . .sign(βmn′)
(

min(|βm1|, . . . , |βmn′ |)
− f (|βm2|− |βm1|)− f (|βm3|− |βm1|)− . . .− f (|βmn′ |− |βm1|)
+ f (|βm2|+ |βm1|)+ f (|βm3|+ |βm1|)+ . . .+ f (|βmn′ |+ |βm1|)

)
(13)

The detailed proof of Equation (13) is listed below.

(1)The condition of n′ = 2 is already proved in Section 3.2.
(2)Suppose n′ = k is correct, consider the situation of n′ = k+1

tanh(
βm1

2
) . . . tanh(

βmk

2
) = X

2tanh−1 (
tanh(

βm1

2
) . . . tanh(

βmk

2
)
)

= Y

⇒ X = tanh(
Y
2

)

2tanh−1 (
tanh(

βm1

2
) . . . tanh(

βmk

2
) tanh(

βm(k+1)

2
)
)

=2tanh−1 (
tanh(

Y
2

) tanh(
βm(k+1)

2
)
)

=sign(Y )sign(βm(k+1))
(

min(|Y |, |βm(k+1)|)

+ f (|Y |+ |βm(k+1)|)− f (|βm(k+1)|− |Y ||)
)

=sign(βm1) . . .sign(βmk)sign(βm(k+1))(
min(min(|βm1|, . . . , |βmk|)
− f (|βm2|− |βm1|)− . . .− f (|βmk|− |βm1|)
+ f (|βm2|+ |βm1|)+ . . .+ f (|βmk|+ |βm1|),
|βm(k+1)|)− f (|βm(k+1)|− |Y |)+ f (|βm(k+1)|+ |Y |)

)
∵min(|βm1|, . . . , |βmk|)
=min(|βm1|, . . . , |βmk|, |βm(k+1)|) = |βm1|
|Y | ≈ min(|βm1|, . . . , |βmk|) = |βm1|

∴2tanh−1 (
tanh(

βm1

2
) . . . tanh(

βmk

2
) tanh(

βm(k+1)

2
)
)

≈sign(βm1) . . .sign(βm(k+1))
(

min(|βm1|, . . . , |βmk|, |βm(k+1)|)
− f (|βm2|− |βm1|)− f (|βm3|− |βm1|)− . . .− f (|βm(k+1)|− |βm1|)

+ f (|βm2|+ |βm1|)+ f (|βm3|+ |βm1|)+ . . .+ f (|βm(k+1)|+ |βm1|)
)

Since |A(m)| is usually a large number for ISDB-S2, the im-
plementation of Equation (13) requires a large amount of hardware
resources. Hence an efficient approximation to the equation to re-
duce hardware cost is a necessity. Based on the characteristics of
function f(x), we find out that f(x) is a monotonically decreasing
function with f (x) .= 0 when x > 2.5. Because of the relation-
ships among |βm1|, . . . , |βmn|, we can derive that |βm2|−|βm1| is the
smallest one among all the arguments of f (x) in the equation, thus
− f (|βm2| − |βm1|) becomes the dominant term of all the function
f (x) terms. We can easily figure out, through the above derivation,
the offset term is mainly dependent on the two most unreliable in-
puts from the bit nodes which are denoted as βmin1 and βmin2 from
now on. However, simply keeping the dominant term and ignoring
all the other ones degrades the precision of computation. There-
fore, we further approximate all the other ones by multiplying a
normalization factor or adding an offset factor to the dominant term
− f (βmin2 −βmin1). In this work, we use the normalization factor γ ′
and obtain Equation (14) as an approximation to Equation (13).

