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ABSTRACT

A major challenge in acoustic signal processing lies in the un-
certainty regarding the current state of the acoustic environment.
The relevant applications in the field of speech and audio signal
processing include the multichannel sound capture, the signal pro-
cessing for spatial sound control, and the acoustic echo/interference
cancellation. In this paper, a Bayesian impulse response model is
proposed for acoustic system identification. It is justified by the
stochastic nature of time-varying and noisy environments. In par-
ticular, we argue for a state-space dynamical model of the unknown
impulse responses as a suitable form to incorporate a priori in-
formation of the acoustic environment. For the echo/interference
cancellation case, we then describe the Bayesian inference of the
acoustic system. It is structurally and experimentally compared to
maximum-likelihood and least-squares estimators which are both
rooted in deterministic system modeling. Algorithmic structure and
performance, both speak for the Bayesian inference.

1. APPLICATIONS OF ACOUSTIC SYSTEM
IDENTIFICATION

Figure 1 depicts a generic acoustic environment with audio repro-
duction and recording capabilities. The loudspeaker arrangement
on the reproduction side presents acoustic scenes to the users of the
environment as shown, e.g., by the virtual sound source in front of
the loudspeakers. The loudspeaker driving signals can be derived
from the received signals from a remote acoustic environment or
provided through broadcast and storage media.

The users of the acoustic environment act in a two-fold way.
On the one hand, they act as acoustic receivers, i.e., as consumers
of the acoustic scene, indicated by the in-ear microphones in Fig. 1.
On the other hand, the users naturally act as inner sources of the
acoustic system, e.g., by their speech utterances to the recording
microphones or simply by their internal voice communication.

On the recording side, Fig. 1 depicts several microphone chan-
nels. This multi-microphone arrangement can be used to capture
the voices of users '1° and ’2’, or possibly more internal sources,
e.g., to transmit to a remote environment or to feed a speech recog-
nizer in the recording unit. The recording microphones might also
include a set of in-ear transducers, as shown for user ’1°, in order to
supply a perceptual reference of the soundfield.

Various use cases obviously arise from the capabilities of the
acoustic environment and they might even take place simultane-
ously. In the following, we consider the related signal processing
applications on the recording and reproduction side of the system
and we address the undesired interference of both sides.

1.1 Multichannel Speech Acquisition

Among the recording side applications in acoustics, we have the
dereverberation, denoising, localization, and separation of distant
speech using microphone arrays. Comprehensive presentations of
this field can be found, e.g., in [1, 2]. The solutions to these prob-
lems inherently require an exact or approximate equalization of the
acoustic system between users "1’ and ’2’ and the microphone trans-
ducers in Fig 1. This acoustic system can be represented, e.g., by
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a set of acoustic impulse responses which fully describes the un-
desired linear distortion and additive mixture of the original speech
sources. System identification can give access to the impulse re-
sponses and with their availability we can apply the sophisticated
designs of multi-channel speech enhancement algorithms to restore
the original speech sources from the distorted microphone signals.
The principle feasibility of multichannel acoustic equalization on
the basis of the known system was demonstrated in [3].

Typically, the acoustic system is time-varying and we do not
have a reference to the original source signals and therefore no
means to perform supervised system identification [4]. In this case,
we face the very difficult blind system identification problem, the
solution of which can suffer from inherent source-filter ambiguities
[5]. Blind system identification algorithms were proposed with a
wide range of estimation performances and complexities [6, 7, 8],
but it remains a tough research issue to deploy an adaptive solution
for realistic, i.e., noisy and time-varying acoustic environments.

