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ABSTRACT

We present a DFT-domain expectation-maximization framework for
maximum-likelihood learning of linear dynamical models. The ex-
pectation step takes the form of a diagonalized DFT-domain Kalman
filter coupled with a fixed-lag smoother, which effectively traces the
evolution of the hidden state for a given underlying dynamical model
defined via its covariance parameters. The maximization step learns
the covariance parameters of the dynamical model and specifically
discerns itself from a conventional algorithm by yielding distinct
outputs for each block within the lag interval. Hence, in our ap-
proach the reliance on a fixed-lag for expressing the complete data
likelihood does not necessarily entail the traditional conjecture of
stationarity for the system within the duration of the lag interval. The
capability to account for possible non-stationarity further helps the
devised algorithm to carry out optimal and mutually synergetic state
estimation and model inference, which we comprehensively substan-
tiate with the help of simulation results.

1. INTRODUCTION

The advantages of describing real world systems by linear dynam-
ical models has over the years attracted considerable attention to-
wards analysis, estimation and learning of model parameters in ap-
plications pertaining to biomedical data analysis, automatic control,
object tracking, etc., [1, 2]. Not only do dynamical models allow the
explicit expression of a priori beliefs about the state and evolution
of the unknown system, but they also provide a useful framework for
including all important factors which influence the observation.
State estimators for dynamical models have been generally pre-

sented in the form of Kalman filter and its variants [3, 4], which con-
sistently, and rightly so, rely heavily upon the parameters of the un-
derlying model. The parameters of a dynamical model are unknown
quantities, which the estimator assumes as known and lacks the ca-
pability to learn as such. Therefore, a state estimator can be flaunted
to be an optimal one in a given statistical sense only if the parameters
of the model are assumed known. The assumption of knowing model
parameters is surely not a trivial one, which at times needs to be te-
diously justified via tuning or application specific knowledge. Thus,
a natural progression in the analysis of dynamical models points to-
wards parameter learning mechanisms [5]. In [1] the EM algorithm
has been construed as a generic framework for joint estimation tasks,
i.e., state estimation and parameter learning.
Motivated by the need for efficient signal processing, we con-

sider a DFT-domain representation for block-wise processing of lin-
ear dynamical systems as proposed in [6]. Thus we express the com-
plete data likelihood in DFT-domain, which is necessary to realize a
maximum-likelihood expectation maximization (ML-EM) algorithm
over a lag interval. We differentiate our approach from works in [5]
and [7] by modeling block-time dependent model parameters within
the lag period, which leads to recursive learning of parameters over

the duration of the lag interval and improves parameter learning of
the algorithm in non-stationary environments.
The complete data likelihood leads to a posterior which, un-

like a traditional filtering distribution, assumes knowledge of a fi-
nite number of adjacent states, encompassing the whole fixed-lag
period. Hence, the expectation step (E-step) of our algorithm com-
prises a diagonalized DFT-domain Kalman filter [6] followed by a
DFT-domain Kalman smoother, which also maintains diagonality.
The smoother stage becomes imperative for learning the complete
posterior and achieving the desired convergence [2]. The maximiza-
tion step (M-step) then exploits the state estimates and pertinent ex-
pectations evaluated in the E-step to yield optimum model parame-
ters in the maximum-likelihood sense for each block-time index in
the lag interval.
In Sec. 2 we describe the DFT-domain observation and state-

transition equations, which together represent the dynamical model.
The focus of Sec. 3 is to express the complete data likelihood for a
fixed-lag interval and derive the corresponding ML-EM algorithm.
In Sec. 4 we delve into simulation results to ascertain the perfor-
mance of the algorithm under diverse conditions of noise and state-
variability. Conclusions are presented in Sec. 5.
We use nonbold lowercase letters for scalar quantities, bold low-

ercase for vectors, and bold uppercase for frequency-domain quan-
tities. The superscript H denotes Hermitian transposition. We use
FM and log to denote the DFT matrix of size M and the natural log-
arithm, respectively. Lowercase letters “t” and “τ” are reserved for
sample- and block-time indices, while R and N are the block-shift in
samples and the number of blocks in the fixed-lag interval, respec-
tively.