2 tanh−1 (
tanh(

βm1

2
) . . . tanh(

βmn′

2
)
)

≈sign(βm1) . . .sign(βmn′)
(
min(|βm1|, |βm2|, . . . , |βmn′ |)

− γ ′ f (|βmin2|− |βmin1|)
) (14)

As can be seen from Equation (2), the computation of αmn is
based on βmn′ values with n′ ∈ A(m)\n. However, Equation (14) is
derived considering the βmn′ values with n′ ∈A(m). In the following
parts, we will discuss, in three different cases, how we derive the
proposed approximation of Equation (2) from Equation (14).
• Case 1: |βmn| is |βmin1|, the smallest one among all absolute

β values. In this case, |βmin1| should not be included in the
computation of αmn. Therefore, |βmin2| and |βmin3| become the
minimum value and second minimum value among all βmn′(n′ ∈
A(m)\n). Hence,

αmn = ∏
n′∈A(m)\n

sign(βmn′)
(
|βmin2|− γ ′ f (|βmin3|− |βmin2|)

)
• Case 2: |βmn| is |βmin2|, the second minimum value among all

absolute β values. In this case, |βmin1| and |βmin3| become the
minimum value and second minimum value among all βmn′(n′ ∈
A(m)\n). Therefore,

αmn = ∏
n′∈A(m)\n

sign(βmn′)
(
|βmin1|− γ ′ f (|βmin3|− |βmin1|)

)
• Case 3: |βmn| is neither |βmin1| nor |βmin2|. In this case |βmin1|

and |βmin2| are still the minimum value and second minimum
value among all βmn′(n′ ∈ A(m)\n). Therefore,

αmn = ∏
n′∈A(m)\n

sign(βmn′)
(
|βmin1|− γ ′ f (|βmin2|− |βmin1|)

)
So altogether three cases should be considered to implement

Equation (14), which gives rise to additional design overhead.
To solve the problem, we further simplify the check node op-
eration. Through simulation, we notice that the computation of
|βmin3|−|βmin2| in Case 1 can be approximated as |βmin2|−|βmin1| ,
and using −γ ′ f (|βmin2|−|βmin1|) instead of −γ ′ f (|βmin3|−|βmin1|)
for Case 2 incurs nearly no performance degrading. Hence, we
combine three cases into one uniform expression shown in Equa-
tion (15), which greatly reduces the hardware implementation cost.

αmn ≈ ∏
n′∈A(m)\n

sign(βmn′)
(

min
n′∈A(m)\n

|βmn′ |

− γ ′ f (|βmin2|− |βmin1|)
) (15)

From Equation (15), we can see that the offset factor is self-
adjustable, during the iterative decoding, according to the differ-
ence of the two most unreliable inputs from the bit nodes. Such
adjustable scheme precisely models the variations of bit node mes-
sages, hence enhances the decoding efficiency.

4.2 Simulation results
Software simulation of the proposed decoding algorithm has been
conducted for all 11 parity check matrices used in ISDB-S2. The
QPSK modulation and AWGN channel is modeled in the simula-
tion. A total of 10,771,200 input bits are used for simulation. The
maximum number of iteration is set to 50, and the simulation pro-
gram terminates when the decoded codeword is a valid one or the
maximum iteration times are achieved.

Figure 3 and Figure 4 illustrate the simulation result of the BER
performance of BP, NMS, OMS, DMMS, AOMS, MMS, DM and
the proposed decoding algorithm using layered scheduling for rate
3
5 and 3

4 , which will be mainly used in ISDB-S2 service. Except
BP algorithm is simulated using floating values, all the intermedi-
ate messages of simulations for the other algorithms are coded in
6 bit sign-magnitude format and the APP message is realized in
an 8 bit sign-magnitude format to avoid overflow. The parameters
of all algorithms are chosen to optimize both the BER performance
and hardware implementation as γ = 0.875 for NMS (Equation (5)),
ε = 0.125 for OMS (Equation (6)), and γ ′ = 0.125 for the proposed
method (Equation (15)). Also, for simple hardware implementa-
tion, we use the same ∆ function ∆(x) = max( 5

8 −
|x|
4 ,0) as [10] for

approximation of function f (x) for the proposed algorithm in this
work. It can be observed from the figure that the proposed algo-
rithm achieves an average of 0.2dB gain compared to the MS-based
algorithms, and sometimes even outperforms BP-based algorithms.

