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ABSTRACT

Driving functions are particular filters, developed in Wave
Field Synthesis context, which allow the reconstruction of
a desired sound field produced by a virtual source through a
loudspeakers array. In this paper a detailed study of linear ar-
ray driving functions in terms of time and frequency domains
behavior is presented. Subsequently, two phase approxima-
tions are explored in order to simplify the temporal response
and to achieve shorter filters thus reducing the complexity as-
sociated with their implementation. Simulations results are
presented in order to demonstrate that the approximations do
not introduce artifacts in the reproduced sound fields.

1. INTRODUCTION

Wave Field Synthesis (WFS) is a recently developed tech-
nique which allows sound fields reconstruction through ar-
rays composed of a high number of loudspeakers. It is based
on the use of driving functions: a driving function describes
the sound pressure produced by the virtual (desired) source at
the position of each loudspeaker. Therefore, the resulting sig-
nal, which each loudspeaker is fed with, is a filtered version
of the original virtual source signal [1]. The application of
these concepts in real scenarios (cinemas, car environment,
home theater, etc) needs a real-time implementation. Un-
fortunately, this kind of processing requires a large compu-
tational complexity, especially when adaptive algorithms are
applied to it (e.g., AEC [2]). In [3] an efficient solution based
on the time invariant preprocessing of the driving functions
has been introduced. Linear array geometry is one of the
most used in WFS technology: an application to the problem
of digital directivity control of the reproduced sound field
was introduced in [4].

In literature, the theoretical formulation of driving func-
tions is derived in the frequency domain. From a practical
point of view, they can be regarded as FIR filters, which can
be realized either in the time domain or in the frequency do-
main. For the time domain implementation an approximation
of the driving function to a weighted integer delay is usually
considered [5]. In general, an integer value for the delay does
not result in a good approximation, especially when adap-
tive algorithms are applied to the overall system because it
could heavily weigh on the adaptation stability. In this sce-
nario, time and spatial frequencies-domain implementations
have to be considered in order to implement the exact driving
function with a considerably reduction of the computational
complexity [6]. Implementations in frequency domain can
be realized through Overlap and Save (OLS) technique.

It is worth underlying that increasing the distance be-
tween the virtual sources to be reproduced and the loud-
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speakers, these filters become longer with a consequent com-
putational cost increase. If frequency implementations are
considered, it may be needed to use a higher FFT order
which implies a longer audio frame size (higher latency), un-
less a partitioned block convolution is adopted (higher com-
putational cost) [7]. In [8] the authors suggest the use of
fractional delay (FD) to approximate the time delay compo-
nent in a better way. However, the magninitude of the driv-
ing function and its remaining phase contribution, given by
a constant phase-shift, are considered and implemented to-
gether in an another filter in order to reproduce the nearly
exact driving function. The delay of the global transfer func-
tion increases due to the additional delay introduced by the
second filter, even though, in the case of multiple sources, the
computational complexity decreases. In case of low-order
IIR implementation for the second filter the delay can be re-
duced but a phase distortion is introduced [5].

On the other hand, it is possible to achieve a significa-
tive compression of driving functions impulse response by
omitting the phase shift or by considering it together with the
pure delay in the phase approximation problem. In this pa-
per, after a detailed analysis of the time and frequency (mag-
nitude and phase) domains behavior of the driving functions,
we will introduce two possible phase approximations derived
from the previous considerations: shorter time domain filters
excluding the pure delay component can be obtained, thus re-
ducing the computational cost associated to the filtering op-
erations and preserving the exact acoustic image.

In Section 2, after a review of driving functions theory
relative to the line array geometry, a study of their behavior
in terms of magnitude and phase will be reported. In Sec-
tion 3 the phase approximations of driving functions and their
practical implementations will be presented and in Section 4
some sound fields simulations using the above approxima-
tions will be shown. Finally conclusions will be drawn in
Section 5.

2. WEFS DRIVING FUNCTIONS THEORY

WES is a recently developed technique which guarantees an
optimal acoustic field auralization. It is based on the Kirch-
hoff Principle which is directly derived from Huygens Prin-
ciple and states that the sound field inside a volume can be
calculated if the pressure field and normal particle veloc-
ity due to the primary sources on the enclosing surface are
known. The mathematical form of this principle is given
by the Kirchhoff-Helmholtz Integral. The idea of WES is
to sample the surface, enclosing the listening area, with an
appropriate number of loudspeakers in order to control the
acoustic sound field inside this area [1]. A particular choice
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Figure 1: Linear array geometry used for driving functions
calculation.

of surface allows to define the formulas which permit the re-
production of a monopole source with a linear array of loud-
speakers. This surface is constituted by a plane and a hemi-
sphere of infinite radius. In order to find the desired func-
tions, which can be used in a real environment, three approx-
imations have been applied:

o the surface is reduced to a plane curve;

o the line is considered to be of finite length;

e the continuous line is sampled at specific positions.