1.2 Signal Processing for Spatial Sound Control

In the reproduction unit of the system in Fig. 1, the signal process-
ing for spatial sound control aims at the presentation of acoustic
scenes with at least plausible spatial cues to the users, e.g., the ren-
dering of one or more virtual sound sources at different locations in
the acoustic environment. The task of rendering a desired signal at
a location of interest exhibits duality with the multichannel acqui-
sition and equalization of point sources using microphone arrays.
In both cases, for example, the concept of matched filter arrays has
been utilized to achieve the desired focus and selectivity [9, 10].
While the ideal acquisition of a point source, in general, relies on
a SIMO (single-input/multiple-output) acoustical model and a sub-
sequent MISO (multiple-input/single-output) inverse processor, the
equivalent architecture for the rendering case at hand consists of a
SIMO preprocessor and a subsequent MISO acoustic inverse. From
the viewpoint of signals and systems, the role of the acoustic im-
pulse responses and the inverse filters are merely exchanged. Essen-
tially, this example shows that the identification of acoustic impulse
responses from the loudspeakers to the virtual source location is the
key to signal processing for spatial sound control.

Naturally, the rendering of a desired signal at some point of in-
terest will generate the respective soundfield only in the vicinity of
the virtual source location, thus not providing the perception of a fo-
cused virtual sound source everywhere in the acoustic environment.
The point-oriented rendering is underdetermined from the perspec-
tive of wavefield synthesis (WFS), which imposes soundfield condi-
tions on a closed contour around the listening area [11]. In order to
resolve the underdetermined soundfield conditions, further desired
responses can be imposed, e.g., at the locations of the recording
microphones in the acoustic environment. The responses in these
reference points have to correspond to the soundfield radiated from
the desired virtual source. The generation of the desired responses
hence requires knowledge of the acoustic system between the vir-
tual source position and the reference points and therefore, again,
reliable system identification is indispensable. From the viewpoint
of the users in the environment, an excellent set of reference points
would be given by the two entrances of the human ear canals.
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Figure 1: Acoustic environment with loudspeaker input x(k) and microphone output y(k) at discrete-time k. The depicted subset of
loudspeaker-to-microphone transmission paths is together represented by the time-varying acoustic impulse response vector w (k) at time k.

1.3 Acoustic Echo/Interference Cancellation

In case of simultaneous reproduction and recording, we are facing
the problem of an undesired feed of the microphones by the loud-
speakers of the acoustic environment. Loudspeaker-driven interfer-
ence at the microphones may severely mislead speech recognition
on the recording side of the system, e.g., in speech dialog systems
with simultaneous input and output.

Another use case included here is the hands-free voice commu-
nication of users ’1’ and 2’ with a remote acoustic environment,
i.e., the destination of the transmit signal in Fig. 1 coincides with
the origin of the received signal. A feedback loop might occur only
in the worst case, but at least the loudspeaker signals received from
the remote-side talkers are superimposed onto the desired speech of
user "1’ and °2’ at the recording microphones. The feedback to the
remote side is then perceived as non-tolerable echo (assuming trans-
mission delay). The undesired loudspeaker-enclosure-microphone
system is therefore termed acoustic echo path [12].

The acoustic interference in general and the echo signal in par-
ticular can be canceled from the recorded microphone signals, while
preserving the desired signals, if the time-varying loudspeaker-
enclosure-microphone system can be identified accurately from the
available signals and utilized for regeneration and subtractive can-
cellation of the interference [13, 14].

2. SYSTEM IDENTIFICATION TECHNIQUES

As mentioned in the abstract, we will now pick up the particular
echo/interference cancellation case with a single active loudspeaker
and microphone in order to work out the Bayesian inference model
for time-varying acoustic system identification in noise. For struc-
tural comparison, we also include the more common deterministic
system model and the related estimators. This presentation serves
as an example to demonstrate the Bayesian perspective for acous-
tic system identification, however, not claiming a solution for the
variety of system identification problems outlined in the paper.
Consider the single-channel linear time-varying system be-
tween the known loudspeaker signal x(k) and the observed micro-
phone signal y(k) as shown by Fig. 1. This configuration provides
us with a supervised adaptive system identification problem. Let

x(k) = (x(k),x(k—1),....x(k—=N+1)T (1)

denote an assembly of the most recent input samples and

w(k) = (wo(k),wy(k),...wy_1 (k)T )

the finite set of corresponding impulse response coefficients at sam-
pling time k. Our acoustic system model then reads

N—1

yk) = s(k)+ ), _o walk)x(k—n) 3)

= s(k)+xT (k)yw(k), @)

where s(k) denotes observation noise, e.g., speech utterances by
the users or any kind of ambient noise which originates inside or
propagates from the outside into the acoustic environment.