2. DFT-DOMAIN DYNAMICAL MODELING

We address the system identification problem, where the time-
domain input xt gets convolved through the unknown FIR system
wτ to give an intermediate signal dt . Measurement noise st is super-
imposed on the intermediate signal to give the observation yt . The
estimated state of the unknown system is denoted by ŵτ .

2.1. Markov Model of a Time-Varying System

A DFT-domain state vector Wτ is defined on the basis of the con-
straint that a time-domain state wτ ofM−R non-zero coefficients is

represented, i.e., Wτ = FM
[
wHτ 0

]H
, where M is the block-size.

Thus, the first-order Markov model expressing the evolution of the
state vectorWτ is described as:

Wτ = A ·Wτ−1+∆Wτ . (1)

Here, the factor A denotes a state transition coefficient in the
range 0< A< 1 and ∆Wτ represents zero-mean and block-wise un-
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correlated process noise withM×M process noise covariance matrix
E

{
∆Wτ ∆WHτ

}
= Ψ∆

τ .

2.2. Block-Frequency-Domain Observation Model

We define block-oriented input and measurement noise signals as

xτ = [xτR−M+1,xτR−M+2, ...,xτR]
H

sτ = [sτR−R+1,sτR−R+2, ...,sτR]
H . (2)

AnM×M input matrix Xτ is created by first applying DFT and then
diagonalization to the input signal, i.e., Xτ = diag{FMxτ}. Using
these definitions, we apply an overlap-save convolution to obtain an
observation vector yτ defined analogous to sτ ,

yτ =QHF−1M XτWτ + sτ , (3)

where QH = (0 IR) is an R×M projection matrix, included to
linearize the cyclic convolution in DFT-domain, and IR denotes an
R×R identity. Application of Q and FM to (3) results in a DFT-
domain representation Yτ = FMQyτ of the observation vector:

Yτ = FMQQ
HF−1M XτWτ +FMQsτ . (4)

The constant term G = FMQQ
HF−1M can be combined with the

input matrix Xτ to give the overlap-save constrained version Cτ =
GXτ of the input signal. These abbreviations then allow a more
compact matrix-vector respresentation of the observation model,

Yτ = CτWτ +Sτ , (5)

where Sτ = FMQsτ is considered as zero-mean and block-wise un-
correlated measurement noise with M×M time-varying measure-
ment noise covariance E

{
SτS

H
τ

}
= ΨSτ .

Combining the Markov model in (1) with the observation equa-
tion in (5), we obtain a DFT-domain state-space model. The covari-

ances Θτ =
{

ΨSτ ,Ψ
∆
τ

}
are then termed as the unknown parameters

of the state-space model.

2.3. Dynamical Model Over the Fixed-Lag Interval

From the equations of the dynamical model, (1) and (5), we express
the i-th DFT-domain block in a given lag interval indexed with κ ,

Wκ,i = A ·Wκ,i−1+∆Wκ,i

Yκ,i = Cκ,iWκ,i+Sκ,i . (6)

where Wκ,i =Wτ , analogy of which can be extended to all other
quantities in (6). The block-index τ and the lag-interval number
κ are related via τ = κN + i and i = 1,2, · · · ,N. A lag inter-
val corresponds to a non-overlapping window comprising N DFT-
domain blocks. The corresponding parameters take the form Θκ,i ={

ΨSκ,i,Ψ
∆
κ,i

}
. Expressions in (6) are illustrated in Fig. 1, which

highlights the state-transition and the observation strata, and depicts
the scope of a fixed-lag.