Starting from the Kirchhoff-Helmoltz integral, the ana-

lytical form of each driving function, for a virtual source po-
sitioned behind the line array, is obtained in [1] (Fig. 1):
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where S(®) is the sound pressure level of the virtual source
to be reproduced, 7, = [x;; Y| 18 its position in the plane,
Fu = [x4 yu] is the position of the n-th loudspeaker in the
plane and 6, is the angle between the line joining the n-th
loudspeaker with the source and the y axis, 7o = [xo yo] is the
center of the listening area, k is the wave number, ® is the
angular frequency and c is the sound velocity. It is worth un-
derlying that in (1) the loudspeaker directivity function D,, is
considered but, in the following loudspeakers will be viewed
as omnidirectional sources. Therefore D, will be assumed
equal to 1. Equation (1) consists in two components: one
depends on time while the other one is time independent. In
case of non-moving source the first component is just given
by S(w) [3].

Starting from (1) the sound pressure level at each point
of the plane, is obtained:

Qn(w) = S

—Jk"’n 7
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where 7 = [x y] is a point within the listening area, N is the
array loudspeakers number and Ax defines the distance be-
tween two adjacent loudspeakers.

Therefore, the WFS technique, in the case of line array
geometry, becomes the application of N filters, one for each
loudspeaker, to the source stream S(®) [3]. The filters fre-
quency response F, (@) is given by the time invariant part of
(1), weighted by Ax and it can be seen as a product of two
functions:

Fy(o)

= F(0)Ff (), 3)

Figure 2: Magnitude (a) and a detail of phase responses (b)
for a driving function.

where F,l'l and F,f) weigh on the module and phase behavior,
respectively. The first part is given by
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because k = @/c and |\/j| = 1. The frequency dependence
is given only by 1/|®| so that the module has a symmetric

radix behavior (Fig. 2(a)). As regards F,,¢, considering both
sources behind and in front of the line array, it is given by

F? (@) = ae™ 9=l /jasgn(w) ©)

where sgn(-) represents the sign function defined as

-1 x<0
sgn(x) = { (1) ng (6)
x>

and a is a constant which is equal to 1 or —1 in case of virtual
sources behind and in front of the array, respectively. This
extension is given by the time reversal approach [9]. It can
be seen that F,,¢ is the product of two terms: the first one is
e~ /K7 =7nl \which represents a delay of a|7, —7,,| /c samples.
In case of negative delays the implementation derives from
the following complex number property:

e = /2T, 7

Regarding the second term of (5), it can assume three values,
depending on a and ®: +/j, 0 and \/—j. By using complex
number formulas, considering x € {—1, 1}, it can be found

that
Vaj= Vet =+, 8)

Considering the positive solution, the term / jasgn(®) rep-
resents a constant phase shift of /4 or —m/4 radians, de-
pending on source position. The negative solution leads to
the same results shifted by 7. Furthermore, it is worth un-

derlying that F,,¢ (w) (and consequently F,) is a symmetric
complex conjugate function. The phase-shift could be clearly
seen between the first and the second positive frequency bins
of Fig. 2(b).
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Figure 3: Detail of the driving function in the time domain.

Finally, in Fig. 3 the behaviour of the real part of the time
domain driving function is shown. It should be noted its
oscillating behaviuor due to not purely real inverse Fourier
Transform of the driving function (except for particular val-
ues of delay). In the next section this problem will be ana-
lyzed in detail.

3. PHASE APPROXIMATION

The exact inverse Fourier transform of F; () does not gen-
erate a pure real time-domain filter. In fact, this character-
istic could be guaranteed forcing to O the imaginary part of
frequency response at @ = 0 and @ = 7 [10]. While this
constraint is always valid at w = 0, it is generally not valid
at @ = 7. Forcing the filter phase at @ = 7 to 0 or 7 is not
the best solution because it involves a phase discontinuity at
this frequency. The consequence of this operation is a filter
which does not decay smoothly and presents an oscillating
behavior in the time domain (Fig. 3). This filter could not be
truncated without loss of information.

Therefore, two phase approximation methods for Fn¢ ()
will be described. In order to overcome the mentioned prob-
lem, both of them aim at obtaining a pure real time-domain
filter. Furthermore, it is needed to maintain the magnitude
response of the new filter equal to the driving function mag-
nitude for all frequencies and the phase response as close as

possible to the phase response of otd ().

