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ABSTRACT
Raman spectroscopy is a laser-based vibrational tech-
nique that can provide spectral signatures unique to
a multitude of compounds. The technique is gaining
widespread interest as a method for detecting hidden
explosives due to its sensitivity and ease of use. In
this work, we present a computationally efficient clas-
sification scheme for accurate standoff identification of
several common explosives using visible-range Raman
spectroscopy. Using real measurements, we evaluate
and modify a recent correlation-based approach to
classify Raman spectra from various both harmful
and commonplace substances. The results show that
the proposed approach can, at a distance of 30 me-
ters, or more, successfully classify measured Raman
spectra from several explosive substances, including
Nitromethane, TNT, DNT, Hydrogen Peroxide, TATP
and Ammonium Nitrate.

1. INTRODUCTION

Raman spectroscopy is a powerful non-contact tech-
nique that uses a laser to probe the vibrational en-
ergy levels of molecules in a substance [1]. The vibra-
tion information provided by a Raman spectrum is very
specific for the chemical composition of the molecules.
The spectrum can therefore provide unique signature
for identification of vapor traces from various materi-
als [2]. Recently, Raman spectroscopy has been receiv-
ing increased attention as a stand-off explosive detection
technique [3,4]. Some of the important security applica-
tions being investigated include detection of improvised
explosive devices (IEDs) from a safe distance in hostile
environments, and scanning of vehicles and personnel at
airports, international borders and in subways to detect
explosive residue (see, e.g., [5] and references therein).

In general, a Raman spectrum consists of peaks that
correspond to the characteristic vibrational frequencies
of a material. As a result, one may, for the substances
of interest, collect Raman spectra with very high signal-
to-noise ratio (SNR) under laboratory conditions. These
‘reference’ spectra can then be stored in a database as
a signature for the particular substance. A common
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Raman-based detection system uses laser to energize
molecules in or on an object and collects the result-
ing Raman scattered light with a telescope. The spec-
trum produced by the collected light can then be ana-
lyzed and classified using the reference database. The
correct identification and subsequent classification of a
measured spectrum is crucial to the successful applica-
tion of Raman spectroscopy to explosive detection. An
important limiting factor in the use of visible-range Ra-
man spectroscopy is the presence of strong background
florescence originating from the substance of interest
or its surroundings. Some of the common approaches
to overcoming this limitation are, for instance, the use
of near-infrared or ultra-violet excitation [3, 5], or the
removal of the background florescence using computa-
tionally expensive techniques such as neural networks
or fuzzy models (see, e.g., [6] and [7]). In this work, we
present a computationally efficient classification scheme
for accurate standoff identification of several common
explosives using visible-range excitation. In the first
stage of the proposed technique, we process a measured
Raman spectrum through a series of simplistic median
filters to efficiently model and remove the cosmic noise
and the background florescence. The processed spec-
trum is then matched against the reference database us-
ing the recently developed correlation-bound approach,
where the upper bound of the correlation between the
measured spectrum and each reference spectrum is used
as a detection index [8]. The detection index is normal-
ized to be in the range [0 1], with 1 representing a com-
plete match. The results show that the used approach
can, at a distance of 30 meters, or more, successfully
classify measured Raman spectra from several explosive
substances, including Nitromethane, TNT, DNT, Hy-
drogen Peroxide, TATP and Ammonium Nitrate.

Notation: (·)T is used to represent the transpose.
Vectors are denoted with bold letters, y, while scalars
are in light-face, y.

2. EXPERIMENTAL SETUP

The characterization of explosives using Raman spec-
troscopy was suggested by Urbanski in 1964 [9]. The
technique has recently received increased attention due
to improvements in instrumentation and signal process-
ing, which make it a strong candidate for detection of
trace explosives at a safe distance. As noted in the in-
troduction, it is possible to collect Raman spectra with
high SNR for substances of interest. These spectra pro-
vide unique signatures of different explosive substances,
which can be used to detect the presence of a threat.
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Figure 1: Raman spectra from 0.25mg TNT, measured
at a distance of 30 meters. The figure shows the single-
pulse measurements as well as results of coherently
adding several measurements to increase the SNR.