3. ML-EM ALGORITHM

Maximum-likelihood learning of distinct model parameters Θκ,1:N
for each block-index τ entails the maximization of the following
complete data log-likelihood function over a given fixed-lag inter-
val:

L (Θκ,1:N) = log p(Yκ,1:N |Θκ,1:N)

= log
∫
p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) dWκ,1:N . (7)

∆Wκ,1 ∆Wκ,2 ∆Wκ,N

Sκ,1 Sκ,2 Sκ,N
Cκ,1 Cκ,2 Cκ,N

Wκ,1 Wκ,2 Wκ,N

Yκ,1 Yκ,2 Yκ,N

AAA

Fig. 1. DFT-domain dynamical modeling over a fixed-lag interval.

The term p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) denotes a joint distribution con-
ditioned on model parameters Θκ,1:N , and on the implicitly assumed
known initial state predictor Wκ,0. Considering an arbitrary distri-
bution q(Wκ,1:N), irrespective of its form, we can obtain a lower
boundF (q,Θκ,1:N) on the log-likelihood,

L (Θκ,1:N) = log
∫
q(Wκ,1:N)

p(Yκ,1:N ,Wκ,1:N |Θκ,1:N)

q(Wκ,1:N)
dWκ,1:N

≥
∫
q(Wκ,1:N) log

p(Yκ,1:N ,Wκ,1:N |Θκ,1:N)

q(Wκ,1:N)
dWκ,1:N

= F (q,Θκ,1:N), (8)

making use of Jensen’s inequality, signifying the concavity of the
log function. The EM algorithm alternates between maximizing the
functional F (q,Θκ,1:N) with respect to the distribution q(Wκ,1:N)
and the model parametersΘκ,1:N [8]. EM iterations can be expressed
as:

E-step : qk←− argmax
q

F (q,Θk−1κ,1:N)

M-step : Θkκ,1:N ←− argmax
Θ

F (qk,Θκ,1:N) , (9)

where k denotes the iteration index.

3.1. Expectation Step

The joint distribution p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) used in (8) can
be factorized using the Bayes’ theorem into the posterior
p(Wκ,1:N |Yκ,1:N ,Θκ,1:N) and the likelihood p(Yκ,1:N |Θκ,1:N):

p(Yκ,1:N ,Wκ,1:N |Θκ,1:N)=

p(Wκ,1:N |Yκ,1:N ,Θκ,1:N) p(Yκ,1:N |Θκ,1:N). (10)

On substituting (10) into (8), we can see that maximization in the E-
step is achieved by setting q(Wκ,1:N) = p(Wκ,1:N |Yκ,1:N ,Θκ,1:N),
because for such a selection of q(Wκ,1:N) the objective func-
tional F (q,Θκ,1:N) equals the intermediate log-likelihood at iter-
ation time k [1]. The sample posterior for a given lag interval
p(Wκ,i|Yκ,1:N ,Θκ,1:N) can be recursively learned by means of a
Kalman filter-smoother combination [9].

3.1.1. DFT-Domain Adaptive Kalman Filter

Owing to the assumption of Gaussianity, the mean and covariance
of the filtering distribution p(Wκ,i|Yκ,i,Θκ,1:N) in the E-step are
computed by recursive equations of the DFT-domain Kalman fil-
ter which have been formulated in [6]. The Kalman filtering stage,
which learns the filtering distribution p(Wκ,i|Yκ,i,Θκ,1:N) consti-
tutes a forward pass in terms of the processing direction of the
algorithm, as shown in Fig. 2. It has been verified in [6, 10]
that G, cf. Sec. 2.3, can be approximated as a scaled identity,

G≈ RM IM , and thus Cκ,i ≈
R
MXκ,i. Considering this and the approx-

imate diagonality of the covariances ΨSκ,i and Ψ∆
κ,i in DFT-domain,
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the exact Kalman filter recursions for a given lag interval can be
approximated as a diagonalized DFT-domain adaptive Kalman fil-
ter [6]:

for i= 1 to N
if(i== 1)