3.1 First Method

The first solution is given by the approximation of F,?(a))
with a linear phase symmetric FIR filter. Therefore, it is
necessary to omit the radix term of (5), which introduces a
constant phase shift of /4 for all frequencies, as previously
seen. Since this phase shift is applied to all signals to be
reproduced through the loudspeakers, its exclusion can be
considered not to be too significant. Therefore, taking into

account a sampling frequency f, F,,¢ (f) is approximated by

2z
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since @ = 2nf. F (f) becomes a simple delay of d =
S|Py — Pl /c samples for a source behind the line array and
a delay of d = P— f|F, — P»| /¢ samples for a source in front
of the array, depending on the points P of Inverse Fourier
Transform (7). In both case P is necessary greater than
[[7 — 7ol /]

In order to obtain a pure real time-domain filter the delay
is constrained to be integer. The obtained time domain filter
equals 0 except for the d-th sample and the implementation
becomes really simple. In all other cases, the time domain
filter has also an imaginary part different from 0 and the real
part is not so simple as the previous case. It is possible to
approximate the delay to the nearest integer, but it is not a

good solution because the consequent error is not negligible
[5] (see section 4). Therefore, a possible solution is to realize
(9) using a FD as in [8]. However, this approach requires an

additional filter in order to take into account both F’ (f) and
the phase shift, whose frequency responce is

Hy(0) = h,\/jo, (10)

where ,, is a constant depending on the driver position (4).
This filter can be implemented as a Fractional Hilbert Trans-
former (FHT) multiplied by /@ but a further delay is intro-
duced with this implementation [11].

On the contrary the proposed technique is based on the
calculation of the whole driving function F;,(f) (considering

(9) for Fn¢ (f)) at higher sampling frequency Lf; in order to
have a better resolution for the delay, where L is the upsam-
ple factor. Therefore, an anti-aliasing filter is needed and a
downsampling operation by a factor L is performed to come
back to the initial sampling frequency f; [12]. In this way no
additional filter is needed.

3.2 Second Method

The second type of phase approximation takes also into ac-

count the radix term of F,,¢(a)). In fact, the first solution
could present some issues: in case of multiple sources repro-
duction it could result in a psychoacoustic sensation differ-
ent from the target one. Furthermore, sources behind and in
front of the array are reproduced with different phase shifts:
they have a phase shift of /4 and —n/4 radians, respec-
tively. Moreover, the idea of WEFS is to replicate the sound
field generated by reference sources with an array of loud-
speakers and the previous approximation does not fulfill this
constraint.

In order to consider the phase shift in addition to the time

delay it is necessary to approximate F,,¢ () with the function

e/(=271d+9) where d and ¢ are real variables representing
the time delay and the phase shift, respectively. In the first
method, ¢ is considered equal to 0. Also in this case a phase
approximation is performed. The value of d is the same of the
first case, while @ is equal to ax /4. The approximation for d
could be performed at higher sampling frequency, obtaining
a single filter as in the first method. After the downsample
operation, the frequency-domain driving function is multi-
plied by 4/ jasgn(®) in order to perform a phase-shift of ¢@.
However, adding ¢ at all frequencies produces a filter which
has not a null imaginary part in the time domain. Therefore,
in order to obtain a pure real time-domain filter, the imag-

inary part of F,,¢ (f) at frequency bins relative to 0 Hz and
fs/2 Hz has to be set to 0. In this case, the last bin could be
forced to 0 as the first bin because the driving function has a
low-pass behaviour due to the anti-aliasing filter application.
It is worth underlying that the second method generates non
symmetric filters in the time domain.

3.3 Filter Truncation

Fig. 4 shows the time domain behavior of the driving func-
tion in Fig. 3 after applying the two phase approximation
methods. The great avantage of this implementation arises
from the fact that, in each cases, the power of the filter im-
pulse response is bounded in a small time range. Taking into
account that the delay value is well known, an application
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Figure 4: Detail of the driving function in the time domain
after the first (a) and second (b) phase approximation proce-
dures (L = 16).
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Figure 5: Magnitude response at positive frequencies for F,
with and without phase approximation (a) and considering
different window lengths (b) (f; = 8 kHz, L = 16).

of a window centered in d should be considered. Rectangu-
lar window is not a good solution. Extremes smoothing with
Hanning or Blackman window leads to better results [10].

After the windowing operation, the driving function
could be implemented in a more optimized way. In fact, it is
composed of two parts. The first one is a pure delay, which
becomes a simple memory shift in a practical implementa-
tion, and the other one is a FIR filter. Especially in the case
of sources far from the array, the first part of the driving func-
tion is typically much longer than the second one. It should
be noted that, except for a constant gain depending on the
distance between the source and the loudspeaker positions,
there are L FIR filters, one for each fractional part, that could
be pre-calculated in order to reduce the computational load
in case of a real-time application.

4. SIMULATIONS

Some simulations have been performed to evaluate the effec-
tiveness of the proposed approach. Since the differences be-
tween the described methods can be found only in the phase
term of the driving function, in the following, for the sake of
brevity, only the second method will be considered. Driving
function filters of length Ny = 1024 are considered.