Such ‘reference’ spectra from explosive substances of
interest are collected under laboratory conditions and
stored in a database. The reference spectra are then
used to identify Raman spectra collected from targets
at a safe distance. In this work, we investigate the
classification of Raman spectra from several common
explosives, including TNT, TATP and Ammonium Ni-
trate. However, we note that the developed framework
is quite general and can be used for classification of
other explosive substances as well. For the purpose of
this study, we collected real Raman spectra at Gridsjön,
Sweden, in collaboration with personnel from Portendo
Inc. A pulsed Nd:YAG laser (NL-303HT from Ekspla)
was aimed at the target at a range of 30 m by a YAG-
coated mirror. The laser was operated at 5 Hz with 4
ns long pulses and a wavelength of 532 nm. The Raman
scattered light was collected at an oblique angle from
the incident laser beam and through a Newtonian tele-
scope. After the telescope, two fused silica lenses were
used to focus the light into an optical fiber and a Ra-
man long pass filter from Semrock was placed between
the lenses to block the laser line. The slit end of the
fiber was connected to an f-number matcher (SR-ASM-
0018) mounted on the Andor SR-303i-A spectrometer.
On the spectrometer, a gated ICCD camera (DH-740I-
18F-03 from Andor) was mounted. The gate time of
the ICCD was set to 10 ns. A more detailed description
of the experimental setup is available in [10]. Typical
spectra collected from 0.25mg of TNT using this ap-
proach are shown in Figure 1. The figure shows the
single-pulse measurements as well as results of coher-
ently adding several single-pulse measurements to in-
crease the SNR. As is well known, Raman spectroscopy
suffers from background florescence [2, 6]. The effect of
background florescence can be seen more clearly in the
multi-pulse measurements as a general wave-like lifting
of the baseline. The removal of the background effect
will be discussed in detail in the next section.
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Figure 2: Removing the effect of background florescence
in a TNT spectrum. In the figure, the dashed spectrum
corresponds to y, the solid line to y̆, and the dash-dotted
spectrum to z̃.

3. PREPROCESSING AND
CLASSIFICATION

Given two length N vectors, r and y, containing the
amplitudes of the reference and measured Raman spec-
tra, respectively, and with r centralized and normalized
so that

∑
i ri/N = 0,

∑
i r2

i = 1, the square of the up-
per correlation bound between the two vectors may be
evaluated as [8]

ρ2 = corr2max(r,y) = rT ŷ(ŷT ŷ)−1ŷT r, (1)

where

ŷ = y − 1
∑

i yi

N
, (2)

with 1 representing a column vector of 1’s. The correla-
tion bound assigns a score to the degree of similarity be-
tween a reference and a measured spectrum. As is clear
from (1), the maximum score is unity and is obtained
only for a perfect match, i.e., for y = r. A measured
spectrum can thus be compared against a database of
reference spectra using the correlation bound, and the
resulting scores can be used for possible classification
of the measured spectrum. As is shown in [8], the cor-
relation bound approach provides better overall perfor-
mance and robustness as compared to the other more
commonly used techniques in Raman spectroscopy, in-
cluding generalized likelihood ration test (GLRT) and
independent component analysis (ICA) [11]. However,
the performance of the correlation bound approach is
strongly affected by the background florescence as well
as by cosmic noise commonly present in the measured
spectra. The cosmic noise typically introduces a sum of
impulsive spikes at random wavelengths. Approaches to
reduce this kind of noise can be found in literature [7,12].
Here, we adopt the median filter [12] due to its simplic-
ity and rapid calculation compared to other techniques
such as Fuzzy methods [7]. Here, a noise-spike is de-
fined as a ‘peak’ with the Full Width at Half Maximum
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Figure 3: Top: correlation bound scores for spectrum
from 0.5mg Ammonium Nitrate versus accumulations.
Bottom: magnified view of the first 150 accumulations.