Ŵ
i−1

κ,i ←Wκ,0

P i−1
κ,i ← Pκ,0

else

Ŵ
i−1

κ,i ← A ·Ŵ
i−1

κ,i−1

P i−1
κ,i ← A2 ·P i−1

κ,i−1 +Ψ∆
κ,i

end if

µκ,i← P
i−1

κ,i

[
Xκ,iP

i−1
κ,i X

H
κ,i+

M

R
ΨSκ,i

]−1

Eκ,i← Yκ,i−Cκ,iŴ
i−1

κ,i

Ŵ
i

κ,i ← Ŵ
i−1

κ,i + µκ,iX
H
κ,iEκ,i

P i
κ,i ←

[
IM−

R

M
µκ,iX

H
κ,iXκ,i

]
P i−1

κ,i

end for

Here, µκ,i is the Kalman step-size, Eκ,i the error signal, Ŵ
i

κ,i the

estimate of the unknown state, P i
κ,i the state error covariance, and IM

the identity. The intermediate terms, Ŵ
i−1

κ,i and P̂
i−1

κ,i , represent

one-step predictors for the estimate of the unknown state and the
state error covariance. Our framework assumes the knowledge of
the initial belief state, hence the initial predictors for the stateWκ,0
and error covariance Pκ,0 are considered known from the previous
lag interval.

3.1.2. DFT-Domain Fixed-Interval Smoother

We augment the DFT-domain Kalman filter with the DFT-domain
smoother, which constitutes the backward pass, to accomplish the
learning of the complete data posterior p(Wκ,i|Yκ,1:N ,Θκ,1:N) from
the already learned filtering distribution p(Wκ,i|Yκ,i,Θκ,1:N) [9]:

for i= N down to 2

Jκ,i−1← P
i−1

κ,i−1 ·A ·
[
P i−1

κ,i

]−1

Ŵ
N

κ,i−1← Ŵ
i−1

κ,i−1 +Jκ,i−1

[
Ŵ

N

κ,i −Ŵ
i−1

κ,i

]

P N
κ,i−1← P

i−1
κ,i−1 +Jκ,i−1

[
P N

κ,i −P
i−1

κ,i

]
JHκ,i−1

end for

The term Jκ,i−1 is the smoother gain, while Ŵ
N

κ,i and P
N

κ,i are the

mean and covariance of the smoothed posterior. It follows from the
direct reliance of the smoother gain Jκ,i−1 on the state error covari-

ance P i−1
κ,i−1 and its predictor P

i−1
κ,i that the smoother quantities in-

herit the diagonal attributes of the filter in DFT-domain. Fig. 2 while
depicting both the forward and the backward passes, conceptually

illustrates the estimation of Ŵ
N

κ,i and the subsequent and indispens-

able interaction with the M-step for parameter learning.

3.2. M-Step: Parameter Learning Rules

The lower bound on the log-likelihood contains a term which is in-
dependent of the model parameters Θκ,1:N :

F (q,Θκ,1:N)=
∫
q(Wκ,1:N) log p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) dWκ,1:N

−
∫
q(Wκ,1:N) log q(Wκ,1:N) dWκ,1:N . (11)

kth

itera-
tion

forward

backward

pass

pass

Maximization Step: Covariance Parameter Learning

Expectation Step
i= 1 i= 2 i= N−1 i= N

Ŵ
N

κ,1 Ŵ
N

κ,2
Ŵ

N

κ,N−1

Wκ,0 Ŵ
1

κ,1 Ŵ
2

κ,2 Ŵ
N−1

κ,N−1 Ŵ
N

κ,N−1

ΨSκ,1,Ψ
∆
κ,1 ΨSκ,2,Ψ

∆
κ,2 ΨSκ,N−1,Ψ

∆
κ,N−1 ΨSκ,N ,Ψ

∆
κ,N

Eκ,1 Eκ,2 Eκ,N−1 Eκ,N

µκ ,1 µκ,2 µκ,N−1 µκ,N

Fig. 2. DFT-domain expectation maximization algorithm for block-
wise parameter learning.