1396



1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CNR(dB)

B
E

R

 

 

Floating BP
NMS
OMS
DMMS
AOMS
MMS
DM
Proposed

Figure 3: BER performance for rate 3
5
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Figure 4: BER performance for rate 3
4

4.3 Comparison of required CNR
In order to further analyze the efficiency of the proposed algorithm
and its suitability to all the LDPC codes in ISDB-S2, we use a
metric, called the required CNR. The required CNR is defined as
the carrier-to-noise ratio when the BER exceeds 10−11 for ISDB-
S2 [11]. Because of the error floor free performance of ISDB-S2
code and relatively long computer simulation time to evaluate the
BER downto the range of 10−11, in this work, we use the same
evaluation method as [11], namely extrapolation, to calculate the
required CNR. The simulation uses 107 input data, if no error can
be found in the simulation, it is fair to say that this point is free
of error at BER = 10−7. We call this point “BER = 0 Observation
Point”, as shown in Figure 5. In this figure, P1 and P2 are simu-
lation points obtained from the computer simulation result. P3 is
the BER=0 Observation Point and P4 is the point with the required
CNR (CNR4). We calculate CNR4 as shown in Equation (16) using
the extrapolation technique.

CNR4 = 2 · log(10−11)− log(BER3)
log(BER2)−log(BER1)

CNR2−CNR1 + log(BER3)−log(BER2)
CNR3−CNR2

+CNR3

(16)

The results of the required CNR are listed in Table 1 for BP
algorithm with TPMP scheduling [11], BP with layered schedul-
ing, and all other algorithms discussed in this paper with layered
scheduling. Except that BP algorithms use floating simulations,
other algorithms include a 6-bit quantization. The row ∆BP(TPMP)
in the table indicates the average differences of required CNR for
all the code rates compared to the BP(TPMP) algorithm. As can be
seen from Table 1, the proposed algorithm is only 0.147dB away
from the standard BP algorithm [11], and is about 0.15dB better
than the MS-based algorithms in average.
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Figure 5: Required CNR calculation using extrapolation

4.4 Comparison of Computation Complexity and Hardware
Cost

Although the BER performance of BP-based algorithms outper-
forms the proposed algorithm, their computation complexity and
hardware cost can not be neglected. The comparison of computa-
tion complexity and the hardware cost of the check node operation
for one row (exclude the sign computation) are listed in Table 2.
Under column computation complexity, [comp], [add], [shi f t] in-
dicate the computation complexity of comparison operation, addi-
tion or subtraction operation, and shift operation, respectively. For
MS-based algorithm, |A(m)| items are compared serially to get the
minimum and the second minimum value, so 2× |A(m)| × [comp]
is needed. After that, normalization factor or offset factor is applied
to minimum and second minimum value, so additional calculations
for the normalization factor γ and offset factor ε in Equation (5) and
Equation (6) are needed. For the proposed algorithm, after the min-
imum value and the second minimum value are found, according to
Equation (15), we require two more subtraction, two more shift op-
eration and 2 subtraction for offset. For BP-based algorithm, Equa-
tion (10) or Equation (11) is invoked (|A(m)| − 2) times for each
n(n ∈ A(m)) and a total of |A(m)| different n values, thus requiring
|A(m)|× (|A(m)|−2) times of Equation (10) or Equation (11). For
rate 9

10 with the biggest row weight |A(m)| of 32 among all the par-
ity check matrices in ISDB-S2, the computation complexity relation
between NMS, OMS, DMMS, AOMS, MMS, DM and the proposed
method is 1.03 : 1.03 : 1.22 : 1.05 : 90 : 75 : 1.09. The computation
complexity for the proposed algorithm is similar to MS-based algo-
rithms, and much smaller compared to BP-based algorithms. Figure
6(a) shows the relation of average computation complexity and av-
erage required CNR for all the rates in ISDB-S2. From the figure,
we can see that the proposed algorithm consumes much less com-
putation complexity compared to the BP-based algorithms but can
achieve much better error correcting performance compared to MS-
based algorithm with almost the same computation complexity.