2.1 Deterministic System Model

Given the time-series y (k) = (y(k),...,y(K'),...,y(0)), i.e., obser-
vations from the time origin up to and including time k, and further-
more a deterministic and constant model of the unknown system,
i.e., w(k) = w, where w is now subject to estimation. We can in
this case easily formulate the likelihood of the observations as a
function of the unknown system, i.e., p(y (k) | w), and target the
maximum-likelihood estimate W of the system as shown by

W = argmaxp(y(k) | w) . 5)
By assuming zero-mean, independent, and uncorrelated Gaus-

sian observation noise s(k) with fixed and arbitrary variance 62, we
can write the likelihood over all observations as

L (W) W)W
v 1w = JT oo (- CEEENT)

( ¥ () xT(k'>w>2>

202

and proceed with analytic maximization. For the ease of the formal
derivation, this step is typically performed in the logarithmic do-
main, i.e., the derivative of the log-likelihood In p(y (k) | w) with
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respect to w is equated to zero. It can be easily verified that
this is perfectly in agreement with least-squares estimation of w,
which seeks a minimum of the sum of squares of the error signal
e(k) = y(k) — xT (k)w by using the best possible selection W in
place of w, i.e.,

k 2
o : n_ Ty
W = afgmvsnkg(y(“ T (Kw)” ©)
and after basic vector and matrix rearrangements
k -1 &k
w = (Z x(k')xT(k’)) Y x(K)y(K'). (7
K'=0 K'=0

This resulting estimator is unfortunately rather unpractical,
since it causes very high and even growing computational load if
the evaluation of the previous equation should happen online for
each and every time instant k. This issue can be partly resolved
by the recursive least-squares (RLS) algorithm [4], but RLS is still
demanding in terms of the resource consumption.

In practice, the gradient descent approach is therefore preferred
in many applications. It uses the gradient of the instantaneous
squared error, i.e.,

V(k) = = —2e(k)x(k) , ®)

and it achieves the desired smoothing (averaging) in the estima-
tion by introducing a relatively small non-negative step-size fac-
tor U into the recursive prediction and correction mechanism of se-
quential gradient descent, obtaining the simple and celebrated least
mean-square (LMS) adaptive algorithm [4]:

ShtD) = W) SAVE) ©)
= W)+ peR)x(k) . (10)

The described maximum-likelihood (ML) and least-squares
(LS) estimators are both rooted in the deterministic model of the
acoustic system w (k). Equations (7) and (10) reveal that this strat-
egy unfortunately does not provide native structural support for the
inclusion of comprehensive statistical a priori information regard-
ing the unknown system w (k) or the observation noise s(k). In
speech and audio signal processing, however, it has been observed
that we ultimately require algorithmic support to handle the very
common acoustic scenarios which are stochastic in nature. Particu-
larly, this includes variability of the system w (k) subject to estima-
tion [14] and in many cases the simultaneous and continuous pres-
ence of observation noise s(k) with stationary and non-stationary
(i.e., ambient noise and speech-like) characteristics [15, 16].

Before we approach the more sophisticated Bayesian inference
model for adaptive system identification, it is acknowledged that
research has figured out various auxiliary control mechanisms to
support the deterministic learning, e.g., the advanced double talk
detection to handle sporadic speech-like observation noise [17], or
the time-varying adaptive step-size factors u = u(k) to provide an
optimal balance of tracking ability and robustness against observa-
tion noise [12]. Both techniques can be applied to slow down or
even halt the adaptive algorithms, e.g., LMS or RLS, in the pres-
ence of noise and to accelerate the learning rate otherwise. The
plain forms of these adaptive algorithms are, however, not selective
with respect to the changing quality of the data and will therefore
suffer from performance limitations.

