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ABSTRACT 
In this paper, the design of digital IIR integrator is investi-
gated. First, the B-spline interpolation method is described. 
Then, non-integer delay sample estimation of discrete-time 
sequence is derived by using B-spline interpolation ap-
proach. Next, the Gauss-Legendre integration rule and non-
integer delay sample estimation are applied to obtain the 
transfer function of digital integrator. Finally, some numeri-
cal comparisons with conventional digital integrators are 
made to demonstrate the effectiveness of this new design 
approach. 

1. INTRODUCTION 

Digital integrators are useful devices in the application areas 
of control, radar and biomedical engineering [1]-[4]. The 
ideal frequency response of digital integrator is given by 
                               Ije
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where I  is a prescribed integer delay. The problem is how 
to design a digital filter such that its frequency response fits 

)(ωD  as well as possible. So far, the methods of digital 
integrator design can generally be classified into two catego-
ries. One is the linear phase FIR filter approach in which the 
filter coefficients are obtained by using maximal flatness 
constraints [1][2], the other is the IIR filter method in which 
the filter coefficients are determined directly from well-
known numerical integration rule [3][4]. In [3], Ngo pre-
sented a third-order digital integrator whose transfer func-
tion is given by 

            
1

321

1 1
5199

24
)( −

−−−−

−
+−+

=
z

zzzzzF
I

       (2) 

In [4], Tseng and Lee have used Richardson extrapolation 
and polyphase decomposition to design digital integrators. 
From Eq.(62) in [4], the transfer function of a typical forth-
order integrator is given by 
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From Eq.(1), it is clear that the gain of integrator at zero 
frequency 0=ω  is infinity, so the above transfer functions 

have one pole at 1=z . On the other hand, B-spline inter-
polation has been successfully used in numerical interpola-
tion, image processing, digital filter design, digital filter 
bank, computer graphics, and analog-to-digital conversion 
[5]-[7]. The early work on the B-spline theory and imple-
mentation is surveyed in the tutorial paper [8]. Thus, it is an 
interesting topic that uses B-spline interpolation method to 
design digital IIR integrators. The purpose of this paper is to 
study this topic. As a result, the design error can be reduced 
by suitably choosing the degree of B-spline function. The 
numerical comparisons with conventional digital integrators 
also show the effectiveness of this new approach. 

2. B-SPLINE INTERPOLATION 

In this section, B-spline function is first reviewed briefly. 
Then, the B-spline interpolation method is described. 
Splines are piecewise polynomials with pieces which are 
connected smoothly. The jointing points of the polynomials 
are called knots. The normalized symmetrical, bell-shaped  
B-spline functions of degree p  with 2+p  equally spaced 
knots are defined by 
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where rectangular pulse 
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and * denotes the convolution operator. After some manipu-
lation, the function )(tpβ  can be written as 
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where )(tu  is the unit step function given by 
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The result in Eq.(6) clearly shows that )(tpβ  is a piecewise 
polynomial of degree p . For example, when 3=p , the 
closed-form representation of the cubic B-spline is given by 
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in which both pieces are third-degree polynomials. Moreover, 
Fig.1 shows the normalized B-splines of first four degree. 
Clearly, )(tpβ  only has non-zero value in the interval 

),( 2
1

2
1 ++− pp . After describing the B-spline function, let us 

study B-spline interpolation method below: Given a set of 
1+N  sampled points ),,1,0(),( Nkst kk L= , the 

interpolation problem is to find a function )(ts  that satisfies 
the interpolation condition 

  kk sts =)(      Nk ,,2,1,0 L=                (9) 
For B-spline interpolation method, the function  )(ts  is 
characterized in terms of the following B-spline model: 
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That is, the function )(ts  is represented as a linear combi-
nation of the shifted B-spline functions. Substituting the 
interpolation condition of Eq.(9) into Eq.(10), we get the 
following simultaneous linear equation 
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where )( km
p

mk tt −= βφ . Let vectors S  and W  be 
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and Φ  denotes the )1( +N -by- )1( +N  matrix in the left 
side of Eq.(11), then Eq.(11) can be rewritten as  
                                   SW =Φ                                    (13) 
Thus, the unknown vector W  is given by 
                                 SW 1−Φ=                                   (14)  
Once W  has been obtained, the function )(ts  in Eq.(10) is 
known. So, )(ts  is computable for the given t . Finally, an 
example is use to illustrate the B-spline interpolation method. 
The data ks  is obtained by uniformly sampling the sinusoi-

dal function )04.0cos( tπ , that is, kt k =  and 

)04.0cos( ksk π= . The B-spline function is chosen as 

)(3 tβ . The number of points are 1011 =+N . Fig.2(a)(b) 
shows the interpolated function )(ts  in Eq.(10) and the 
sinusoidal function )04.0cos( tπ . It is clear that both func-
tions look almost the same. To observe where the errors oc-
cur, Fig.2(c) shows the absolute errors )04.0cos()( tts π− . 
Clearly, the errors are very small except at the edge points 

0=t  and 100=t . 