We also estimate the hardware cost for one check node opera-
tion (exclude the sign operation) using gate counts. The estimation
results are listed under column hardware cost with [adder5] and
[adder6] indicating the cost of an adder or subtractor for 5 bits and
6 bits. Note that we assume a comparator shares a similar cost with
an adder, and we neglected the cost for shifter. To keep almost the
same clock cycles for one check node operation for all algorithms,
MMS and DM require a parallel implementation of comparison,
thus making the hardware cost almost |A(m)| times as the other al-
gorithms. In Figure 6(b), we show the relation of area cost and
average required CNR for all the rates in ISDB-S2. The adder is
estimated as 6 gates per bit and the LUT is estimated as 10 gates
per bit. The figure demonstrates a similar trend as Figure 6(a) that
the proposed algorithm greatly reduces the area compared to the
BP-based algorithms while achieves much better error correcting
performance than MS-based algorithms.
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Table 1: Comparison of Required CNR (dB)

Rate floating BP MS-based BP-based proposedTPMP [11] Layered NMS OMS DMMS AOMS MMS DM
1/4 -2.1 -2.15 -1.56 -1.33 -1.49 -1.52 -1.73 -1.56 -1.55
1/3 -1.0 -1.14 -0.60 -0.45 -0.42 -0.41 -0.94 -0.86 -0.67
2/5 0.0 -0.16 0.31 0.36 0.44 0.54 0.04 0.13 0.34
1/2 1.2 1.05 1.42 1.45 1.45 1.44 1.14 1.24 1.38
3/5 2.5 2.35 2.67 2.67 2.55 2.54 2.46 2.45 2.45
2/3 3.3 3.27 3.47 3.46 3.34 3.34 3.26 3.25 3.25
3/4 4.0 3.95 4.29 4.26 4.36 4.36 4.06 4.05 4.05
4/5 5.0 4.97 5.28 5.37 5.15 5.16 5.08 4.95 5.07
5/6 5.5 5.48 5.79 6.01 5.66 5.66 5.46 5.46 5.45
7/8 5.9 5.97 6.16 6.08 6.15 6.15 6.01 5.96 6.07
9/10 6.8 6.79 7.09 6.89 6.87 6.87 6.78 6.78 6.88

∆BP(T PMP) 0 -0.065 0.293 0.335 0.269 0.275 0.047 0.068 0.147

Table 2: Comparison of computation complexity and hardware cost
Computation Complexity Hardware Cost

NMS 2×|A(m)|× [comp]+2× [shi f t] 2× [adder5]
OMS 2×|A(m)|× [comp]+2× [add] 4× [adder5]

DMMS (2×|A(m)|+4)× [comp]+3× [shi f t]+7× [add] 5× [adder5]+6× [adder6]
AOMS 2×|A(m)|× [comp]+1× [shi f t]+2× [add] 4× [adder5]+8word ×3bit[LUT ]
MMS |A(m)|× (|A(m)|−2)× (3× [comp]+3× [add]) |A(m)|× (4× [adder6]+2× [adder5])
DM |A(m)|× (|A(m)|−2)× (1× [comp]+3× [add]+1× [shi f t]) |A(m)|× (4× [adder5])

proposed 2×|A(m)|× [comp]+4× [add]+2× [shi f t] 6× [adder5]
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Figure 6: Performance comparison: (a) average required CNR vs.
average computation complexity, and (b) average required CNR vs.
area

5. CONCLUSION

In this paper, in order to achieve high BER performance for satel-
lite transmission services, a novel self-adjustable offset min-sum
algorithm is proposed with the check node operation approximat-
ing BP algorithm. The correctness of the approximation is proved
by mathematical induction through using Jacobian logarithm iter-
atively. The proposed algorithm is hardware-friendly compared to
the BP-based algorithms and the simulation results show that the
proposed algorithm can achieve an average of 0.15dB gain com-
pared to Min-sum based algorithms.
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