2.2 Proposed Bayesian Inference Model

By employing more stochastic modeling in Bayesian estimation, in
contrast to ML and LS, we expect richer and more inherent struc-
tural support for robust system identification in time-varying and

noisy conditions. Seeking the posterior distribution of the unknown
system, p(w(k) | y(k)), which can be expressed using Bayes rule,

- ply(k) | w(k) p(w(k))
p(y(k)) ’

considerable statistical information about the acoustic environment
can be and needs to be incorporated in form of the likelihood
p(y(k) | w(k)), the prior p(w(k)), and the evidence distribution
p(y(k)). The obtained posterior could then be employed in the
context of various estimation criteria as, e.g., maximum a posteri-
ori (MAP) estimation or minimum mean-square error (MMSE) es-
timation of the unknown system. MAP estimation is sometimes
referred to as poor man’s Bayesian estimation, while in the case of
jointly Gaussian distributed random variables, the MAP estimator
lines up with the MMSE estimator (cf. the previous relationship of
maximum-likelihood and least-squares estimation in the Gaussian
case). In general, the MMSE estimator of the system w(k), i.e., the
Bayesian estimator under quadratic loss, is analytically given by the
conditional mean of w(k), e.g., [18]:

p(w(k) [y(k) =

w(k) = E{w(k)|y(k)} (11)

= [ Wl plwl®) | y(R)dw (12)

A particularly convenient stochastic model for our time-varying
systems w (k) is the first-order recursive Markov chain, i.e.,

w(k+1)=a -w(k)+Aw(k), (13)

in which the two consecutive states at times k and k+1 are re-
lated to each other by the transition coefficient 0 < a < 1 and the

independent process noise quantity Aw (k) with covariance Gﬁ =

E{Aw(k)AwT (k)}. The Markov model therefore represents sys-
tems which gradually change into an unpredictable direction — very
much in agreement with the nature of time-varying impulse re-
sponses in realistic acoustic environments.

Equations (4) and (13) together form a Gauss-Markov dynami-
cal model (state-space model) of the unknown state w(k), provided
that we stick to the independent and normally distributed observa-
tion and process noises, s(k) and Aw (k), respectively. In this case,
the MMSE estimate w (k) of the unknown system w (k) at time &,
given the observations y(k) up to and including time , i.e., the pos-
terior mean w(k) = E{w(k)|y(k)}, is known to be computed by
the Kalman filter which consists of the following set of recursive
and iteratively coupled matrix equations [18]:

wWk+1) = a-wh(k) (14)
pk+1) = a* p(k)+o03% (15)
FHH) = W)+ k() (y0) —x" ()% (0)) (16)
prk) = (T-k(k)x"(0)p(K) a7

KK = pR)x(k) (<] (pK)x(R) +02K) - (8)

Equations (14) and (16) of the Kalman filter recursively determine
the conditional mean estimate w (k) in a prediction-correction fash-
ion. In doing so, the formulas utilize the Kalman gain k(k) from
(18) as a weight which essentially depends on the state error co-
variance p(k). The latter is again determined recursively through
Egs. (15) and (17) of the Kalman filter.

The Kalman gain k(k) can be considered as an intelligent adap-
tive stepsize parameter of the recursive learning procedure for the
system w(k), comparable to the role of u in the LMS algorithm,
cf. (10). Through the Kalman gain, the model-based “system dis-
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tance” p(k) between the true and the estimated acoustic system in-
teracts with the prediction-correction procedure for w(k). In this
way, Kalman filtering can be understood as the ever sought unifica-
tion of linear adaptive filtering and adaptation control using p(k).
After all, the Kalman filter differs from LMS and RLS by its inher-
ent stability [4], i.e., it does not require additional control mecha-
nisms (e.g., the double-talk detection) in order to achieve fast and
yet robust adaptation in time-varying and noisy environments.