Since the second term, the entropy of q(Wκ,1:N), is not a function
of Θκ,1:N , the k-th M-step is computed by maximizing the first term
only:

Θkκ,1:N=

arg max
Θκ,1:N

∫
qk(Wκ,1:N) logp(Yκ,1:N ,Wκ,1:N |Θκ,1:N) dWκ,1:N . (12)

The joint distribution in (12) can be factorized to highlight observa-
tion and state-transition distributions:

p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) =

N

∏
i=1

p(Yκ,i|Wκ,i,Θκ,i) p(Wκ,i|Wκ,i−1,Θκ,i) . (13)

As the state-space model has been formulated in DFT-domain, both
transition and transmission processes are described by complex mul-
tivariate Gaussians [11], i.e., we express

p(Yκ,1:N ,Wκ,1:N |Θκ,1:N) = (14)

N

∏
i=1

1

πM |ΨSκ,i|
exp

[
−

(
Yκ,i−Cκ,iWκ,i

)H
ΨS

−1

κ,i

(
Yκ,i−Cκ,iWκ,i

)]
×

N

∏
i=1

1

πM |Ψ∆
κ,i|
exp

[
−

(
Wκ,i−A ·Wκ,i−1

)H
Ψ∆−1

κ,i

(
Wκ,i−A ·Wκ,i−1

)]
,

where | · | denotes the determinant of an M×M matrix. In accor-
dance with (12), we apply the log function to (14) followed by an

expectation operation with respect to the distribution qk(Wκ,1:N),
i.e.,

Eqk
{
log p(Yκ,1:N ,Wκ,1:N |Θκ,1:N)

}
=

N

∑
i=1

{
−2Mlogπ− log|ΨSκ,i| − log|Ψ

∆
κ,i| (15)

−Tr
{

ΨS
−1

κ,i Eqk

{(
Yκ,i−Cκ,iWκ,i

)(
Yκ,i−Cκ,iWκ,i

)H}}

−Tr
{

Ψ∆−1

κ,i Eqk

{(
Wκ,i−A ·Wκ,i−1

)(
Wκ,i−A ·Wκ,i−1

)H}}}
,

where Tr{·} is the trace operator. Covariance terms ΨSκ,i and Ψ∆
κ,i,

for i = 1 to N, are estimated by taking the corresponding partial
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derivatives of these expressions and setting them to zero. Using the
lemmata [12]

∂ log|U|

∂U
=U−T ,

∂U−1

∂U
=−U−1U−1,

∂Tr{U V}

∂U
=VT , (16)

we find the following expressions for i-th parameters in the k-th EM
iteration that maximize (15):

ΨS kκ,i = Eqk
{(
Yκ,i−Cκ,iWκ,i

)(
Yκ,i−Cκ,iWκ,i

)H}
, (17)

Ψ∆ k
κ,i = Eqk

{(
Wκ,i−A ·Wκ,i−1

)(
Wκ,i−A ·Wκ,i−1

)H}
. (18)

The result in (18) represents learning rules that are optimal in the
ML sense under the inferred distribution qk(Wκ,1:N).

3.2.1. Evaluation of the Measurement Noise Covariance

The learning rule for the measurement noise covariance ΨS kκ,i in (17)

can be further expanded as:

ΨS kκ,i = Yκ,iY
H
κ,i−Yκ,iEqk{W

N H
κ,i }C

H
κ,i (19)

−Cκ,iEqk

{
W N

κ,i

}
YHκ,i+Cκ,iEqk{W

N
κ,i W

N H
κ,i }C

H
κ,i .