3. NON-INTEGER DELAY SAMPLE 
ESTIMATION 

In this section, we will use B-spline interpolation method to 
solve non-integer delay sample estimation problem because 
the proposed IIR integrator design method is based on this 
estimation method. The problem to be studied is how to es-
timate non-integer delay sample )( dIns −−  from the given 
integer delay samples )(ns , )1( −ns , )2( −ns ,..., 

)( Nns − , where I  and N  are integers and d  is a real 
number in the interval ]1,0[ . And, I  is usually chosen in 
the range ]1,0[ −N . In this paper, we use the weighted 
average approach to achieve the purpose, that is, non-integer 
delay sample is estimated by 
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Thus, the remaining problem is how to use the B-spline in-
terpolation method in the preceding section to determine the 
weights ),( dmh . To solve this problem, let us use the fol-
lowing substitution: 
                                   kntk −a                                 (16a) 

                                   )( knssk −a .                         (16b) 
Using the above substitution, the B-spline interpolation for-
mula in Eq.(10) becomes 
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and the simultaneous equation in Eq.(11) reduces to 
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This equation can be shorten as the form SW =Φ , as 
described in Eq.(13). Clearly, Φ  is a Toeplitz matrix. Let 
the inverse of matrix Φ  be denoted by 
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then the solution of simultaneous equation in Eq.(18) is 
given by 
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This result implies that 

        )(
0

mnsw
N

m
kmk −= ∑

=

α      Nk ,,2,1,0 L=      (21) 

Substituting Eq.(21) into Eq.(17), we get 
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Taking dInt −−= , the above equation reduces to 
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Compared Eq.(23) with Eq.(15), the weights ),( dmh  are 
given by 
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Now, let us summarized the estimation procedure below: 
Given the B-spline function )(tpβ  with degree p , integer 
N , and delay dI + , the procedure to estimate non-integer 
delay sample )( dIns −−  from the given integer delay 
samples )(ns , )1( −ns , )2( −ns ,..., )( Nns −  is sum-
marized below:  
Step 1: Compute the matrix Φ  whose elements are given 
by )( mkp

mk −= βφ . 

Step2: Calculate the inverse matrix 1−Φ  with element kmα . 

Step 3: Use Eq.(24) to compute the weights ),( dmh . 
Step 4: The non-integer delay sample is estimated by 
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4. DESIGN OF DIGITAL INTEGRATOR USING 
GAUSS-LEGENDRE INTEGRATION RULE 

In this section, the Gauss-Legendre integration rule and B-
spline-based non-integer delay estimation method are used 
to design digital IIR integrator. First, the Gauss-Legendre 
integration rule is described briefly. Then, this rule is applied 
to design digital integrator. The Gauss-Legendre rule is used 
to estimate the following definite integral numerically: 
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The M-point Gauss-Legendre approximation formula for this 
definite integral is given by 
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where the abscissas kMt ,  and weights kMu ,  must satisfy the 
following constraints 
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By solving the above nonlinear equations, the abscissas kMt ,  

and weights kMu ,  can be easily obtained [9]. Now, two typi-

cal cases are listed below. For two-point Gauss-Legendre rule, 
i.e., M=2, the abscissas kMt ,  and weights kMu ,  are 

                                 12,21,2 == uu                                (28a) 

                                
3

1
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For three-point Gauss-Legendre rule, i.e., M=3, the abscissas 
kMt ,  and weights kMu ,  are 
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                     5
3

3,31,3 ==− tt     02,3 =t                  (29b) 
So far, the Gauss-Legendre rule has been reviewed briefly. 
Now, let us use this rule to design digital integrator. When a 
signal )(ts  passes through the ideal integrator with integer 
delay I , its output )(ty  is given by 
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Setting 1−= nt  and nt = , we have 
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Using the following equality:  
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we get 
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Thus, the design problem reduces to how to evaluate the 
definite integral of the second term in Eq.(33). This problem 
can be solved by using various numerical integration rules in 
textbook [9]. Because the Gauss-Legendre integration rule is 
a more accurate method, we use it to design digital integra-
tor in this paper. The integral interval in Eq.(25) is [-1,1] 
which is not consistent with the integral interval 

],1[ InIn −−−  in the second term of Eq.(33). So, the 
following variable substitution is used to make translation: 
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After using this substitution, the second term in Eq.(33) is 
given by 
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If two-point Gauss-Legendre rule is used, Eq.(35) can be 
approximated by 
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Using Eq.(15), the Eq.(36) can be further reduced to 
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where 
       )7887.0,()2113.0,()(1 mhmhmg +=       (38) 
Substituting Eq.(37) into Eq.(33), we have 
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Taking the z transform at both sides, we obtain 
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The above )(1 zH  is the designed two-point Gauss-
Legendre integrator using B-spline interpolation method. 
     Next, if three-point Gauss-Legendre rule is used, Eq.(35) 
can be approximated by 