For long time, the Kalman filter has been avoided in acoustic
system identification. This can be attributed to its still high compu-
tational load and to the risk for numerical instability in the case of
higher-order adaptive filters [4]. Furthermore, a comprehensive sig-
nal model for the Kalman filter, particularly the availability of ob-
servation and process noise covariances for the acoustic state-space
model in (4) and (13), seemed to be out of sight [12].

2.3 Broadband Kalman Filter

In order to tame the exact Kalman filter, in this paper, we replace
the matrix quantity k(k)x” (k) in (17) with the inner vector prod-
uct x7 (k)k(k)/N. This seemingly strong simplification can be well
justified in the case of broadband input x(k), because the smoothed
matrix quantity k(k)x” (k) resembles a near-diagonal correlation
matrix, provided that we specify a diagonal process noise covari-
ance O‘i = GKI. Along with this replacement, the matrix p(k) can
be treated as a scalar p(k) without further assumption or approxima-
tion, as seen from (15) and (17). The normalization by factor N in

xT (k)k(k)/N achieves appropriate scaling after the matrix replace-
ment. Because of the broadband rationale behind the rearrange-
ment, the resulting algorithm is termed broadband Kalman filter:

Wk+1) = a-wt(k) (19)
plk+1) = @ p*(k)+o; (20)
e(k) = y(k)—x" (R)w(k) @1
whk) = wW(k)+k(k)e(k) (22)
pr) = (1=x" WkK)/N) p(k) (23)
k(K = plk)x(0) (X ()x(k) +026)) @4

By the simplifications introduced here, naturally, the presented
algorithm looses its decorrelation ability on the input signal x(k)
if non-white input is processed. However, the structural support to
handle time-varying unknown systems and to cope with the continu-
ous presence of observation noise with possibly time-varying levels
is fully preserved in the broadband Kalman filter. Moreover, we
have at the same time gained considerable numerical robustness by
reducing the dimension of the original estimation error covariance
p(k) from matrix to scalar.

Next, we have to resolve the uncertainty regarding the obser-
vation noise power O'S2 (k) in the Kalman gain (24), because this
quantity is indispensable for the operation of the Kalman filter. Un-
fortunately, the corresponding signal s(k) is not available explicitly
to calculate sample covariances, but the error signal e(k) in (21) will
essentially represent the observation noise signal s(k) in case of suc-

cessful state estimation. Thus, we can approximate 62 (k) ~ 62 (k)
2

and then obtain the error signal power o, (k), e.g., by online recur-
sive averaging of the explicitly available square error ez(k).
Eventually, the scalar process noise covariance parameter re-
quired in (20) can be specified as 67 = (1 —a?)&{w! (k)w(k)}/N,
where &{wT (k)w(k)} denotes the average echo path norm. This
formula is deduced directly from the Markov model in (13) when
square expectation is applied on both sides. Some insight into the
remaining choice of the model parameter a is provided in Sec. 3.
Substituting (22) and (24) into (19), while assuming O'Sz(k) ~0,
the derived algorithm immediately unveils structural equivalence

with the normalized LMS algorithm [4], thus proving the numer-
ical efficiency and robustness obtained through simplification of the
exact Kalman filter. Our broadband Kalman filter with 62 (k) # 0 in
fact represents an excellent tradeoff between the Bayesian inference
in form of the exact Kalman filter and the very popular LMS-type
adaptive algorithm for acoustic system identification.