L MSE [dB]

1 —12.8
4 —25.8
16 —-39.3
64 —51.6

Table 1: Mean Square Error (MSE) evaluation by consider-
ing different values for L (fy = 48 kHz) with respect to the
no-approximation approach. MSE is evaluated in the range
between the aliasing frequency of the array (loudspeakers
spacing 0.08 m, aliasing frequency 4.2 kHz).

The first test refers to the evaluation of the window length
W. Fig. 5(b) shows the magnitude behavior of the driv-
ing function without filter truncation and by using a window
length of 16, 32 and 64 samples. It can be seen that W = 64 is
a good approximation for the driving function. Furthermore,
99.9% of the initial power is preserved after the phase ap-
proximation with W = 64. Using windows of 16 and 32 sam-
ples the ratios between the powers of truncated and non trun-
cated filters are 99.7% and 98.6%, respectively. Sound field
reconstruction tests confirm that also these window lengths
result in a good approximation for the driving function.

The second test refers to the relevance of upsample fac-
tor L. Fig. 5(a) shows the introduction of the low pass be-
havior due to the analysis filter. The appropriate L becomes
higher increasing the ratio between the frequency to be re-
produced and the sampling frequency f;: L = 16 is good
for all frequencies. Fig. 6 shows some examples of sound
field due to a sinusoidal monopole source reproduced by a
line array. To evaluate the upsampling factor importance,
two extremely different values for L are considered: 1 and
16. L =1 represents an approximation by a simple integer
delay that can be found in many implementations of WFS
[5]. In this case there is a considerable difference between
sound fields reproduced with and without phase approxima-
tion and a phase distortion can be easily viewed. On the
other hand, a good approximation for the driving functions
is obtained with L = 16. This mistake becomes more visible
by increasing the reproduced frequency. It should be noted
that in simulations of Fig. 6 a low sampling frequency f is
chosen in order to emphasize the sound field distortion in
case of L = 1. However, also in the case of high audio qual-
ity sampling frequency, considerable improvements, in terms
of Mean Square Error with respect to the no-approximation
case, are obtained (Tab. 1). Listening tests will be carried out
for a better tuning of the algorithm parameters L and W.

The last test refers to the computational saving achiev-
able with the proposed approach. It is evident that using only
one filter, whose length is equal to FD, instead of two filters
allows to obtain a lower computational cost [8]. Moreover,
in order to analyze the computational load with respect to the
frequency implementation, an input signal divided into frame
of length F; is considered. In case of no phase approximation,
if F; > Ny OLS is performed, while partitioned OLS has to
be used in the other cases [7]. Otherwise, in case of phase ap-
proximation with W = 64, an OLS implementation followed
by a memory shift is performed. It is worth to underline that
the proposed approach permits a considerable decrease of the
computational load, especially in case of short frames which
are necessary to obtain low latency (Table 2).

1942



|

o9 o2 Ky R T Fa—y) 9
x[m]
: v )
0.5,
[m]

@

(@

N

or 0 ol
x[m]

©

Figure 6: Sound fields of a monopole source (f = 1.5 kHz, 7, = [—1,4]) reproduced with an array (N = 21, along x, centered
in 7. = [0,2]). In (a) no phase approximation has been considered. In (b) phase approximation type 2 with L = 1 has been
considered and (c) shows the difference between (b) and (a). (d) and (e) are obtained with the same procedure of (b) and (c)

considering L = 16.

FF A B BJA FF A B BJA
64 69 2103 30.58 1024 84 164 1.96
128 66 1037 1581 2048 91 90 0.99
256 69 567 827 4096 117 114 0.97
512 73 298 4.09 8192 109 106 0.97

Table 2: Time elapsed (ms) to filter a 10%-samples signal with
a 1024-taps driving function with (A) and without (B) phase
approximation.

5. CONCLUSIONS

In this paper, after a review of driving functions theory, its
frequency response has been analyzed. In particular, it has
been shown that the phase term is composed by a pure de-
lay and a constant phase shift. Two phase approximations,
with the aim of obtaining pure real time-domain filters, have
been described: the former ignores the constant phase shift
and approximates the group delay to the nearest integer up
to a suitably selected upsampling factor; the latter takes into
account the phase shift by a proper multiplication in the fre-
quency domain in order to have a pure real filter in the time
domain. In this way, extremely shorter time domain filters
are obtained, excluding the pure delay components due to the
propagation distance, in order to reduce the computational
cost associated to their implementation. However, the differ-
ences between the approximated and the exact sound images
are negligible and this fact becomes important especially in
the case of application of adaptive algorithms.

Future works will be oriented toward the extension of the
proposed approach to moving sources where driving func-
tions change over time, also considering different loudspeak-
ers array geometries (e.g. circular).
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