  

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−−+

−−+−−
≈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−+−
+

⎟
⎠
⎞

⎜
⎝
⎛ −−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−+

≈

∫
−

−−

)8873.0(5
5.081127.05

18
1

2
)122(

5

2
1228

2
)122(

5

18
1

)(

5
3

5
3

1

Ins
InsIns

In
s

Ins
In

s

ds
In

In
ττ

 (41) 

Using Eq.(15), the Eq.(41) can be further reduced to 
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Substituting Eq.(42) into Eq.(33), we have 
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Taking the z transform at both sides, we obtain 
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The above )(2 zH  is the designed three-point Gauss-
Legendre integrator using B-spline interpolation method. 

5. DESIGN EXAMPLES AND COMPARISON 

In this section, we will study the design error of the proposed 
B-spline-based integrator and compare it with conventional 
integrators. To evaluate the performance, the integral squares 
error of frequency response is defined by 
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λπ ω dDeHE j

kk
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Obviously, the smaller the error kE  is, the better the per-
formance of the design method is.  

Example 1: In this example, we first study the relation be-
tween design error kE  and degree p  for B-spline function 

)(tpβ  in Eq.(6). The parameters are chosen as N=20, I=10, 
and 95.0=λ . Fig.3(a)(b) shows the error curve kE  of the 

proposed B-spline integrator )(zH k  for ]20,1[∈p . 
From these results, it is clear that both errors reach the mini-
mum value when degree 18=p  is chosen. The minimum 
value of 1E  is 0.0296 and the minimum value of 2E  is 
0.0276. So, the integrator )(2 zH  is slightly better than 

)(1 zH  in this design. Moreover, Fig.4 depicts the magni-
tude responses (solid line) of the integrator )(1 zH  for B-
spline with 18=p . The dashed line is the ideal magnitude 
response ω

1 . Obviously, the specification is fitted well. 
Example 2: In this example, we compare B-spline integrator 
with the Ngo integrator in Eq.(2) under the same implemen-
tation complexity. The design parameters are chosen as N=3, 
I=1 and 95.0=λ . Fig.5(a) shows the error curve 1E  of the 
integrator )(1 zH . From this result, it is clear that the error 

1E  reach the minimum value 0.1973 when 40=p  is cho-
sen. Fig.5(b) shows the frequency response error 

|))()((|log20 110
ωω jeFD − . The dashed line is the error 

|))()((|log20 110
ωω jeHD −  for B-spline integrator with 

40=p . Obviously, )(1 zH  has smaller error than Ngo 
integrator in the frequency band ],23.0[ ππ . However, Ngo 
integrator is better than B-spline integrator in the low fre-
quency band ]23.0,0[ π  
Example 3: In this example, we compare B-spline integrator 
with the Tseng integrator in Eq.(3) under the same imple-
mentation complexity. The design parameters are chosen as 
N=4, I=1 and 95.0=λ . Fig.6(a) shows the error curve 1E  
of the integrator )(1 zH . From this result, it is clear that the 
error 1E  reach the minimum value 0.1568 when 16=p  is 
chosen. Fig.6(b) shows the frequency response error 

|))()((|log20 210
ωω jeFD − . The dashed line is the error 

|))()((|log20 110
ωω jeHD −  for B-spline integrator with 

16=p . Obviously, )(1 zH  has smaller error than Tseng 
integrator in the frequency band ],4.0[ ππ . However, Tseng 
integrator is better than B-spline integrator in the low fre-
quency band ]23.0,0[ π  

6. CONCLUSIONS 

In this paper, the design of digital IIR integrator using B-
spline interpolation method and Gauss-Legendre integration 
rule has been presented. The numerical comparisons with 
conventional digital integrators are also made. However, 
only digital integrator design is studied here. Thus, it is in-
teresting to extend the B-spline interpolation method to de-
sign various digital filters in the future. 
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Fig.1 The normalized B-splines )(tpβ  for p=0,1,2,3. 
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Fig.2 The B-spline interpolation. (a) The interpolated func-
tion )( ts . (b) Sinusoidal function )04.0cos( tπ . (c) The 
absolute errors )04.0cos()( tts π− . 
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Fig.3 The error curve of proposed B-spline design method 
for degree ]20,1[∈p . (a) 1E  of integrator )(1 zH . (b) 

2E  of integrator )(2 zH . 
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Fig.4 The magnitude response of integrator )(1 zH  designed 
by B-spline interpolation method with p=18. The dashed line 
is the ideal magnitude response. 
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Fig.5 (a) Error curve 1E . (b) Error |))()((|log20 110

ωω jeFD − . 
The dashed line is the error |))()((|log20 110

ωω jeHD − . 
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Fig.6 (a) Error curve 1E . (b) Error |))()((|log20 210

ωω jeFD − . 
The dashed line is the error |))()((|log20 110

ωω jeHD − . 
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