3. EXPERIMENTAL COMPARISON

Let us again consider the echo/interference cancellation case from
Sec. 1.3. The somewhat harsh, but reproducible configuration in
our evaluation uses time-varying echo paths w(k) conforming to
the Markov model (13) with time-constant 7,, = —1/(f;In(a)). The
audio sampling frequency used here is f; = 8kHz. &{wT (k)w(k)}
is unity and the average echo-to-near-end speech power ratio thus
0dB. The echo path has 500 coefficients with exponential decay
characteristics. Simultaneous with different degrees of echo path
variation, i.e., different 7,,, we consider a double-talk condition with
continuous presence of both far-end and near-end speech, x(k) and
s(k), respectively. Fig. 2 depicts the corresponding echo signal at
the recording microphone and the additive near-end speech.

near-end speech s(k)

1 :

amplitude

. far-end echo signal x” (k)w (k)

amplitude

time [s]

Figure 2: Signals in echo/interference cancellation configuration.

Providing for similar computational complexities of different
algorithms in the experiment, we consider on the one hand the pop-
ular NLMS algorithm, i.e., Eq. (10) with pu = uo/(x” (k)x (k) + 8),
8 = 0.02, and on the other hand the broadband Kalman filter de-
rived in Sec. 2.3 of this paper. In both cases, the adaptive filter
length is chosen as N = 300. Systems with adaptive stepsize con-
trol based on double-talk detection are not an option for comparison,
here, because of the permanent double-talk condition. For the oper-
ation of the broadband Kalman filter, we choose the model param-
eter a = 0.999984 in all simulations. The resulting process noise
covariance GK in the Kalman filter then ideally suits an unknown
system with time-constant 7,, ~ 8 s.

Performance comparison of the time-varying system identi-
fication is achieved in terms of the normalized system distance
D(k) = (w(k) —w(k)T (w(k) —w(k))/(wT (k)w(k)) at each and
every time k. While using the same algorithms, Figs. 3 and 4 present
the results obtained for time-varying and almost time-invariant echo
paths, i.e., for model match and model mismatch with respect to the
Kalman filter. For reference, we included fast and slow variants of
the NLMS algorithm using different adaptation constants Lly. It can
be seen that the system distance for the fast NLMS is erratic in these
harsh noisy conditions imposed by the near-end speaker, allowing
only between 0 and -5dB most of the times for the time-varying
system in Fig. 3. The slower NLMS variant behaves less erratic, but
it looses track of the time-varying system and then sometimes the
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system distance even increases. The broadband Kalman filter, on
the contrary, initially converges much more rapidly than the NLMS
and then tracks the time-varying system with an average system dis-
tance in the range of -10 dB with natural ups and downs according
to the strongly time-varying conditions in this experiment. The re-
sults in Fig. 4 for the mismatched, almost time-invariant echo path
are generally better. This is due to the naturally better identifiabil-
ity of slowly varying systems by whatever algorithm. Thereby, we
observe stronger advantages for the broadband Kalman filter.
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Figure 3: Results for time-varying system: 7,, ~ 8 s (model match).
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Figure 4: Time-invariant system, i.e., T,, — oo (model mismatch).

4. CONCLUSIONS

Many applications of acoustic signal processing can be handled suc-
cessfully with the availability of the impulse responses of the acous-
tic environment, but the large variety of possible loudspeaker and
microphone setups and the various reflection characteristics do not
suggest the use of predetermined impulse responses in most of the
use cases. The crux further lies in the time-varying nature of the
acoustic environment (e.g., by user interaction) and the simultane-
ous presence of observation noise (e.g., ambient noise or competing
speech sources). As a result, the uncertainty regarding the current
state of a time-varying acoustic system needs to be resolved by fast
and robust online system identification.

In order to take the stochastic behavior of acoustic environ-
ments into account, this paper suggested a Bayesian inference
model for acoustic system identification. In contrast to determinis-
tic modeling and the related ML/LS/RLS estimation, the Bayesian

inference provides richer support for the inclusion of a priori infor-
mation, e.g., regarding the variability of the environment. For the
supervised system identification case, it was finally demonstrated
how the Bayesian inference can be handled to provide us with sim-
ple and robust adaptive algorithms for adverse conditions.
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