It is evident from (19) that the expectations Eqk

{
Wκ,iW

H
κ,i

}
and

Eqk
{
Wκ,i

}
have to be evaluated. The mean Ŵ

N

κ,i and covari-
ance P N

κ,i obtained from the DFT-domain adaptive Kalman filter-

smoother (E-step) allow us to write

Eqk
{
Wκ,i

}
= Ŵ

N

κ,i

Eqk

{
Wκ,iW

H
κ,i

}
= Ŵ

N

κ,i Ŵ
N H

κ,i +P N
κ,i . (20)

Using the expectation in (20) we simplify the expression in (19) as,

ΨSκ,i = E
+
κ,iE

+H
κ,i +Cκ,iP

N
κ,i C

H
κ,i , (21)

where E+
κ,i = Yκ,i − Cκ,iŴ

N

κ,i is the a posteriori error, while

Cκ,iP
N

κ,i C
H
κ,i can be approximated with

R
MXκ,iP

N
κ,i X

H
κ,i [6].

3.2.2. Evaluation of the Process Noise Covariance

The expansion of the quantity Ψ∆ k
κ,i in (18) leads to

Ψ∆ k
κ,i =Eqk

{
Wκ,iW

H
κ,i

}
−A ·Eqk

{
Wκ,iW

H
κ,i−1

}

−A ·Eqk
{
Wκ,i−1W

H
κ,i

}
+A2 ·Eqk

{
Wκ,i−1W

H
κ,i−1

}
, (22)

which requires the evaluation of the expectation Eqk

{
Wκ,iW

H
κ,i−1

}
.

This term can be expressed according to [9] as:

Eqk

{
Wκ,iW

H
κ,i−1

}
= Ŵ

N

κ,i Ŵ
N H

κ,i−1+P
N

κ,i,i−1 . (23)

To obtain the above expectation we therefore invoke the lag-one co-
variance smoother [9], which indirectly relies on the computations
of the E-step state-estimator to give, for i= N−1,N−2, · · · ,2:

P N
κ,i,i−1=P

i
κ,iJκ,i−1+Jκ,i(P

N
κ,i+1,i−A ·P

i
κ,i)Jκ,i−1 . (24)

To bring lag-one covariance smoother in conformity with the afore-
mentioned diagonalization, we initialize for i= N as:

P N
κ,N,N−1 =

[
IM−

R

M
µκ,NX

H
κ,NXκ,N

]
P N−1

κ,N−1 ·A . (25)

In light of the expectations, as evaluated in (20) and (23), we can
proceed from (22) to obtain the learning rule for the process noise
covariance,

Ψ∆ k
κ,i = ∆Ŵ

N

κ,i ∆Ŵ
N H

κ,i +P N
κ,i +A2 ·P N

κ,i−1−2 ·A ·P
N

κ,i,i−1 , (26)

where ∆Ŵ
N

κ,i = Ŵ
N

κ,i −A · Ŵ
N

κ,i−1 . It is worth mentioning that

owing to the assumption of diagonality on ΨSκ,i and Ψ∆
κ,i, only the

main diagonals of E+
κ,iE

+H
κ,i and ∆Ŵ

N

κ,i ∆Ŵ
N H

κ,i are evaluated in (21)

and (26), respectively.

4. RESULTS

For analyzing the performance of the derived algorithm we have
considered dynamical systems with quantifiable variability under
diverse conditions of observation noise. The dynamical systems
used for simulations conform to Markov model characteristics,
cf. Sec. 2.1, with a transition coefficient A and a corresponding time-
constant ρ =−R/( fs · logA), where fs = 16 kHz is the sampling fre-
quency. Block-size M and block-shift R of the DFT-domain model
were set to 256 and 64, respectively. The observation noise signal,
which acquires the form of a burst noise signal, provides for time-
varying SNR conditions so that the online covariance estimation ca-
pabilities of the algorithm can be ascertained. The dynamic range of
the observation noise covariance is 25 dB.
We initiated our analysis by evaluating the learning of the time-