(FWHM) smaller than the reasonable minimum a Ra-
man peak could have. The new signal containing none,
or less, cosmic noise can be found as

ỹ : ỹi = med{yi−(ñ−1)/2, . . . , yi+(ñ−1)/2}, (3)

where the filter length, ñ, is chosen to keep the small-
est possible Raman peak and to remove impulses in the
spectrum. After the cosmic noise is filtered out, we
proceed to process the measurement vector to remove
the background florescence without significantly affect-
ing the characteristic peaks. To achieve this, the trend
added by the background florescence is first estimated
using another median filter as

y̆ : y̆i = med{ỹi−(n−1)/2, . . . , ỹi+(n−1)/2}, (4)

where n is chosen much larger than ñ to get a smooth
estimate of the background florescence. The measured
spectrum is then detrended by subtracting y̆ from ỹ,
forming the measured preprocessed vector z, i.e.,

z , ỹ − y̆. (5)

Since, by definition, the Raman amplitudes are always
positive, the detrended spectrum, z, is shifted up to
remove any negative values due to the subtraction in
(5), i.e.,

z̃ = z−min
(
0,min(z)

)
. (6)

Figure 2 shows the removal of background florescence
effect from a typical spectrum of TNT using the pro-
posed approach in (4)-(6). Finally, to reduce the effect
of the noise floor on the correlation bound, we null all
values below a certain threshold. This is achieved by
forming a ‘cleaner’ vector x as

x : xi =
{

0 for z̃i ≤ η ·max(z̃)
z̃i otherwise.

(7)
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Figure 4: Top: correlation bound scores for spectrum
from 0.25mg TNT against increasing accumulations.
Bottom: magnified view of the first 150 accumulations.

where η is a small fraction, chosen to reflect the ex-
pected level of the noise floor. We may now rewrite the
correlation bound using the preprocessed measurement
vector, x, as

ρ̃2 = corr2max(r,x) = rT x̂(x̂T x̂)−1x̂T r, (8)

where x̂ is defined similar to ŷ.

4. RESULTS AND DISCUSSIONS

To demonstrate the effectiveness of the proposed ap-
proach in standoff detection of explosives, the algorithm
was tested on real Raman spectra collected, at a distance
of 30 meters, from different quantities of the commonly
used explosives Nitromethane, TNT, DNT, TATP, Hy-
drogen Peroxide, Ammonium Nitrate and sulfur, as well
as several others commonplace interfering materials in-
cluding CCD noise, Aluminium plate, red colored car
door, petrol, diesel, methanol, engine oil, wax, empty
glass bottle, glass bottle with tap water, earth and sand,
leaves, tree bark and dandelions. The experimental
setup has been detailed in Section 2. High SNR refer-
ence spectra for the explosive class were formed by co-
herently accumulating 600 single-pulse measurements.
Both the reference spectra and the measured spectra
were preprocessed according to (3)-(7). To get a smooth
estimate of the background florescence, a long median
filter with n = 300 samples, was applied. After close
inspection of the measured spectra under experimental
conditions, the noise threshold level, η, in (7) was set to
0.2, while ñ was chosen as 5 samples. Finally, the mea-
sured spectra were processed to remove the commonly
appearing Oxygen peak at 1550cm−1.

The proposed algorithm was first tested for its ability
to distinguish between different explosives based on the
similarity scores it assigns to each measured spectrum
against reference spectra of Nitromethane, TNT, TATP,
Ammonium Nitrate and Sulfur, according to the correla-
tion bound formulation (8). Typical classifier scores for
spectra from Ammonium Nitrate and TNT are shown
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Figure 5: Top: correlation bound scores for spectrum
from 0.25mg TNT, without applying the proposed pre-
processing. Bottom: magnified view of the first 150
accumulations.

in figures 3 and 4, respectively. The scores are plot-
ted against increasing numbers of summed scans, called
accumulations, for each measurement, as Raman mea-
surements can be added coherently to improve the SNR.
As is clear from these figures, the proposed scheme as-
signs the highest scores to the correct chemical in each
case. Despite the relatively small quantity of the ex-
plosive being tested, the explosive was correctly identi-
fied as TNT. We note that similar results were obtained
for the remaining explosives under study. To illus-
trate the benefits of the proposed preprocessing stages
discussed in Section 3, Figure 5 shows the correlation
bound scores for the data in Figure 4 when this prepro-
cessing has not been applied. As is clear from the com-
parison between Figures 4 and 5, the suggested modifi-
cations significantly improve the detection performance
of the method.