varying observation noise covariance ΨSτ . The data for this evalu-
ation was derived from a Markov model with a large time-constant
of ρ = 40s, i.e., A = 0.9999. Fig. 3 illustrates the obtained values
of ΨSτ along with the true observation noise covariance ΨSτ . The
proposed algorithm was compared with the conventional approach
of performing averaging of parameters in the M-step. As the av-
eraging in M-step is performed over whole of the fixed-lag dura-
tion, the conjecture of stationarity of the underlying model is in-
evitable for the given interval. We have considered M-step averag-
ing scheme [13] with various values of the fixed-lag interval, ranging
from N = 100 to N = 10 blocks. It can be observed that the inferred
ΨSτ approaches closer to the true covariance ΨSτ as the fixed-lag in-
terval is reduced from N = 100 to N = 10, which can be expected
as the length of event in the form of noise burst is about 50 blocks.
The proposed approach with N = 100 is, in contrast, oblivious to
the length of the fixed-lag interval and provides near perfect track-
ing of the observation noise covariance. Fig. 4 illustrates the ef-
fect of the quality of observation noise covariance learning on sys-
tem identification. Relative system distance D was considered as
the instrumental measure for quantifying system identification, i.e.,

D= 10 log10(E{||Wτ −Ŵτ ||
2}/E{||Wτ ||

2}). It can be observed in
conjunction with Fig. 3 that the proposed algorithm on the average,
where instantaneous estimates are provided to the E-step, achieves
the lowest system distance D. Noticeable in the figure is also the
degradation in system identification caused by averaging in the M-
step in the contending configurations, which originates from inade-
quate parameter learning.
We carried out a similar analysis for evaluating the learning of

the process noise covariance Ψ∆
τ . In order to focus the analysis on

the learning of the process noise covariance, evaluations were car-
ried out under low and constant observation noise conditions. The
data for the analysis was derived by switching between two Markov
models, with time constants of ρ = 4s and ρ = 45s corresponding to
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A= 0.999 and A= 0.9999, respectively. As the simulation data has
been generated using an underlying system with unit state covari-

ance ΨWτ = E
{
WτW

H
τ

}
, the true value of Ψ∆

τ can be derived under
the stationarity constraint from (1) as:

Ψ∆
τ = (1−A2) ·ΨWτ ,

= (1−A2) ·1 . (27)

Hence, the true value of Ψ∆
τ , as depicted in Fig. 5, switches between

−27 dB and −37 dB for A= 0.999 and A= 0.9999, respectively. A
larger value ofΨ∆

τ signifies an underlying model with a smaller time-
constant and vice versa. It can be seen in the plot that all competitors
seek to track the process noise covariance of the underlying model,
but the smoothing approach with N = 100 almost completely fails to
detect the switching process. Cases with N = 50 and N = 10 tend to
track better, but suffer from over and under-estimation, respectively.
The learning curve for the proposed algorithm, despite larger vari-
ance, effectively recognizes the switching event and veritably tracks

the model covariance Ψ∆
τ .
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Fig. 3. Learning of observation noise covariance ΨSτ .
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Fig. 4. Impact of parameter smoothing on system identification.

5. CONCLUSIONS

We have derived a DFT-domain maximum-likelihood expectation-
maximization algorithm to carry out joint state and parameter learn-
ing of linear time-varying dynamical models. Our framework puts
forth an efficient diagonalized DFT-domain Kalman filter-smoother
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Fig. 5. Learning of process noise covariance Ψ∆
τ .

state estimator, which manifests the expectation step iteratively with
a maximization step. The maximization step utilizes the quantities
estimated in the expectation step to output distinct model parame-
ters for each DFT-domain block within the fixed-lag interval. We
have thus shown that the fixed-lag smoothing in the expectation step
does not necessarily entail averaging in the maximization step. This
enables the algorithm to effectively adapt even in non-stationary en-
vironments. We have substantiated the aforementioned feature of
our algorithm by means of simulation results and comparison to a
maximization step averaging approach.
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