In critical applications such as detection of IEDs, it
is important to detect the presence of explosives with a
high true positive rate (TPR) and a low false positive
rate (FPR). For this purpose, the performance of the
proposed scheme was analyzed with the help of receiver
operation characteristic (ROC) curves [13] and the area
under the ROC (AUC) curves. The ROC curves plot
TPR against FPR, while the AUC shows the area un-
der the ROC curves; which is the probability that the
classifier will assign higher score to a randomly chosen
member of the positive class than a randomly chosen
member of the negative class. In this study, a ROC
curve for a particular explosive is evaluated using up to
200 measurements of that explosive as the positive class
and 200 measurements of each of the other explosives
and interferers as the negative class. Figures 6 and 7
show typical results for Ammonium Nitrate and TNT,
respectively. In each of these figures, the top plot shows
the histogram of the classifier scores for 50 accumula-
tions, the bottom left plot shows the ROC curve at 50
accumulations and the bottom right plot shows the AUC
values against increasing accumulations of single-pulse
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Figure 6: Analysis of detection performance for 0.5mg
Ammonium Nitrate. Top: classifier scores for 50 accu-
mulations. Bottom left: ROC curve for 50 accumula-
tions. Bottom right: AUC plot versus accumulations.

measurements. Here, a ROC curve for K accumula-
tions means that it was evaluated using data formed by
adding K single-scan measurements. It is clear from the
figures that the proposed classifier is capable of provid-
ing very reliable detection of these common explosives
in the presence of commonplace interferers. We note
that similar results were obtained for the remaining ex-
plosives under study. It is worth noting that there is
a difference between detection of an explosive, and the
correct classification of the actual explosive. For ob-
vious reasons, one is often most interested in a rapid
and reliable detection of an explosive, while only in a
second, less time-critical, stage one wishes to actually
identify the explosive uniquely. To illustrate a way to
achieve this, we propose a two-stage approach for de-
tection and identification of explosives and related com-
pounds with heavily overlapping spectra, such as TNT
and DNT. The purpose of the first stage is to first de-
tect the presence of either of the two chemically similar
compounds. Following a positive detection in the first
stage, the classifier in the second stage attempts to iden-
tify the measured spectrum. Figure 7 shows the results
of the detection stage where both TNT and DNT are
treated as the positive class and the detection of either
will trigger an alarm. Following the detection of TNT
or DNT, the target spectrum is passed through another
correlation-based classifier that uses only the peaks that
are uncommon between TNT and DNT to form their re-
spective masks. This results in the proper categorization
of a spectrum originating from these chemically simi-
lar explosives. The scores of the second stage classifier
are shown in Figure 8 for spectra from 0.25mg of TNT.
As clear from the figure, the second stage classifier as-
signs higher scores to the correct explosive substance,
i.e., TNT. The two-stage scheme thus gives a higher
likelihood of correctly detecting TNT as compared to a
single-stage approach.
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Figure 7: Analysis of detection performance for 0.25mg
of TNT or DNT. Top: classifier scores for 50 accumu-
lations. Bottom left: ROC curve for 50 accumulations.
Bottom right: AUC plot versus accumulations.

5. CONCLUSION

An experimental study of the application of Raman
spectroscopy to stand-off detection of several common
explosives is presented. Using real measurements, we
evaluate and modify a recent correlation-based approach
to classify Raman spectra from various both harmful
and commonplace substances. The results show that
the proposed approach can, at a distance of 30 me-
ters, or more, successfully classify measured Raman
spectra from several explosive substances, including Ni-
tromethane, TNT, DNT, TATP, Hydrogen Peroxide and
Ammonium Nitrate.
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